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Metabolomics and lipidomics are rapidly growing fields, leading to novel discoveries and advancing the un-
derstanding of biological processes at the molecular level. However, designing a proper workflow and choosing
from countless options can be challenging, especially for beginners in the field. To address this challenge, we
provide a comprehensive overview of metabolomics and lipidomics tools and a step-by-step guide that includes
“tips and tricks” based on current metabolomics and lipidomics analysis approaches. We include power analysis,
sample collection and preparation, separation and detection of metabolites using primarily liquid chromatog-
raphy-mass spectrometry (LC-MS), processing of raw instrumental files, quality control, statistical analysis, and
data sharing. This guide offers practical insights applicable to diverse research areas, covering all the essential
steps in metabolomic and lipidomic profiling.

1. Introduction

Metabolomics and lipidomics study low-molecular-weight com-
pounds (typically <2000 Da) in biological matrices such as biofluids,
tissues, or cells under different conditions. While metabolomics pri-
marily focuses on water-soluble polar metabolites, such as sugars, amino
acids, organic acids, and nucleotides, lipidomics aims to identify and
quantify various lipid species [1]. There is a partial overlap between
these two omics fields, and in some studies, polar metabolites and
complex lipids are also referred to by the general term “metabolomics.”

Understanding how biological processes work can be crucial for
biomarker discovery, clinical studies, metabolic phenotyping, physi-
ology, or toxicology. To this end, various techniques for analyzing the
metabolome and lipidome are available. These techniques include mass
spectrometry (MS) [2,3] and nuclear magnetic resonance (NMR) [4,5].
MS methods are performed as liquid chromatography-MS (LC-MS), gas
chromatography-MS (GC-MS), capillary electrophoresis-MS (CE-MS),
direct infusion-MS, and also ion mobility-MS (IM-MS). Currently,
LC-MS represents the most applied tool for analyzing polar and
nonpolar metabolites and offers the highest coverage of the metabolome
and lipidome compared to other techniques.

Metabolome and lipidome can be studied using untargeted and tar-
geted methods. Untargeted methods analyze all the detectable metab-
olites in a sample and are mainly used for novel metabolite discovery
and hypothesis-generating studies [6]. Conversely, targeted methods
focus on analyzing defined metabolites for hypothesis-driven validation
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[6,7]. While untargeted methods provide semiquantitative data (i.e.,
results are reported as peak areas or heights in arbitrary units), the
targeted methods provide quantitative data reported in molar concen-
trations. In addition, untargeted and targeted methods can be combined,
providing quantitative data for selected metabolites while reporting the
other metabolites (including unknowns) in semiquantitative terms [8].

Since metabolomics and lipidomics are no longer emerging but
rather well-established fields, dozens of untargeted and targeted
analytical protocols based on MS or NMR, along with bioinformatics
tools, are available. However, the availability of so many tools can be
overwhelming for both beginners and experienced professionals in the
field. Like other omics fields, metabolomics and lipidomics analyses are
prone to biases. Thus, a community effort such as the recently estab-
lished metabolomics Quality Assurance and Quality Control Consortium
(mQACC, mgacc.org) may help standardize metabolomics and lip-
idomics analyses [9]. In this context, we present a comprehensive
overview of metabolomics and lipidomics tools (Fig. 1), accompanied by
a step-by-step guide that includes “tips and tricks” to avoid possible
pitfalls and optimize workflows for generating reliable data for
interpretation.

2. Power analysis and sample size

Determining the sample size (both total and per group) is crucial in
study design. Insufficient sample size can result in multiple errors.
Interestingly, even small differences with no actual significance might
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become statistically significant in a larger sample size. On the other
hand, with a small number of samples, clinically important effects may
appear statistically non-significant [10]. A small sample size can also
cause a lack of precision. In contrast, a high sample size might lead to
unnecessary waste of resources for minimal information gain. Addi-
tionally, ethical restrictions must be considered when determining an
appropriate number of samples per group, especially concerning ani-
mals [11].

Calculating the minimal sample size is based on power analysis.
Power analysis helps to determine the smallest number of samples per
group, given a required significance level (usually o« = 0.05, and 0.1-0.2
for a pilot study), statistical power (usually 0.8), and effect size (d = 0.8,
0.5, 0.2 for large, medium, small effect size, respectively) [12]. Power
analysis can be done before and after data analysis. However, sufficient
sample size is required to obtain statistically validated data. Therefore, it
is necessary to perform the power analysis before the beginning of the
experiment [13]. For instance, G*Power software can provide effect size
calculators and graphic options [14].

However, power analysis in untargeted metabolomics and lipidomics
studies is challenging because the list of measured metabolites and the
effect size are not known a priori [15]. Choosing a known metabolite to
represent the entire metabolome/lipidome and conducting a univariate
method to estimate the sample size can be used, although such statistics
might oversimplify the metabolome/lipidome changes. It is often rec-
ommended that a pilot study is performed to obtain preliminary data
before designing more extensive studies [16].

For metabolomics data, Billoir et al. [17] released an automated
implementation of the Data-driven Sample size Determination (DSD)
algorithm for MATLAB and GNU Octave, which enables the determi-
nation of optimized sample size in metabolic phenotyping studies. Their
approach also uses analytical data from a small pilot cohort. On the
contrary, Nyamundanda et al. [18] developed MetSizeR to estimate
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sample size for metabolomics experiments even when experimental pilot
data are unavailable. In 2020, Li et al. [19] introduced the online tool
SSizer (idrblab.org/ssizer), enabling the assessment of sample suffi-
ciency and determining the required number of samples for a user-input
biological dataset.

2.1. Tips and tricks

e Since conducting power analysis for untargeted methods might be
difficult, a general recommendation is used regarding the minimum
samples per group to be analyzed. For cells under tightly controlled
conditions, a minimum of 5 replicates is recommended [20],
although some studies have used even fewer (3-4 replicates). In
animal studies, factors such as age, housing, and diet are typically
controlled; therefore, sample numbers can also be kept relatively low
for ethical and practical reasons [20]. A minimum of 5-10 samples is
recommended for biofluids and tissues per group (usually more for
tissues due to their high heterogeneity) [21]. In human studies, at
least 20-30 samples per class are advised [12,22]. However, the
number of samples can range easily from hundreds [23] to even
thousands [24] for reasonable statistics, leading to novel biomarker
discoveries during clinical studies. Conversely, clinical studies may
encounter limited subjects due to budget and recruiting constraints
[15].

e The variation of animal and human metabolomes might be influ-
enced (among others) by genetics, age, and sex. However, sex is still
not always considered in metabolomics-based investigations,
potentially limiting the comprehensive understanding of metabolic
profiles and their implications. Therefore, in both animal and human
studies, it is recommended to maintain a balanced ratio of male and
female subjects to ensure a more accurate and representative
exploration of metabolic dynamics [25].
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Fig. 1. Metabolomics and lipidomics workflow.
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3. Sample collection

Sample collection methods differ depending on the sample type and
analysis. The choice of biological material and the amount required for
further processing steps are based on the experimental design and tested
hypothesis. Incorrect sample collection or storage can lead to degrada-
tion of metabolites, high variability, or interferences with instrumen-
tation [26]. In animal studies, specially trained personnel are
recommended to use the time between collection and organ dissection as
efficiently as possible. Proper training and experience are crucial while
collecting multiple biofluids and tissues from all animals [27].

Quenching the metabolism of samples needs to be done as soon as
possible, followed by storage of these samples at —80 °C. Quenching
should terminate all enzyme and chemical activities and avoid the
perturbation of existing metabolite levels during harvesting [28]. This
process should be done by liquid nitrogen, dry ice, or freeze-clamping.
Before tissue collection, it is essential to determine which part of each
organ will be sampled. Furthermore, for studies including plasma, the
type of coagulant (e.g., ethylenediaminetetraacetic acid, citrate, hepa-
rin) must be specified in advance [29].

3.1. Tips and tricks

e Various sizes of plastic tubes are available to deliver biological
samples for extraction. Remember that tissues undergo homogeni-
zation supported by grinding balls made of stainless steel, tungsten
carbide, or zirconium oxide; thus, the use of 2 mL conical bottom
tubes is needed for effective homogenization (i.e., 1.5 mL “V” bottom
tubes are not helpful and grinding balls may be stuck during
homogenization).

