

Sensitive and Fast Measurement of Aminoglycoside Antibiotics in Milk, Meat or Eggs by HILIC-MS/MS and Identification using multi-MRM Spectrum Mode

<u>Mikaël LEVI¹; Ichiro HIRANO¹, Jun WATANABE¹ - ¹ Shimadzu Corporation, Kyoto, Japan</u>

1. Introduction

Aminoglycoside are an antibiotic family widely used for the treatment of bacterial infections in cattle, sheep, pigs and poultry. Due to their high affinity for tissues, the consumption of meat, milk or eggs containing aminoglycosides (AGs) can be potentially hazardous for human health. Regulatory agencies have set maximum residue limits (MRL) for these compounds with veterinary use. Depending on the countries, the animal species, the commodity or the AG, these MRL are different. For food safety laboratories testing large numbers of samples, a method capable to cover as many compounds, matrices and regulated range as possible would be of great help.

In addition, some AGs are strictly banned for some commodities (*e.g.* spectinomycin in eggs) or have low MRL. So in the case of a positive sample, a strict identification of the compound is necessary to confidently report potential fraud.

When no MRL was defined, the Japan rule using 10 ng/g as default MRL was employed for the highest level. Finally, taking into account the sample preparation protocol, volumetric concentration were established. The table 3 summarize the calibration ranges used. Some typical chromatograms at LOQ are provided in figure 1.

Table 3: Calibration ranges

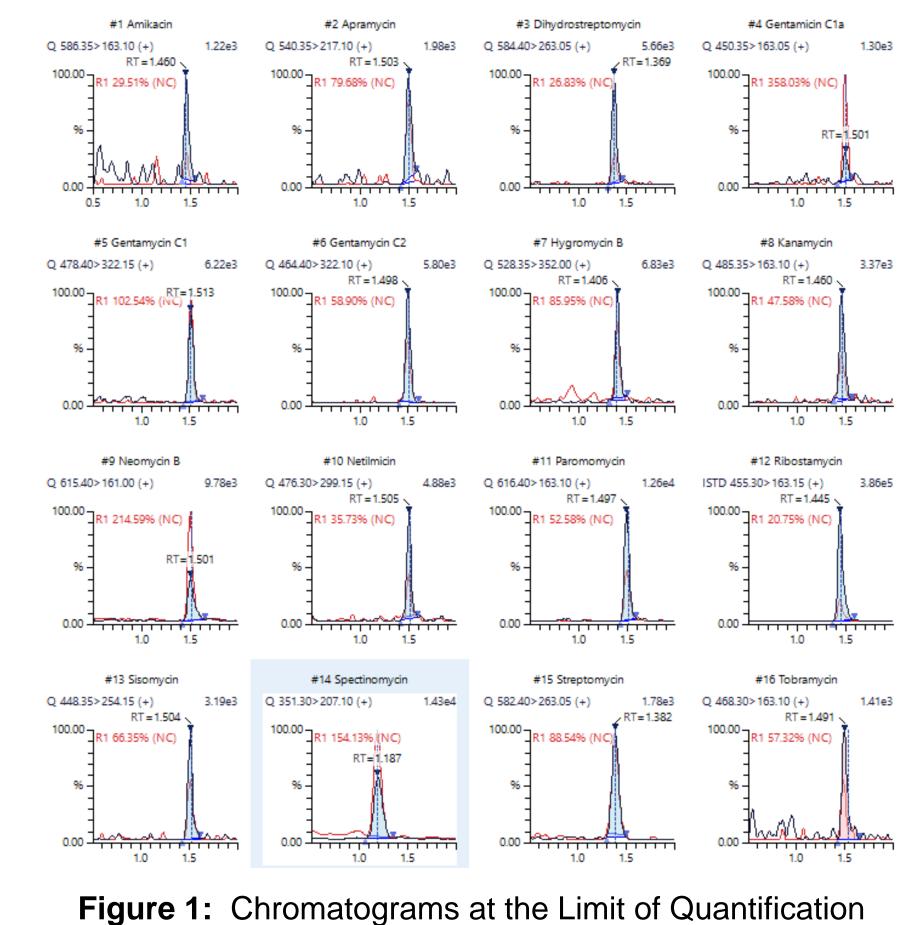
	Calibration range (µg/kg)					
Compound	lowest (Low MRL/10)	highest (high MRL + 50%)				
Amikacin	1.3	10				
Apramycin	4.0	2021				
Dihydrostreptomycin	8.2	2015				
Gentamicin(*)	3.4	5041				
Hygromycin	1.4	10				
Kanamycin	6.7	2542				
Neomycin (+)	33.9	10245				
Netilmicin	1.3	10				
Paromomycin	33.4	1508				
Sisomycin	1.3	10				
	C O	1005				

AGs are very polar compounds poorly retained by reversed-phase liquid chromatography and ion-pairing reagents are not desirable when users share several methods on a single system.