There is an ongoing discussion about whether serum or plasma is the
best for metabolomics and lipidomics experiments [30,31].
Remember that serum is prepared from whole blood, allowing the
blood to clot by leaving it undisturbed at room temperature (usually
15-60 min, but this step is not always possible to keep under control
and can vary based on the personnel’s experience and training). On
the other hand, plasma is prepared by collecting the whole blood into
commercially available anticoagulant-treated tubes (in human
studies). For animal studies (e.g., mouse, rat) collecting low volumes
(<100 pL) of blood, the quantity of anticoagulant could be too high
in tubes for human studies; thus, low-volume commercially
anticoagulant-treated tubes or in-house tubes with an appropriate
amount of anticoagulant are advised.

Some metabolites are more prone to degradation or rearrangement,
and some are less. Based on the considered analytical platform,
remember that some metabolites are extremely unstable and require
proper handling and usually a separate (targeted) sample prepara-
tion and instrumental platform; for instance, analysis of eicosanoids,
endocannabinoids [32], dinucleotide redox cofactors
(NADPH/NADP", NADH/NAD™) [33], adenine nucleotides (AMP,
ADP, and ATP), acyl-coenzymes A [34]. In addition, dry extracts are
also prone to thermal reactions and should be stored at low tem-
peratures (—80 °C or —24 °C) [35].

4. Sample extraction

Effective metabolite extraction is key to successful metabolomics and
lipidomics studies. It helps to separate metabolites from undesired
compounds and makes samples suitable for instrumental analysis [36].
Biological fluids such as urine can be analyzed directly without sample
extraction. Often used steps in urine sample preparation include buft-
ering, dilution, evaporation, or centrifugation. However, these steps
may lead to metabolite losses, high salt concentration can lead to ioni-
zation suppression and altered adduct formation, and disrupt instru-
mental performance by forming nonvolatile residues. These
complications can be reduced by adding an effective extraction step.
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On the other hand, biofluids such as plasma or serum, which contain
a wide range of interfering proteins, are not commonly analyzed
directly, and an extraction step is added for protein removal [37].
Organic-solvent-based protein precipitation or liquid-liquid extraction
(LLE) methods are often used during the extraction. These methods
enable the extraction of a wide range of metabolites and simultaneously
remove unwanted substances in biological samples, such as bulk pro-
teins and salts [38]. However, in recent years, the all-in-one single
extraction methods have been developed to isolate metabolites differing
in their physicochemical properties, followed by fractionation. Each
fraction is then analyzed under different separation conditions based on
the polarity [39].

Single-phase extraction methods have been introduced using an
isopropanol or butanol/methanol mixture to simultaneously extract
complex lipids and polar metabolites from human plasma [40]. These
methods were evaluated based on the metabolome and lipidome
coverage, extraction efficiencies, effectiveness of protein precipitation,
and reproducibility, and they were suitable for large-scale human pop-
ulation studies. Shortcomings of such methods might be found in ion
suppression caused by co-eluting complex lipids in the chromatographic
conditions during the analysis of polar metabolites.

Two-phase liquid extraction is commonly used in metabolomics and
lipidomics, where one phase consists primarily of nonpolar metabolites
(lipids), and the second phase holds mostly polar metabolites. This can
be achieved using three solvent systems: methyl tert-butyl ether
(MTBE)/methanol/water [41], chloroform/methanol/water [42], and
dichloromethane/methanol/water [43].

Three-phase liquid extraction is possible using hexane, methyl ace-
tate, acetonitrile, and water. The upper organic phase consists of neutral
lipids such as triacylglycerols and cholesteryl esters, the middle organic
phase is enriched in glycerophospholipids, and the bottom aqueous
phase consists of polar metabolites and proteins [44]. Therefore, pro-
teins need to be removed to analyze polar metabolites.

Along with the already mentioned LLE methods, solid-phase
extraction (SPE) and solid-phase microextraction (SPME) methods are
available for analyzing biological samples [45].

Besides biofluids, various tissues and cells are analyzed in metab-
olomics and lipidomics studies. While biofluids are convenient during
their analysis, tissues and cells provide deeper insights into metab-
olomics, making them the focus of clinical research over the years [29].

4.1. Tips and tricks

e Different volumes of biofluids (e.g., plasma, serum, urine) and tissue
amounts are needed for their analysis [46]. For untargeted methods,
10-30 pL of biofluids and 5-20 mg of tissues are sufficient. For tar-
geted methods usually covering trace concentrations of some me-
tabolites (e.g., eicosanoids, fatty acyl esters of hydroxy fatty acid),
200-1000 pL of biofluids and 50-200 mg of tissue samples are
needed. Remember that it is always good to provide (or keep) backup
samples if reanalysis is needed. For cells, usually at least 5 x 10° is
needed. For adherent cells, a 6-well plate format is preferred. After
completing the cell growth, the medium is removed, followed by
washing with buffer (e.g., phosphate-buffered saline) to remove
residues of the medium. After removing the washing buffer, the cells
are either immediately extracted (with a cold organic solvent or
mixture and scraping them) or frozen in liquid nitrogen and stored at
—80 °C before conducting the extraction. For suspension cells,
centrifugation at low speed (<1000xg) is used first, followed by
aspiration and discarding of the culture medium.

Manual or electronic pipettes have inaccuracy, which depends on the
range of a particular pipet and the pipetted volume [47]. For
instance, for a 10-100 pL range pipet, the inaccuracy while pipetting
10 pL is usually +0.3 pL (i.e., 3 %), while for 100 pL +0.8 pL (i.e.,
0.8 %) based on the vendor. However, for a 1-10 pL range pipet
while pipetting 10 pL, the inaccuracy is lower +0.1 pL (i.e., 1 %);
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thus, the pipetting volume should be considered when choosing the
appropriate pipette for a specific task, taking into account the inac-
curacy associated with the pipetted volume and the designated
range. Although these errors fall within acceptable limits, regular
maintenance, preferably annually, is advisable to ensure pipetting
equipment’s continued precision and reliability. For weighing the
tissue samples, analytical balance (readability 0.1 mg) should be
used instead of precision balance (readability 1 mg) since low
amounts of tissues (5-20 mg) are often used. A dedicated person
should also regularly calibrate the balance to ensure accuracy.
Biofluid extraction can be performed using either glassware or
plastic consumables. Glassware such as tubes, syringes, and pipettes
is typically recommended to prevent background signals or the
sorption of metabolites. However, when conducting large sample
studies, using glassware consumables becomes impractical. In such
cases, it is beneficial to evaluate background signals for various types
of plastic tubes, typically made of polypropylene, and monitor po-
tential leaking contaminants such as palmitate, stearate, phthalates,
and butylated hydroxytoluene. It has been shown that using plastic
consumables introduces a competing background signal of palmitate
during fluxomics analysis [48]. On the contrary, a study comparing
extraction in plastic tubes and glass vials using radioactive lipids
found comparable recoveries [49].

The choice of the extraction method also depends on the expected
metabolite coverage. For instance, single-phase extraction can be
sufficient for proper coverage of polar metabolites (e.g., extraction
using methanol, acetonitrile, a mixture of isopropanol/acetonitrile/
water, acetonitrile/methanol [50,51]) or complex lipids (e.g.,
extraction using isopropanol [52]). However, differences in the
number of detected metabolites and method reproducibility should
be anticipated [43]. On the other hand, for the simultaneous
extraction of polar metabolites and complex lipids, bi-phase extrac-
tion using MTBE/methanol/water will ensure proper metabolome
and lipidome coverage [53]. In addition, remember that each sample
preparation may have a different efficiency in protein removal [54],
which impacts the method’s robustness, specifically the instrumental
part (e.g., column clogging, retention time shifts, worsening sepa-
ration of isomers).

When employing two-phase liquid extraction methods, remember
that in MTBE (p 0.74 g/cms)/methanol (p0.79 g/cm3)/water (p1.00
g/cm®) protocol [41], the upper phase comprises the organic layer
(MTBE and methanol), primarily containing complex lipids. In
contrast, the lower phase consists of water (with a small portion of
methanol), containing polar metabolites. Conversely, in chloroform
(p 1.49 g/cm3)/methanol/water [42] and dichloromethane (p 1.33
g/cm®)/methanol/water protocols [43], the upper (polar) phase
contains polar metabolites, and the bottom (organic) phase is
enriched with complex lipids.

While validation parameters such as selectivity, specificity, matrix
effect, range, accuracy, precision, carry-over, dilution integrity, and
stability are commonly employed for targeted methods, there are no
established guidelines for validating the analytical aspect in an
untargeted approach [55]. Instead, emphasis is placed on developing
the extraction method with minimal steps, ensuring compatibility
with the instrumental technique, and achieving comprehensive
coverage of metabolites with high precision. These methods can be
assessed by evaluating precision (intra-assay and inter-assay) to
calculate the relative standard deviation (RSD) of molecular features
(retention time-m/z pairs) or already annotated metabolites.
Acceptable values are typically close to a 30 % RSD [56]. Further-
more, linearity can be confirmed by diluting the sample used during
validation and employing more concentrated extracts to mimic po-
tential ion suppression effects. Method blanks should also be incor-
porated to identify and address carryover during method
development. Any features detected in blanks should be considered
background signals [55].
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e Using internal standards in the extraction and resuspension solvents
ensures proper quality control (QC), such as that identical aliquots
were collected from all extracts or that the autosampler injected the
correct volume. Reanalysis is needed for samples where internal
standards are completely missing or at low intensity compared to the
rest of the study.

5. Instrumental analysis

LC-MS is the most popular platform for metabolomics and lip-
idomics, followed by GC-MS. GC-MS is used mainly to analyze volatile
and primary metabolites after derivatization. CE-MS helps analyze polar
charged metabolites. Recently, there has also been increased interest in
IM-MS. In addition, analysis of polar and nonpolar metabolites can be
done with NMR. However, the NMR method does not provide many
annotated metabolites compared to MS [27].

Metabolomics and lipidomics detect many metabolites with high
chemical diversity and complexity. LC-MS allows for separating and
detecting isobars and isomers, reducing ion-suppression effects, and
separating compounds according to their physicochemical properties
[35]. No single method can cover the true breadth of a metab-
olome/lipidome. However, LC offers various stationary phases, column
dimensions, mobile phase modifiers, and solvents [57]. Thus, different
LC-MS separation modes enable the coverage of a wide range of
metabolites.

Reversed-phase LC (RPLC) separates polar to mid-polar metabolites,
and hydrophilic interaction chromatography (HILIC) separates highly
polar metabolites. In addition to RPLC and HILIC, lipidomics also uses
normal-phase LC (NPLC) and supercritical fluid chromatography (SFC)
for sample separation [58,59]. In RPLC, C18 columns dominate, fol-
lowed by C8 and C30. HILIC, on the other hand, employs more diverse
stationary phase chemistries such as silica, aminopropylsilane, alkyl
amide, and sulfobetaine groups [57]. Mobile phases containing water,
acetonitrile, or methanol are used to analyze polar metabolites. In
contrast, for RPLC-based lipidomics, stronger mobile phases with a high
percentage of isopropanol are needed. The separation time usually
ranges from 10 to 30 min. Fig. 2 shows the separation of very polar
metabolites, demonstrating the benefits of HILIC configuration (high
retention and separation of metabolites, Fig. 2A) compared to RPLC
(elution of metabolites near the void volume, Fig. 2B).

Ultrahigh-performance LC (UHPLC) systems with sub-2 pm particles
significantly increased LC performance, such as improved speed, reso-
lution, and sensitivity. Currently, LC-MS-based metabolomics and lip-
idomics studies apply short (50-150 mm) microbore columns (2.1 mm
internal diameter, i.d.) with sub-2 pm particles [7]. The following
studies have described different applications [60,61]. Gray et al. [60]
employed a 1 mm i.d. LC column rather than a <2.1 mm i.d. column,
resulting in equivalent or superior performance in peak capacity,
sensitivity, and robustness compared to conventional methodology. This
miniaturized method required system optimization, such as reducing
dispersion and ensuring appropriate connections to minimize
band-broadening. This setup reduced solvent and sample consumption.
Conversely, Schonberg et al. [61] employed a propylamine column (50
x 2 mm i.d., 3 pm propylamine particles) for the analysis of polar me-
tabolites and a microLC column (100 x 0.3 mm i.d., 1.8 pm C18 parti-
cles) for the analysis of signaling lipids and retinoids. A sample was
loaded with a short trap column (10 x 1 mm i.d., 1.8 pm C18 particles).
This low-input metabolomics and lipidomics was applied to hemato-
poietic stem cells.

High-throughput LC-MS methods (<10 min) enable analyzing over a
hundred samples daily. That can be achieved by modifying conventional
UHPLC-MS methods, including using shorter columns, increasing col-
umn flow rate and temperature, and adjusting the LC gradient, ion
source and MS settings (Fig. S1). High-throughput methods are popular
in large-scale metabolomics and lipidomics. However, a lower annota-
tion rate and chromatographic resolution compared to conventional
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Fig. 2. Examples of separating polar metabolites in human serum extracts using fast HILIC-ESI(+)-MS and RPLC-ESI(+)-MS methods (4.4 min injection-to-injection
time): trimethylamine N-oxide (TMAO) (XlogP —0.93), glucose (XlogP —2.9), asparagine (XlogP —4.3), trimethyllysine (XlogP —6.2), lysine (XlogP —3.2). (a) The
ACQUITY Premier BEH Amide column (50 mm x 2.1 mm i.d.; 1.7 pm particle size) equipped with a VanGuard FIT cartridge (5 mm x 2.1 mm i.d.; 1.7 pm particle
size) (Waters, Milford, MA, USA) was utilized to separate polar metabolites based on the HILIC mechanism. (B) The ACQUITY Premier HSS T3 column (50 mm x 2.1
mm i.d.; 1.8 pm particle size) equipped with a VanGuard FIT cartridge (5 mm x 2.1 mm i.d.; 1.8 pm particle size) (Waters) was utilized to separate polar metabolites
based on the RPLC mechanism. Details of separation conditions are provided in Ref. [35]. XlogP data for representative metabolites were taken from the HMDB

(hmdb.ca).

methods should be anticipated [27].

After separating compounds, they undergo ionization in an ion
source, forming charged species. Electrospray ionization (ESI) is the
most frequently used method in LC-MS. It permits the ionization of
small molecules (<2000 Da) as well as large molecules (peptides and
proteins). ESI is considered a soft ionization technique, minimizing the
fragmentation of the molecular ions. However, some metabolites can
still be too fragile during ESI, resulting in various in-source fragments
[62]. These fragments may also contribute to false metabolite annota-
tions. Recent findings demonstrated that in-source fragments accounted
for over 70 % of the observed peaks, suggesting that the spectra are
largely influenced by fragment ions generated during ionization [63].

The presence of salts also impacts ESI performance; thus, the LC
methods are limited to the use of only volatile mobile phase modifiers,
with the most frequently used formic acid, acetic acid, ammonium hy-
droxide, ammonium formate, ammonium acetate, and ammonium bi-
carbonate [3]. In addition, ion suppression can occur because various
analytes or other components of the analyzed matrix compete for ioni-
zation [64].

ESI can be operated in positive or negative ion mode, forming gas-
phase cations or anions. Different ion forms can be formed based on
the mobile phase modifiers, with protonated [M+H]+ or deprotonated
[M—H]  molecules the most commonly observed species. However,
when ammonium salts (e.g., ammonium formate, ammonium acetate)
are used as mobile phase modifiers, some metabolites tend to form
[M+NH,4]" adducts (e.g., diacylglycerols, triacylglycerols, cholesteryl
esters) in positive mode, or [M+HCOO] /[M+CH3COO]  adducts in
negative mode (e.g., phosphatidylcholines, ceramides, sphingomyelins)
[59]. Furthermore, adducts such as [M+Na]™", [M+K]™, or [M+Cl] ™~ are
commonly observed due to leaking metals from glass bottles (mobile
phase reservoirs) or their presence in analyzed extracts.

Different MS techniques are used for compound detection in targeted
and untargeted metabolomics and lipidomics. These MS techniques can
be divided into low-resolution MS and high-resolution MS instruments
[7]. Low-resolution (tandem mass spectrometry) triple-quadrupole
(QqQ) and quadrupole/linear ion trap (QLIT) are vastly used in tar-
geted metabolomics and lipidomics. QqQ and QLIT generally operate in

a multiple reaction monitoring (MRM) mode. In principle, the precursor
ion is isolated, followed by its fragmentation and subsequent detection
of the generated fragment(s) (e.g., for TMAO, precursor ion m/z 76.2 —
collision energy (fragmentation) — product ion m/z 58.2). These
low-resolution mass analyzers enable metabolite identification and
quantification, lowering the chance of false annotation; however, they
can be used only for a defined number of metabolites and do not allow
retrospective data analysis [65]. Contrarily, high-resolution mass ana-
lyzers used in untargeted approaches routinely operate in full mass
spectra acquisition mode, which enables retrospective data mining [66].