Here we present a method using hydrophilic interaction liquid chromatography (HILiC) with high sensitivity mass spectrometer to reach low limits of quantification, combined with muli-MRM Spectrum Mode for formal identification.

2. Materials and Method

2-1. Sample Preparation


Frozen meat samples were homogenized using a knife mill (Grindomix GM200, Retsch). 5 g of homogenized sample or mixed eggs or 10 mL of milk were placed in a polypropylene tube. After addition of 20µL of ISTD solution (Ribostamycin) and 20 mL of extraction solution (10 mM NH4OAc, 0.4mM EDTA, 0.5% NaCl, 2% trichloroacetic acid in water), sample were vortex mixed and shaked for 10 min. After centrifugation for 10 min at 4000 rpm, the supernatant was transferred to a clean PP tube. Extraction was repeated and supernatant combined. Extract pH was then adjusted to pH 6.5 +/- 0.25.

Further purification was then perfomed by Solid Phase Extraction (SPE) using mixed-mode sorbent (WCX Express 96-well plate 30 mg, Biotage) and Extrahera automate (Biotage). 0.5 mL of extract was loaded without prior conditioning. Then the sample was washed with 1 mL of ammonium acetate buffer 50mM pH7. After sorbent drying, target compounds were eluted with 250 μ L of aqueous formic acid 10% (v/v). Purified extracts were then diluted 5 times with mobile phase A prior to transfer into a polypropylene vial and analysis.

2-2. Analytical Conditions

Spectinomycin	6.8	4995
Streptomycin	20.1	2036
Tobramycin	1.4	10
(*) sum of C1, C1a and C2 congeners		

3-2. Recovery

Several meat samples, eggs and milk samples were purchased from the local supermarket. All

Two methods were used. First method for fast quantitative screening is using a fast gradient with two MRM by compound. The second method for positive sample confirmation, used same mobile phases and column but with a longer gradient and 15 MRM per compound. Parameters are described parameters in Table 1 and 2.

Table 1: HILiC Conditions

System	: Nexera X2
Column	: GL Sciences Inertsil Amide 3µm 100x2.1mm
Temperature	: 50°C
Mobile Phases	: A: Water + 250 mM ammonium formate + 1% formic acid
	B: Acetonitrile
Flow Rate	: 800 µL/min
Injection Volume	: 5 μL
(Quant screening)	
Gradient	: 75 % B (0.1min) to 30%B in 1 min. 30%B (2 min). 30%B to 75%B in 0.1 min
Total Run Time	: 4.5 min
(ID Confirmation)	
Gradient	: 70 % B (0.1min) to 60%B in 6 min. 60%B to 50 (3min). 50%B to 70%B in 0.1 min
Total Run Time	: 13 min

Table 2: MS/MS conditions for fast quantitative screening

onization: Heated ESIrobe Voltage: +1.5 kV (positive ionization)emperature: Interface: 400°CDesolvation Line: 150°CHeater Block: 300°CBas Flow: Nebulizing Gas: 3 L/minHeating Gas: 20 L/MinDrying Gas: 3 L/min							
robe Voltage : +1.5 kV (positive ionization) emperature : Interface: 400°C Desolvation Line: 150°C Heater Block: 300°C tas Flow : Nebulizing Gas: 3 L/min Heating Gas: 20 L/Min Drying Gas: 3 L/min	System	: LCMS-8060					
emperature : Interface: 400°C Desolvation Line: 150°C Heater Block: 300°C tas Flow : Nebulizing Gas: 3 L/min Heating Gas: 20 L/Min Drying Gas: 3 L/min	Ionization	: Heated ESI					
Desolvation Line: 150°C Heater Block: 300°C : Nebulizing Gas: 3 L/min Heating Gas: 20 L/Min Drying Gas: 3 L/min	Probe Voltage	: +1.5 kV (positive ionization)					
Heater Block: 300°C as Flow : Nebulizing Gas: 3 L/min Heating Gas: 20 L/Min Drying Gas: 3 L/min	Temperature	: Interface: 400°C					
as Flow : Nebulizing Gas: 3 L/min Heating Gas: 20 L/Min Drying Gas: 3 L/min		Desolvation Line	e: 150°C				
Heating Gas: 20 L/Min Drying Gas: 3 L/min		Heater Block: 30	O°C				
Drying Gas: 3 L/min	Gas Flow	: Nebulizing Gas:	3 L/min				
		Heating Gas: 20	L/Min				
		Drying Gas: 3 L/r	min				
well Time / Pause time : 6 ms / 1.5 ms	Dwell Time / Pause time	: 6 ms / 1.5 ms					
IRM : Compound MRM Quant MRM Qual	MRM	: Compound	MRM Quant	MRM Qual			
Spectinomycin 351.1 > 207.0 351.1 > 98.2		Spectinomycin	351.1 > 207.0	351.1 > 98.2			
Apramycin 540.3 > 217.1 540.3 > 378.3		Apramycin	540.3 > 378.3				
Dihydrostreptomycin 584.3 > 263.2 584.3 > 246.0		Dihydrostreptomy	cin 584.3 > 263.2	584.3 > 246.0			
Gentamicin C1a 450.2 > 322.2 450.2 > 163.0		Gentamicin C1a	450.2 > 322.2	450.2 > 163.0			