High-resolution single-stage mass analyzers as time-of-flight (TOF)
and orbital ion trap (Orbitrap) and hybrid analyzers as quadrupole/
time-of-flight (QTOF) and quadrupole/orbital ion trap (Q/Orbitrap)
are the main instruments used in the untargeted approach. High-
resolution MS (HRMS) provides accurate mass data and improves the
quality of the annotation of metabolites. The current mass resolving
power for HRMS is usually 10,000-500,000 full width at half maximum
(FWHM), which is much higher than the resolving power for low-
resolution MS (~1000 FWHM) [67]. Additionally, LC-HRMS reduces
the analysis time during metabolomics and lipidomics studies compared
to LC-QqQ/QLIT analyzers [68]. It has been shown that a resolving
power above 60,000 FWHM does not increase the number of molecular
features [69]. However, higher resolving power can be beneficial during
fluxomics analysis, where isotopologues must be resolved from other
ions, including background ions. This capability minimizes the risk of
spectral coelutions [70].

High-resolution tandem mass spectrometry (HR-MS/MS) is
commonly used in metabolomics and lipidomics to increase confidence
during metabolite annotation. HR-MS/MS experiments are performed in
data-dependent acquisition (DDA) or data-independent acquisition
(DIA) modes. In DDA mode, precursor ions are selected above a preset
intensity threshold and using a narrow isolation window (0.4-4 m/z
units) for further fragmentation; thus, product ions are then easily
related to precursor ions. However, low-abundant precursor ions are
often absent from MS/MS measurement [71]. DDA provides selective
MS/MS spectra due to a narrow isolation window; however, DDA set-
tings are more complicated than DIA settings, leading to a higher risk of
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errors in method development and application [65].

Conversely, the DIA approach works with a wider precursor ion
isolation window, allowing fragmentation of all precursor ions within
the pre-set window. However, with such complex MS/MS spectra, it is
hard to determine the relationship between multiple precursor ions and
their fragments. Thus, DIA offers more comprehensive coverage for low-
abundance precursor ions; however, the spectra quality is usually lower.
Often used DIA methods include all-ion fragmentation modes (e.g., MSE,
Wide-band Fragmentation, All Ion Fragmentation, MS/MSA™M), which
fragments all the precursor ions in wider windows (e.g., 1000 m/z or
more), and sequential window acquisition of all theoretical mass spectra
(SWATH-MS/MS), which usually uses 20-50 m/z unit window [72].
With a wider isolation window, the risk of contamination increases.
Several programs have been developed to deconvolute the raw MS/MS
spectra (e.g., MS-DIAL, DecoMetDIA, DecolD) [27].

5.1. Tips and tricks

e A multiplatform LC-MS-based approach is commonly used during
metabolomics and lipidomics analysis [73]. Remember that plat-
forms might overlap, but some can provide unique detection capa-
bilities for particular metabolites. For instance, LC-MS-based
lipidomics in positive mode provide unique coverage for lipid sub-
classes such as diacylglycerols (DG), triacylglycerols (TG), choles-
teryl esters (CE), and free cholesterol. In contrast, the negative mode
detects free fatty acids (FA), fatty acid esters of hydroxy fatty acids
(FAHFA), and cholesterol sulfate. Phospholipids such as (lyso-)
phosphatidylcholines (LPC/PC), (lyso-)phosphatidylethanolamines
(LPE/PE), (lyso-)phosphatidylinositols (LPI/PI), (lyso-)phosphati-
dylserines (LPS/PS), and (lyso-)phosphatidylglycerols (LPG/PG) can
be detected in both platforms, but usually, one platform provides
more annotations than the other (e.g., better coverage of LPC/PC in
positive mode vs. LPE/PE in negative mode) [74].

(a) 100-

(b) 100+

T
0 1 2 3 4 5

é (min)
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e When using bi-phase extraction, two LC—MS platforms are typically
required for acylcarnitines since they are partitioned into the polar
phase (carbon chain lengths from 2 to 10) and the organic phase
(carbon chain lengths above 12) [75]. HILIC is preferred for shorter
(polar) acylcarnitines, while RPLC separation is optimal for longer
(less polar) acylcarnitines.

Polar metabolites are separated using RPLC or HILIC. However,

HILIC is more efficient for very polar metabolites, while RPLC is for

less polar metabolites. For instance, carnitine (XlogP = —4.9) can be

detected using both RPLC and HILIC. However, in RPLC, the elution
is close to a void volume where ion suppression can be expected

(elution of other very polar metabolites, salts), while HILIC provides

better retention and separation selectivity [76]. As a rule of thumb,

an XlogP >0 indicates a more hydrophobic analyte suitable for RPLC,
while an XlogP <0 suggests a more hydrophilic analyte for HILIC.

e RPLC-MS and HILIC-MS methods require different resuspension (or
reconstitution) solvent compositions to be compatible with the initial
conditions of the LC gradient. In RPLC-MS-based metabolomics, fa-
voring a high percentage of water at the beginning of the gradient,
the resuspension solvent should also contain a high percentage of
water as well to avoid peak deterioration of early eluting metabo-
lites, especially when high injection volumes are used (e.g., 5 pL)
[77]. For HILIC-MS, typically featuring a high percentage of aceto-
nitrile at the beginning of the gradient, a compromise is necessary
due to the solubility of polar metabolites. This requires a high per-
centage of water in the resuspension solvent (i.e., 70-80 % aceto-
nitrile) compared to initial conditions (e.g., 90-95 % acetonitrile)
[78]. This compromise may negatively impact the peak shape of
early eluting metabolites during the injection of high volumes.

e Vial caps can release polydimethylsiloxanes, especially during
repeated injections from the same vial (Fig. 3A and B). In RPLC-MS-
based lipidomic profiling, when using isopropanol as a strong mobile
phase component, they elute as homologous series separated by a
74.0189 m/z unit, potentially impacting the intensity of endogenous
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Fig. 3. RPLC-ESI(+)-MS lipidomic profiling of human serum extracts (a) with and (b) without elution of polydimethylsiloxanes released from a vial cap (indicated by
red circles @). Polydimethylsiloxanes are eluted either as separate peaks or coeluting with the lipids. (¢, d) Examples of RPLC-ESI(+)-MS analysis with a mobile
phase containing LC-MS-grade isopropanol from two vendors show the total ion chromatograms (m/z 70-1050) and MS1 spectra of mobile phase impurities. The
ACQUITY Premier BEH C18 column (50 mm x 2.1 mm i.d.; 1.7 pm particle size) equipped with a VanGuard FIT cartridge (5 mm x 2.1 mm i.d.; 1.7 pm particle size)
(Waters) was used for lipid separation with the mobile phase including (A) 60:40 acetonitrile/water with 10 mM ammonium formate and 0.1 % formic acid, and (B)
90:10:0.1 isopropanol/acetonitrile/water with 10 mM ammonium formate and 0.1 % formic acid. To improve the solubility of ammonium salts, they should first be
dissolved in a small aliquot of water before being added to the 90:10 isopropanol/acetonitrile mixture. Fig. 3C and D reproduced (modified) with permission from
Ref. [81]. Further details of separation conditions are provided in Refs. [73,81]. (For interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)
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lipid species [79]. When multiple injections from a single vial are
considered in the RPLC-MS method due to limited extract volume,
vial caps from different vendors should be evaluated to minimize
such contaminations. On the other hand, when using RPLC-MS and
HILIC-MS with less strong mobile phases, polydimethylsiloxanes are
usually not eluted; however, they tend to accumulate on the column.
Thus, occasional rinsing of the column with isopropanol is helpful to
remove this contamination.

As a common rule, LC-MS-grade solvents and mobile-phase modi-
fiers should be used during LC-MS analysis. These chemicals meet
criteria such as a low mass noise level, minimal organic contami-
nation, and minimal metal content [80]. However, the choice of such
chemicals can be overwhelming because they are all labeled as
“LC-MS-grade,” yet vendors may use different technologies to
deliver the final products, resulting in variations in quality. Thus, it is
recommended that solvent quality in LC-MS analysis be evaluated,
especially when developing new methods. The choice of organic
solvents can significantly impact the LC-MS system’s overall per-
formance, affecting the ionization and detection of analytes [81].
Notably, a study evaluating isopropanol, a commonly used solvent,
during RPLC-MS lipidomic profiling found that the most abundant
mobile-phase impurities included the homologous series of amines,
dioctyl phthalate, erucamide, Irgafos 168 oxide and its oxidized
form, and Irganox 1076 [81]. Fig. 3C and D compare the use of
isopropanol from two vendors, indicating significant differences in
background contamination originating from mobile phases. Other
common interferences and contaminants encountered during LC-MS
are summarized in a review by Keller et al. [82].

Mobile phase modifiers significantly impact metabolite retention,
peak width and intensity, the ability to separate isomers, and the
long-term stability of the retention times. For instance, a HILIC col-
umn based on a trifunctionally bonded amide phase, using 10 mM
ammonium formate and 0.125 % formic acid, has outperformed
other mobile phase modifiers [73]. Nevertheless, when evaluating a
new column, it is advised to test mobile phase modifiers differing in
composition and pH to optimize separation efficiency and selectivity

Trends in Analytical Chemistry 180 (2024) 117940

for a panel of expected groups of metabolites (e.g., amino acids,
organic acids, biogenic amines, sugars) using a scoring system
employing retention time, peak height intensity, peak width, and the
ability to resolve isomers (e.g., leucine/isoleucine). Fig. 4 shows the
impact of various mobile phase modifiers during HILIC-MS metab-
olomics analysis on the amino acid arginine in human serum extracts
[73]. For RPLC-MS lipidomic profiling with a C18 column, 10 mM
ammonium formate or 10 mM ammonium formate with 0.1 % formic
acid in positive mode has been advised. On the other hand, using 10
mM ammonium acetate with 0.1 % acetic acid has been shown as a
reasonable compromise regarding the signal intensity of the detected
lipids and the stability of the retention times during long-term se-
quences (Fig. S2) [73].

For targeted LC-MS methods operated in MRM mode, evaluating the
sample preparation step or SPE cleanup is recommended by moni-
toring highly abundant phospholipids typically occurring in biolog-
ical samples [83]. To this end, using additional MRM transitions for
these lipids, precursor ion scan of m/z 184, or operating the mass
spec in full scan mode helps with method optimization and avoiding
carry-over of these lipids or achieving separation from target me-
tabolites. For more in-depth characterization of potentially inter-
fering lipids, including annotation using in-silico MS/MS spectra, it is
recommended to use HRMS operated in MS/MS mode with the
identical LC method [84].

Current HRMS instruments for untargeted analysis usually have a
linear dynamic range of about four orders of magnitude. Thus, it is
necessary to determine the appropriate dilution of the extracts for
injection and the typical intensity readout for the detector through
an initial evaluation. To this end, serially diluted extracts are injected
for a particular LC-MS platform ranging from very low to very high
concentrated extracts. TOF instruments usually have an upper line-
arity of total ion chromatogram (TIC) limit of around 1001 07, while
Orbitrap instruments reach around 10°. In TOF instruments, either
saturation of the multichannel plate detector or reaching the analog-
to-digital or time-to-digital converter limit leads to nonlinear signal
behavior. In contrast, in Orbitrap instruments, highly abundant ions
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Fig. 4. Separation of arginine ([M+H]", m/z 175.1178) in human serum extracts using an ACQUITY UPLC BEH Amide column (50 mm x 2.1 mm i.d.; 1.7 pm
particle size) coupled to an ACQUITY UPLC BEH Amide VanGuard pre-column (5 mm x 2.1 mm i.d.; 1.7 pm particle size) (Waters) under different mobile phase
modifiers. Reproduced (modified) with permission from Ref. [73]. Legend: AmF, ammonium formate; FA, formic acid; AmF, ammonium formate; AmAc, ammonium
acetate; NH4OH, ammonium hydroxide; AmBicarb, ammonium bicarbonate.
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quickly reach the automatic gain control (AGC) target, triggering
automatic ion injection into the detector. This process can poten-
tially lead to insufficient capacity to accumulate and detect the ions.
Fig. 5, which illustrates examples of lipid extracts injected within
(Fig. 5A) and outside (Fig. 5B) the linear dynamic range of the de-
tector, highlights this phenomenon. While working within the linear
dynamic range for quantitative and semiquantitative analysis is
crucial, utilizing (reasonably) more concentrated samples can yield
additional MS/MS spectra and improve their overall quality.
High mass resolving power is crucial for removing potential in-
terferences and separating isobaric compounds (e.g., compounds
with the same nominal mass but different accurate masses). For
example, in RPLC-MS-based lipidomics analysis, two lipids, PC P-
34:1 ([M+H]*, m/z 744.5902) and PE 36:2 ([M+H]*, m/z
744.5538) are typically closely eluted [74]. A mass resolving power
of at least 40,000 FWHM is required to achieve complete spectral
separation of these two isobaric compounds. Therefore, low mass
resolving power results in spectral co-elution, detecting these two
lipids as a single mass peak with biased mass accuracy (Fig. S3).
During DDA experiments, precursor ions can be isolated within a
relatively narrow window, typically 0.4-1 m/z unit, resulting in
highly selective isolation. However, this narrow window often re-
duces the intensity of MS/MS fragments due to the lower trans-
mission of precursor ions. Conversely, employing a wider isolation
window, such as 3-4 m/z units, enhances the sensitivity of detected
fragments. However, it also increases the likelihood of potential in-
terferences, as metabolites differing in mass by 2-3 m/z units can be
co-isolated (Figs. S4 and S5). This results in mixed MS/MS spectra
and a worse spectral match during library search.
e Since conventional DDA for acquiring MS/MS spectra is inefficient
for low-abundance precursor ions, iterative exclusion-MS may help
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increase the total number of MS/MS scans for metabolite annotation.
Usually, the pool QC sample is injected, followed by excluding pre-
cursor ions for which MS/MS were acquired; thus, in sequential in-
jections, low-abundant precursor ions are selected for MS/MS
analysis, leading to a higher metabolite annotation rate [85].

6. Processing raw files

Processing raw instrumental files usually includes feature detection,
chromatogram building, deisotoping, peak alignment, and gap-filling
[86,87]. Typical untargeted metabolomics and lipidomics analyses can
produce hundreds of annotated metabolites and countless unknowns. A
wide range of processing tools have been developed in recent years,
including commercial vendor software (e.g., MarkerLynx, MarkerView,
Mass Profiler Professional, MetaboScape, Compound Discoverer) or
from independent developers (e.g., GeneData), open access software (e.
g., XCMS, MZmine, MS-DIAL, MetAlign, IDEOM) or script platform (e.g.,
Matlab, R) [27]. Recently, it has been reported that the main differences
among the data processing software programs were found in the number
of false positive/negative peaks and gap-filling capability [88,89].
However, data quality is continuously improving through consistent
software updates.

6.1. Tips and tricks

e “Trust, but verify” — software that allows reviewing and curating
annotated metabolites should be used to remove false positives or
annotations that appear multiple times due to increased baseline for
particular metabolites.

e Using internal standards helps quickly assess the quality of generated
data during data processing since they represent true positives in the
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Fig. 5. Examples of TIC (m/z 200-1700) of lipid extracts from human serum injected (a) within the linear dynamic range (TIC 1.2 x 10°) and (b) outside the linear
dynamic range (TIC 4.5 x 10°) on the Q Exactive Plus instrument. Working within the linear dynamic range provided a linear response (R? >0.99) for lipids when
using serial dilution samples of the lipid extracts. On the other hand, the linearity for highly abundant lipids (example shown for PC 34:2, [M+H] *. m/z 758.5694)
deteriorated when highly concentrated lipid extracts were injected. The ACQUITY Premier BEH C18 column (50 mm x 2.1 mm i.d.; 1.7 pm particle size) equipped
with a VanGuard FIT cartridge (5 mm x 2.1 mm i.d.; 1.7 pm particle size) (Waters) was used for lipid separation with the mobile phase including (A) 60:40
acetonitrile/water with 10 mM ammonium formate and 0.1 % formic acid, and (B) 90:10:0.1 isopropanol/acetonitrile/water with 10 mM ammonium formate and
0.1 % formic acid. Further details of the RPLC-MS method can be found in Ref. [81].
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sample. If they do not appear in the exported dataset, the cause
should be investigated. This may include chromatographic or mass
accuracy drift, wrong setting of data processing parameters, gross
error during sample preparation, or LC malfunction.
Parameters of data processing software, such as the minimal
threshold (or signal-to-noise ratio, noise level, peak amplitude),
should be optimized based on the MS instrument used; otherwise,
excessively noisy data may appear in the exported dataset, thereby
increasing data processing time. Furthermore, the smoothing level
should be chosen judiciously to prevent the generation of artifact
peaks from noise or the degradation of partially coeluted peaks
detected afterward as a single peak.