samples were processed as described in 2.1. Blank samples and samples spiked at 100 ng/g before extraction were analyzed. No compound were found in blank samples. Peak areas were compared to an aqueous standard at the same concentration.

The mean recoveries for each compound were superior to 90% and moreover, were homogenous within the type of samples tested. This illustrates the good extraction recoveries and low matrix effect obtained.

3-3. Identification using MRM Spectrum Mode

In MRM Spectrum Mode, 15 MRM transitions were acquired per compound. Signals were merged by the software (Labsolutions Insight Library Screening, Shimadzu Corp., Kyoto, Japan) to create a spectrum with optimized sensitivity for each fragment. By comparing this spectrum to a predefined library, identification becomes unambiguous. Thanks to ultrafast MRM features of the mass spectrometer used, there is no significant difference in sensitivity when acquiring 2 or 15 MRM per compound. Figure 2 shows library search display.

Shortcuts	 Compour 	nd List											Sample Resu	Its - Dihydrostreptomy	cin							
File		Flags Flag ID	Name		Status	Туре		ISTD Grou	p m/z		RT	^		ags Data Filename				mple Name			Status	
View			T	•	•		Ŧ	T		Ŧ	T	_					Ŧ		•	•		
Edit	1		Spectinon	nycin	Pending	Target			1 351.10>333.1		1.415	_	20	10252017_Blank_0				ank			Pendir	_
Cuit	2		Dihydrosti		Pending	Target			1 584.30>263.1		3.295		21	10252017_Blank_0				ank			Pendi	_
	3		Streptomy		Pending	Target			1 582.30>263.1		3.474	_	22	10252017_Milk-Lo	-			ilk-Low			Pendir	
	4		Hygromyo		Pending	Target			1 528.30>352.1		4.091		23	10252017_Milk-Lo				ilk-Low			Pendi	_
	5		Ribostamy			ISTD			1 455.00>163.2		4.647	_	24	10252017_Milk-Lo	-			ilk-Low			Pendir	
-	6		Kanamyci		Pending	Target			1 485.30>163.0		5.176		25	10252017_Milk-M				ilk-Middle			Pendi	_
it Method	7		Gentamyc		Pending	Target			1 464.30>322.1		5.564	_	26	10252017_Milk-M	-			ilk-Middle			Pendi	
-	8		Tobramyc	in	Pending	Target			1 468.30>162.9		5.653		27	10252017_Milk-H				ilk-High			Pendir	
<u>∧Ah</u>	<											> <										
	 Library Hi 	ite 10252017 M	1ilk-Low_027 - Dihyd	rostropte																		
	#		Lib. SI CAS #		mpound Na S	000000		Theory MW Fe	ormula	Class	Lib. Filen	name	URL	Comment		RT Chromatogram	٨	duct Ion Precursor Ion	MS	Stage Ionization	Co	Collis
grate Batch				T	Tipounu Na 5	ynonym T		THEOLY IN T	••••••••••••••••••••••••••••••••••••••		T	T	OILE	T T	,		AU				T	Juliisi
	✓ 1		94 128-46-1		vdrostrepto				21H41N7O12				http://www.			3.343	H+ ·	+1.00728		2 ESI		
			24 120 40 1	0			_					iy cosides	The part of the second	crimi								
ate Sample	2 <	nd Details - 10252	81 57-92-1					581.5800 C	21H39N7O12		Aminogh	lycosides	http://www.	ch		3.536	H+ ·	+1.00728		2 ESI		
grate Sample	<				· · · /			581.5800 C	21H39N7O12		Aminogh	lycosides	http://www.	ch		3.536	H+ ·	+1.00728		2 ESI		
Irate Sample	<		81 57-92-1 2017_Milk-Low_027		· · · /				21H39N7O12		Aminogh					3.536		-		2 ESI		
rate Sample	 Compour Q 584.30>263.1 	15 (+)			· · · /		RT=3.593		21H39N7O12	2.84e	MRM(+) RT: [3.332			263.15		3.536		Pe2 Dihydrostreptomycin		2 ESI		