Spectral deconvolution (i.e., obtaining distinct peaks) of isomers is

challenging during data processing, especially for partially co-eluted

metabolites. When optimizing data processing settings, special
attention should be given to parameters that may affect the ability to
distinguish between isomers. Examples of these compounds include
leucine/isoleucine, 3-hydroxybutyrate/3-hydroxyisobutyrate/2-
hydroxybutyrate, citrate/isocitrate, or sugar phosphates for polar
metabolites. For lipids, examples of isomers may include phospha-

tidylcholines (e.g., PC 36:3-5, PC 38:4-5) or triacylglycerols (e.g.,

TG 54:5-7), each providing multiple isomers reported in plasma

during RPLC-MS lipidomics analysis [90]. Additionally, lyso-forms

of phospholipids are prone to isomerization, leading to 1-acyl-2-ly-

so-phospholipid and 1-lyso-2-acyl-phospholipid and detected as a

double peak [91]. Fig. 6 shows examples of isomers that can be used

to optimize data processing parameters.

e With new updates or versions of data processing software, their
performance should be evaluated using validation data sets (instru-
mental files) for each platform, and data processing outcomes should
be compared. This includes evaluating the total number of features,
the efficiency of deconvolution of fully and partially separated iso-
mers, and the impact on metabolite annotation, including annotation
of new lipid subclasses if the new version provides such an update.

Metabolite annotation

Due to the structural complexity of metabolites, their annotation
might be challenging [92]. Thousands of metabolite signals in a single
sample can be obtained using untargeted metabolomics and lipidomics.
However, only a small percentage of these signals is structurally known
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[93].

The Metabolomics Standardization Initiative (MSI) explains how to
report and perform metabolomics workflow using a community-based
guideline. MSI proposed four confidence levels: (1) identified com-
pounds, (2) putatively annotated compounds, (3) putatively character-
ized compound classes, and (4) unknown compounds [94]. However,
multiple researchers have initiated revisions and possible modifications
of the metabolite reporting standards to fit the current needs [95,96]. In
2020, the Lipidomics Standardization Initiative (LSI) was introduced,
aiming to create guidelines for lipidomics workflows, including lipid
annotation guidelines based on the hierarchical concept and application
of shorthand notation [97].

The experimental MS/MS libraries play one of the key roles in
metabolite annotation. Various public and commercial libraries are
available. The most extensive spectral library, METLIN Gen2 (metlin.sc
ripps.edu), contains over 900,000 molecular standards with MS/MS
data generated in positive and negative ionization modes at multiple
collision energies, collectively containing over 4 million tandem mass
spectra [98]. The next largest library updated in 2023, the National
Institute of Standards and Technology (NIST) MS/MS library (chemdata.
nist.gov), includes over 2.3 million spectra from over 51 thousand
standards.

One of the most comprehensive free access libraries is MassBank of
North America (MoNA), which allows users to download and upload
MS/MS spectra freely (massbank.us). MoNA contains over 2 million MS/
MS spectra records, including experimental spectra for compounds such
as natural products or endogenous metabolites [27]. Other public
MS/MS spectral libraries are available, such as MassBank (massbank.jp),
ReSpect (spectra.psc.riken.jp), RIKEN PlaSMA (plasma.riken.jp),
mzCloud (mzcloud.org), GNPS (gnps.ucsd.edu), MSforID (msforid.com),
or HMBD (hmdb.ca). As an example, Fig. 7 shows the visualization of
processed LC-MS data in MS-DIAL software, including MS/MS library
search and annotation.

In addition, the MS/MS spectral library can annotate simple and
complex lipids (included in MS-DIAL and MZmine) or be available in a
mass searchable format (MSP) for other data processing software
(downloaded from MoNA). These in-silico libraries were created since
many lipids break in an MS/MS experiment predictably, leading to
fragmentation rules. These rules were then applied to lipid structures
generated using in-silico methods to yield a comprehensive lipidomics
library for compound annotations [99].
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Fig. 6. Examples of isomers for optimization of data processing software: HILIC-MS metabolomic profiling: leucine and isoleucine ([M+H]", m/z 132.1019) in
human serum extract; hexose X-phosphates ([M—H]~, m/z 259.0224) in 3T3-L1 cell extract; RPLC-MS metabolomic profiling: 3-hydroxybutyrate, 3-hydrox-
yisobutyrate, and 2-hydroxybutyrate ((M—H]~, m/z 103.0400) in human serum extract; RPLC-MS lipidomic profiling: LPC 16:0 (LPC 0:0/16:0 and LPC 16:0/0:0,
[M+H]", m/z 496.3398), PC 36:3 (PC 18:1_18:2 and PC 16:0_20:3, [M+H]", m/z 784.5851), TG 54:6 (TG 18:1_18:2_18:3 and TG 16:0_18:2_20:4, [M+NH4]", m/z
896.7702) in human serum extract. The details of the LC-MS methods can be found in Ref. [73].
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Fig. 7. Visualization of processed LC-MS data in MS-DIAL software: (1) list of processed LC-MS raw files; (2) alignment navigator; (3) peak filters; (4) peak spot
viewer (spots colored based on the intensity of detected features/metabolites); (5) extracted ion chromatograms of aligned spot; (6) MS1 spectrum (full mass range of
m/z 60-900); (7) details of annotated metabolite creatine in human plasma extract, showing that the difference between experimental (accurate) mass (m/z
132.07668) and calculated (exact) mass (m/z 132.0768) was as low as 0.12 mDa, passing through the MS1 accurate mass tolerance of 0.005 Da (5 mDa); (8) MS/MS
spectrum acquire at stepped normalized collision energies of 20, 30, and 40 % using a Q Exactive Plus (upper panel) and reference (library) MS/MS spectrum acquire
at stepped normalized collision energies of 20, 30, and 40 % using a Q Exactive HF available from MoNA (bottom panel), passing through the MS/MS accurate mass
tolerance of 0.005 Da (5 mDa) as well. For separation, an ACQUITY UPLC BEH Amide column (50 mm x 2.1 mm i.d.; 1.7 pm particle size) coupled to an ACQUITY
UPLC BEH Amide VanGuard pre-column (5 mm x 2.1 mm i.d.; 1.7 pm particle size) (Waters) was utilized [73].

Furthermore, most libraries are not specific for metabolites and
include MS/MS spectra for other small molecules (e.g., food additives,
pharmaceutical drugs, pesticides). Additionally, attention should be
paid to the applied mass analyzers (e.g., QTOF or Orbitrap), collision
energy, concentration and purity of chemical standards, and other
experimental conditions because different libraries were acquired using
different parameters [100]. Recently, Hoang et al. conducted
cross-platform compassion (using QTOFs from Agilent, Bruker, SCIEX,
Waters, and Orbitrap from Thermo) and tested collisional energies at 0,
10, 20, and 40 eV. They suggested that a collision energy of 20 eV
provides optimal congruency and could significantly enhance unifor-
mity and sensitivity, ultimately enhancing the accessibility and repro-
ducibility of scientific data [101].

Another method that can be considered for compound annotation is
IM-MS and LC-IM-MS. IM-MS provides an additional physicochemical
property, CCS (collision cross section), which can be used for compound
annotation and identification [102]. Coupling LC-MS with ion mobility
separation (LC-IM-MS) improves the accuracy of metabolite annotation.
It can also help with the process by improving peak capacity and
resolving power, reducing the matrix effect, and increasing
signal-to-noise ratios of metabolites [100]. Multiple experimental CCS
databases for small molecules have been introduced [84,103,104].

It is estimated that only 10-20 % of molecular features detected
during untargeted LC-MS-based metabolomics can be annotated ac-
cording to mass spectra library matches [105]. In the next step,
computational simulations predict the mass spectra from input struc-
tures, aiming to increase the annotation rate [106]. Various in-silico
fragmentation software programs (Mass Frontier, CSL:FingerID,
CFM-ID, MS-FINDER, MIDAS-G, and MetFrag) are used to determine
these chemical structures [107]. Internal compound databases (e.g.,
HMDB, hmdb.ca; PubChem, pubchem.ncbi.nlm.nih.gov) provide puta-
tive chemical structures for “known unknowns” (i.e., existing but not yet
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identified or characterized metabolites). For “unknown unknowns” (i.e.,
completely unknown and uncharacterized metabolites), in-silico tools
for generating new metabolite structures (e.g., MINE, minedatabase.mc
s.anl.gov; BioTransformer, biotransformer.ca) or network-based ap-
proaches (e.g., Global Natural Product Social Molecular Networking,
gnps.ucsd.edu) are available to complement the metabolite coverage
[108]. Furthermore, additional orthogonal filters can be based on
retention time prediction [109,110] or hydrogen/deuterium exchange
mass spectrometry (HDX-MS) [111,112].

7.1. Tips and tricks

o Typical metabolomics reports distinguish between Level 1 (matching
based on retention time, MS1, and MS/MS spectrum) and Level 2
(matching based on MS1 and MS/MS spectrum). In Level 1, the term
“identified” is used, whereas “annotated” is the appropriate termi-
nology in the latter case [94]. Annotation based only on matching
MS1 accurate mass (Level 3) may lead to many misannotations.

e As a common standard, the metabolite should be annotated with
MS1 accurate mass and MS/MS spectra, which removes many false
positive annotations. Using data processing software and spectral
libraries, this is performed using settings such as narrow mass
tolerance (e.g., £0.005 Da) for MS1 precursor ions and MS/MS
fragments and calculating similarity scores (e.g., dot product,
reversed dot product). On the other hand, even a combination of MS1
and MS/MS for metabolite annotation can be inefficient, especially
for isomeric compounds such as hexose phosphates, citrate/iso-
citrate, or leucine/isoleucine with identical or very similar MS/MS
spectra, thus, requiring retention time information for proper
annotation [28].

e During LC-MS-based metabolomics analysis, thousands of molecular
features are detected in biological samples per analysis. These
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molecular features do not necessarily correspond to unique metab-
olites; they include isotopes, adducts, artifacts, and contaminants.
For instance, Fig. 8A and B show an example of triacylglycerol TG
50:2 detected as multiple adducts ([M+NH4]*t, [M+Na] ", [M+K]™,
[2M+NH4]", [2M+Na] ™), each with multiple isotopes, resulting in
21 molecular features. Furthermore, in-source fragmentation, which
leads to diacylglycerol fragment ions (Fig. 8C), contributed eight
additional molecular features. While adducts can be annotated based
on typical mass differences, annotating in-source fragments can be
more challenging. However, these fragments are typically chro-
matographically coeluted, exhibit the same peak shape, correlate in
peak intensities across samples, and have similar statistical outcomes
as molecular ions. They may also coincide with those obtained
during MS/MS analysis (Fig. 8D). This underscores the importance of
proper data processing and curation to yield a concise list of unique
metabolites and relevant molecular features for statistical analysis.
Furthermore, it has been shown that a systems-level annotation of a
metabolomics dataset can reduce 25,000 molecular features to fewer
than 1000 unique metabolites [113].

Repeated annotations of some metabolites in LC-MS can be due to in-
source artifact formation; for instance, glutamine and glutamic acid
generate an in-source artifact by cyclizing to pyroglutamic acid
(Fig. S6) [114]. Further, when the intensity of a particular metabolite
is too high, the tailing peak may lead to additional annotations of the
same metabolite (Fig. S7), which should be removed during data
curation.

Complex lipids are reported based on the structural resolution from
MS1 and MS/MS analysis, such as carbons and double bonds (e.g., PC
36:2) and fatty acyl constituents (e.g., PC 18:0_18:2). The use of the
underscore “_” means that there is certainty in the composition of the
fatty acyl constituents, but not their placement on the glycerol
backbone [115]. Lipid annotation, where the positional isomeric
level of the fatty acyl chains (snl and sn2) is known, is indicated by a
slash “/” (e.g., PC 18:0/18:2).

Some lipids consist of a mixture of two or even more lipid isomers
with the same number of carbon atoms and double bonds but
differing in acyl chain lengths (e.g., TG 52:3; TG 16:1_18:1_18:1 and
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TG 16:0_18:1_18:2, Fig. S8). Such coelutions unavoidably occur
during LC-MS-based lipidomic profiling. In such instances, the
software typically annotates the specific lipid with the acyl chain
composition most similar to the in-silico MS/MS spectrum. However,
other possible compositions may also be considered during data
curation [99].

Isomeric bis(monoacylglycero)phosphate (BMP) and phosphatidyl-
glycerol (PG) species can be detected in positive (as [M+NH,4] ") and
negative (as [M—H] ) ion modes using LC—MS. However, only the
positive mode provides MS/MS spectra for reliable differentiation,
while the negative mode provides identical MS/MS spectra for both
lipid subclasses (Fig. S9) [84].

Proposed guidelines on the expected fatty acyl chains in the major
species of phospholipids, glycerolipids, and sphingolipids in
mammalian samples should be checked to assess the likelihood of
particular lipid species [116].

During structure elucidation, the first step is properly annotating the
ion form (adduct). Since multiple ion forms can be formed during
ESI, it is suggested that ions with characteristic differences be
explored to confirm particular adducts. In ESI(+), typically [M+H] ",
[M+NH4]", [M+Na]t, and [M+K]" species are formed. A mass
difference of 21.9819 m/z indicates the presence of [M+H]" and
[M+Na] ", while a mass difference of 4.9554 m/z shows the presence
of [M+NH4]" and [M+Na]™. In ESI(-), [M—H]", [M+Cl]~, and
[M+HCOO] /[M+CH3COO] " based on mobile phase modifiers can
be observed. Thus, a mass difference of 35.9767 m/z indicates
[M—H]™ and [M+Cl]™, while mass differences of 46.0055 and
60.0211 m/z are observed for [M—H]™ and [M+HCOO] /
[M+CH3COO]™ ions, respectively. Additionally, it is useful to
compare data acquired in both ionization modes. For instance, if a
mass difference of 2.0146 m/z is observed, the molecule forms both
[M+H]" and [M—H]  ions.

The isotopic pattern of an unknown molecule with a suggested ion
form should then be submitted to an in-silico software program to
determine its elemental composition. In this step, the mass tolerance
filter (e.g., 0.005 Da), isotopic ratio tolerance, selected elements, and
selection of internal databases will significantly impact the number
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Fig. 8. Detection of TG 50:2 during RPLC-ESI(4)-MS lipidomic profiling [81] of human serum extract: (a) intensity of [M+NH,]", [M+Na]*, [M+K]" adducts and
their isotopes; (b) intensity of [2M+NH,4] ", [2M+Na]" adducts and their isotopes; (c) intensity of in-source fragments of TG 50:2; (d) MS/MS spectrum (fragments) of
TG 50:2 (precursor ions m/z 848.7692, retention time 5.24 min) leading to annotation of this TG as a mixture of TG 16:0_16:1_18:1 and TG 16:0_16:0_18:2 using
MS-DIAL [84].
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of possible formulae reported. Next, the MS/MS spectrum is used to
generate a list of isomeric (scored) candidate structures from com-
pound databases based on applied in-silico fragmentation rules
(Fig. S10).

A list of candidate structures can be reduced by applying HDX-MS.
Exchangeable hydrogen atoms, bound to heteroatoms such as oxy-
gen, nitrogen, and sulfur, readily exchange with deuterium, while
those bound to carbon remain unaltered. When metabolites are
exposed to deuterium-containing solvents (e.g., HoO — D20; meth-
anol — methanol-OD or methanol-Dy; isopropanol — isopropanol-
OD or isopropanol-Dg) and mobile phase modifiers (e.g., formic
acid — Dy-formic acid; ammonium formate — Ds-ammonium
formate), labile hydrogens within various functional groups (—NH—,
-NHj;, -OH, -COOH, -SH) are substituted with deuterium [112]. The
number of replaced hydrogens in the molecule can be determined by
measuring the molecular mass before and after HDX (Fig. S11) using
a mass spectrometer. As a final step, validation should be performed
by analyzing authentic standards under the same LC-MS conditions
and comparing retention times, MS1, and MS/MS spectra.

8. Quality control

The changes in the instrument’s sensitivity are caused by the
degradation of the extracts, contamination of ion source by nonvolatiles,
or retention-time shifts, which can occur over time during the analytical
run [7]. Therefore, the order of samples during the run should be ran-
domized. Internal standards should also be added to the samples during
analysis, which could help monitor chromatographic and mass accuracy
drift and fluctuation of the signal intensity [9].

QC samples are generally employed to monitor the precision and
stability of the method. It can also be used for signal correction and
method standardization [117]. These samples should be identical bio-
logical samples, and their metabolic and sample matrix composition
should be similar to the studied samples. These QC samples are injected
regularly every 10-20 samples, depending on the analysis time and the
number of biological samples [27].

QC samples are prepared as pooled aliquots from the study samples.
The resulting mixture contains the mean concentration of all metabolites
in these samples. However, this approach may not work for large-scale
studies with over a thousand samples. In this case, the pooled QC sam-
ple may be replaced with a bulk “control” sample, a pool containing only
a part of the study samples (preferably with samples covering all
groups), or commercially available biofluids composed of multiple
biological samples not present in the study [118]. Both approaches can
also be combined [119]. A highly recommended commercial reference
material is NIST Standard Reference Material 1950 — Metabolites in
Frozen Human Plasma [83], used for human studies focusing on plasma
or serum analysis [120].