grate Sample	 Compour Q 584.30>263.1 100.00 R1 52 	15 (+) 2.56% (NC)			· · · /		RT=3.593		21H39N7O12		MRM(+) RT: [3.332					3.536		-		2 ESI		
<u>♪h</u>	 Compour Q 584.30>263.1 100.00 R1 52 R2 29 	15 (+) 2.56% (NC) 9.09% (NC)			· · · /		RT=3.593		21H39N7O12	2.84e	MRM(+) RT: [3.332					3.536		-		2 ESI		
	 Compour Q 584.30>263.1 100.00 R1 52 R2 29 R3 31 	15 (+) 2.56% (NC)			· · · /		RT=3.593		21H39N7O12	2.84e	MRM(+) RT: [3.332					3.536		-		2 ESI		
<u>♪h</u>	 Compour Q 58430>263.1 100.00 R1 52 R2 29 R3 31 R4 3. 	15 (+) 2.56% (NC) 9.09% (NC) 1.60% (NC)			· · · /		RT=3.593		21H39N7O12	2.84e	MRM(+) RT: [3.332 9.0e2 8.0e2					3.536		-		2 ESI		
	 Compour Q 58430>263.1 100.00 R1 52 R2 29 R3 31 R4 3. 	15 (+) 2.56% (NC) 9.09% (NC) 1.60% (NC) .75% (NC)			· · · /		RT=3.593		21H39N7O12	2.84e	9.0e2					3.536		-		2 ESI		
<u>♪h</u>	 Compour Q 58430>263.1 100.00 R1 52 R2 29 R3 31 R4 3. 	15 (+) 2.56% (NC) 9.09% (NC) 1.60% (NC) .75% (NC)			· · · /		RT=3.593		21H39N7O12	2.84e	MRM(+) RT: [3.332 9.0e2 8.0e2					3.536		-		2 ESI		
ate Compound	 Compour Q 58430>263.1 100.00 R1 52 R2 29 R3 31 R4 3. 	15 (+) 2.56% (NC) 9.09% (NC) 1.60% (NC) .75% (NC)			· · · /		RT=3.593		21H39N7O12	2.84e	MRM(+) RT: [3.332 9.0e2 8.0e2 7.0e2 6.0e2					3.536		-		2 ESI		
ate Compound	 Compour Q 58430>263.1 100.00 R1 52 R2 29 R3 31 R4 3. 	15 (+) 2.56% (NC) 9.09% (NC) 1.60% (NC) .75% (NC)			· · · /		RT=3.593		21H39N7O12	2.84e	MRM(+) RT: [3.332 9.0e2 8.0e2 7.0e2			263.15		3.536		-		2 ESI	N	
ate Compound	 Compour Q 58430>263.1 100.00 R1 52 R2 29 R3 31 R4 3. 	15 (+) 2.56% (NC) 9.09% (NC) 1.60% (NC) .75% (NC)			· · · /		RT=3.593		21H39N7O12	2.84e	MRM(+) RT: [3.332 9.0e2 8.0e2 7.0e2 6.0e2 5.0e2			263.15		3.536		-		2 ESI	N	
te Compound	 Compour Q 58430>263.1 100.00 R1 52 R2 29 R3 31 R4 3. 	15 (+) 2.56% (NC) 9.09% (NC) 1.60% (NC) .75% (NC)			· · · /		RT=3.593		21H39N7O12	2.84e	MRM(+) RT: [3.332 9.0e2 8.0e2 7.0e2 6.0e2		3.332 - 3.964]	263.15		3.536		-		2 ESI	N	
ate Compound	 Compour Q 58430>263.1 100.00 R1 52 R2 29 R3 31 R4 3. 	15 (+) 2.56% (NC) 9.09% (NC) 1.60% (NC) .75% (NC)			· · · /		RT=3.59:		21H39N7O12	2.84e	MRM(+) RT: [3.332 9.0e2 8.0e2 7.0e2 6.0e2 5.0e2			263.15		3.536		-		2 ESI		~~~
te Compound	 Compour Q 58430>263.1 100.00 R1 52 R2 29 R3 31 R4 3. 	15 (+) 2.56% (NC) 9.09% (NC) 1.60% (NC) .75% (NC)			· · · /		RT=3.592		21H39N7O12	2.84e	MRM(+) RT: [3.332 9.0e2 8.0e2 7.0e2 6.0e2 5.0e2 4.0e2 3.0e2		3.332 - 3.964]	263.15		3.536		-		2 ESI		~~~ `N
ate Compound	 Compour Q 58430>263.1 100.00 R1 52 R2 29 R3 31 R4 3. 	15 (+) 2.56% (NC) 9.09% (NC) 1.60% (NC) .75% (NC)			· · · /		RT=3.592		21H39N7O12	2.84e	MRM(+) RT: [3.332 9.0e2 8.0e2 7.0e2 6.0e2 5.0e2 4.0e2 3.0e2 2.0e2	32 - 3.964]-[3	3.332 - 3.964]	263.15		3.536		-		N		~~~ N
grate Sample	 Compour Q 58430>263.1 100.00 R1 52 R2 29 R3 31 R4 3. 	15 (+) 2.56% (NC) 9.09% (NC) 1.60% (NC) .75% (NC)			· · · /		RT=3.593		21H39N7O12	2.84e	MRM(+) RT: [3.332 9.0e2 8.0e2 7.0e2 6.0e2 5.0e2 4.0e2 3.0e2 2.0e2 1.0e2 86.25	32 - 3.964]-[3	3.332 - 3.964]	263.15		409.10		Pez Dihydrostreptomycin	0.		N	

Gentamicin C1	478.3 > 322.3	478.3 > 157.1
Gentamicin C2	464.3 > 322.1	464.3 > 160.0
Hygromycin B	528.3 > 177.1	528.3 > 352.1
Kanamycin	485.3 > 163.0	485.3 > 324.2
Neomycin B	615.3 > 161.1	615.3 > 163.1
Streptomycin	582.3 > 263.2	582.3 > 246.12
Amikacin	586.3 > 425.2	586.3 > 163.3
Netilmicin	476.3 > 299.2	476.3 > 191.2
Paromomycin	616.3 > 163.1	616.3 > 293.2
Sisomycin	448.3 > 254.1	448.3 > 271.2
Tobramycin	468.3 > 324.0	468.3 > 163.0

3. Results

3-1. Calibration

As the method should fit any type of sample, calibration standards were prepared in aqueous 1% formic acid. The calibration range was set up by combining all MRL from Europe, Japan and USA for all target compounds and all commodities. For each compound, the lowest MRL divided by 10, or the practical achievable concentration with S/N > 10 was considered as the target limit of quantification. The highest MRL +50% was used to define the highest calibration level.

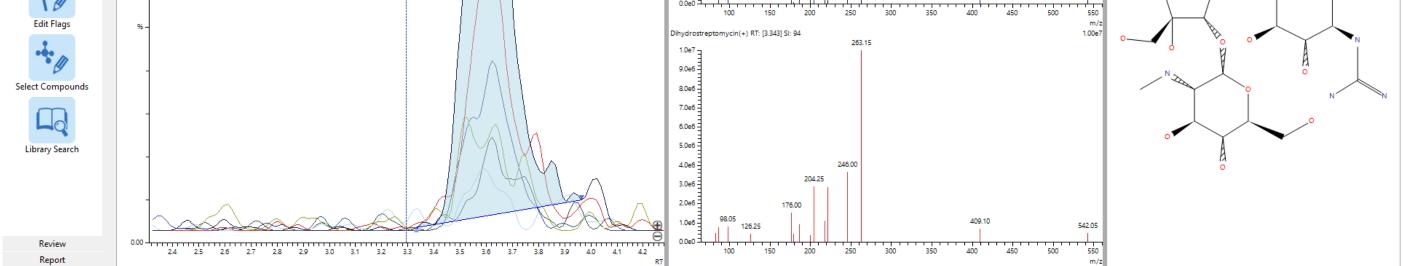


Figure 2: Multi-MRM library search results view in Labsolutions Insight Library Screening

4. Conclusions

A very sensitive HILiC-MS/MS method was developed to detect a large panel of aminoglycoside antibiotics without ion-pairing.

One method can be used for all kind of animal species or commodities, covering major food safety regulations.

The complete workflow, including sample preparation has been optimized to provide high-throughput. The good recoveries obtained across the tested matrices eliminate the use of matrix-matched calibration standards.

In addition to the fast quantitative screening method, a ID confirmation method using MRM Spectrum Mode can be performed with same mobile phases and column.