The analysis should also include blanks and a serial dilution of QC
samples. The no-injection blank runs mobile phase through the column
without injection in the port of the instrument. At the beginning of the
sequence, they aim to clean and condition the LC system, while within
the sequence they provide information on carry-over of analytes or
contaminants from previous injections. Reagent blanks are used to
monitor potential contamination because manufacturing process modi-
fications or supply chain changes can affect solvent quality without prior
notice. Method blanks undergo the same steps during the analysis as the
real samples but without a particular matrix. Both blanks and a serial
dilution of QC samples help identify contamination in study samples and
remove compounds with nonlinear behavior [9].

8.1. Tips and tricks
e Various measures such as (i) randomization of the samples within the

sequence, (ii) regular injection of QC pool samples at the beginning,
end, and between every ten actual samples for a specific matrix, (iii)
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analysis of method blanks, (iv) analysis of serially diluted extracts
prepared from QC sample (0, 1/16, 1/8, 1/4,1/2, 1) (Fig. S12), and
(v) control of the chromatographic peak shape, retention time, and
intensity of internal standards are helpful to ensure QC [35].

In practice, exported data sets can be filtered by removing metabo-
lites with (i) a max sample peak height/blank peak height average
<10, (ii) an R? <0.8 from a dilution series of QC sample, and (iii) a
relative standard deviation (RSD) >30 % from QC samples injected
between 10 actual study samples [35]. Data can be further normal-
ized using locally estimated scatterplot smoothing (LOESS) with QC
samples injected between 10 actual study samples. In addition, the
frequency (occurrence) cut-off (e.g., 50 %) of a particular metabolite
within the entire data set or sample groups can be used.

The total number of analyzed samples does not equal the number of
injections per analytical platform. For instance, in a study with 100
study samples, the LC-MS sequence may include initial injections (e.
g., solvent, QC samples) to ensure the stability of a particular plat-
form (10 injections), system suitability tests (3 injections of a stan-
dard mixture or biological sample), method blanks (3 injections), a
serial dilution of QC samples (6 injections), QC samples (12 in-
jections), and study samples (100 injections). This means 34 more
injections are needed to maintain proper QC (25 % of the total in-
jections). Moreover, additional injections are required if the study is
acquired in MS1 mode only, and MS/MS spectra are needed for
metabolite annotations.

Some lipids, such as (free) palmitic (FA 16:0) and stearic (FA 18:0)
acids, are present when plastic tubes and tips are used [121]. Based
on their signal intensity in method blanks and study samples, they
can be removed during data filtration.

Monitoring charts in untargeted metabolomics and lipidomics help
visualize and track the performance and quality of analyses over
time. Several types of monitoring charts can be implemented in the
lab using analysis of QC samples at regular intervals to monitor the
stability and consistency of each LC-MS platform. The extracted data
from these injections can evaluate (i) the overall ion intensity (TIC)
of the QC samples over time, (ii) retention times, peak heights and
areas, and mass accuracy error of specific metabolites or internal
standards across different runs, and (iii) the responses of blank
samples and emerging new background contaminants. These pa-
rameters also help establish each LC-MS platform’s “reference” sta-
tus, allowing researchers to quickly identify and address any issues in
the analytical process.

9. Data normalization

Normalization is crucial in removing undesired variations in the data
while maintaining biological information. These variations can occur in
ion intensities during the sequence and batches or sample-preparation
steps. However, some unwanted biases in particular datasets might be
challenging to remove. A wide range of strategies, from statistical
methods to software tools, has been developed to address this issue.
These normalization strategies are sample-based and data-based [122].

Sample-based strategies include intrinsic factors (e.g., ploidy/DNA,
RNA, metabolites), cell-based approaches (e.g., count, volume), weight-
based (e.g., fresh or dry weight), internal standards (e.g., isotopologues,
stable-isotope labeled cells or extracts), QC-based (e.g., pooled QCs,
standard reference material-based QCs), and others (e.g., specific grav-
ity, osmolality). Data-based strategies include statistical methods (e.g.,
log, median, average) for batch effects (e.g., LOESS, ComBat) and
analytical platform-based (e.g., total ion chromatogram) [123]. Multiple
software tools have also been introduced, such as MetabR, MetaboDrift,
NOREVA, and SERRF [124]. Fig. 9 shows an example of normalization
using LOESS applied to two batches of study samples and accompanied
QC samples.

However, choosing the appropriate normalization strategy can be
difficult. Wu et al. [125] reviewed several strategies to help select a
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proper normalization method. The review studied papers that worked
with urine samples, cell extracts, and other biological samples (blood,
sweat, and milk). Furthermore, Yang et al. [126] assessed 17 methods
and their 110 possible combinations based on their performance.
Various methods such as mean, cyclic LOESS, range scaling, and level
scaling performed well under given criteria when combined with other
normalizations.

9.1. Tips and tricks

e No sample-based normalization is usually needed for plasma and
serum. On the other hand, normalization to creatinine or osmolality
values is the most adopted strategy for urine with high variability in
concentration and composition [127]. Fluorescence-based methods
for DNA quantification can be used for cells [128]. For tissue mass
(wet or dry), total protein concentration or DNA content can be used
to recalculate the actual levels of metabolites in samples [122].
However, these approaches require additional analysis (e.g., DNA
quantification, protein concentration, creatinine concentration).
Data-based normalization includes TIC for all detected molecular
features or mTIC with only genuine metabolites. Usually, there is a
correlation between (m)TIC and cell numbers [129]; thus, this
approach is helpful if sample-based normalization is impossible.
However, the (m)TIC approach assumes that the decrease in the
concentration of metabolites in one group is balanced with the in-
crease in one group of metabolites. However, this assumption may
not always be valid because a specific systematic error may affect
some metabolites differently than others [124].

10. Statistical analysis

Many metabolomics and lipidomics studies aim to discover
biomarker metabolites or understand the investigated biological pro-
cesses. Various statistical methods have been introduced to identify key
metabolites and molecular features. The t-test, a typically used univar-
iate statistical method for two groups, provides a p-value corrected using
Bonferroni correction [130] or the Benjamini-Hochberg [131] false
discovery rate (FDR) control procedure to avoid a high number of false
positives. For three or more groups, one-way analysis of variance
(ANOVA) with one independent variable or two-way ANOVA with two
independent variables (e.g., diet and sex) is employed, followed by post
hoc tests [132] to determine specific groups responsible for significant
differences detected by ANOVA. Multivariate methods mainly include
principal component analysis, hierarchical cluster analysis, and partial
least squares discriminant analysis (PLS-DA) [133]. Among various
statistical tools and software, MetaboAnalyst (metaboanalyst.ca) is one
of the most popular platforms for comprehensive metabolomics and
lipidomics data analysis and interpretation [134].
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Integrating the results of an experiment with biological domain
knowledge is necessary. For that purpose, metabolic network mapping
can be performed with many software packages (e.g., MetaMapR, Met-
abNet, GNPS, MS2LDA). Metabolic pathway mapping can also be done
with tools such as MetaboAnalyst or MetFlow [27]. For complex lipids,
an ontology database and enrichment analysis (LION, lipidontology.
com) and lipid over-representation analysis (LORA, lora.metabol
omics.fgu.cas.cz) are available [135].

10.1. Tips and tricks

e When starting with statistical analysis, using test data available in
MetaboAnalyst helps familiarize with the required data structure and
available tools. In addition, the data for statistical analysis are
available in some papers, usually in supporting materials, including
the outcomes of the statistical analysis. Thus, these data sets can be
used for practical hands-on exercises and to validate the acquired
skills.

Identifiers such as InChI Key, HMDB ID, or KEGG ID are helpful (and

some are required) for advanced statistical methods such as enrich-

ment and pathway analysis [134]. The Chemical Translation Service

(cts.fiehnlab.ucdavis.edu) can translate different database identifiers

or trivial names in metabolomics publications and databases to

identifiers needed for bioinformatics tools [136]. Trivial names can
also be converted to HMDB identifiers using MetaboAnalyst.

e A metabolite with a p-value <0.05 is typically used for further
interpretation. For two-class comparison, fold-change can also be
used as an additional measure (i.e., volcano plot). For instance, in
MetaboAnalyst, a fold change of 2 is used as a default setting,
although even fold changes of 1.3-1.5 have been shown to provide
biologically meaningful sets rather than relying solely on p-values
[137].

e When using PLS-DA, metabolites are sorted by their importance
based on variable importance in projection (VIP) scores. A VIP score
>1 is the typical rule for selecting relevant metabolites [138],
although a higher value, such as 1.5 or even 2, can be considered a
reasonable cut-off [139]. Consideration should also be given to
PLS-DA cross-validation, specifically the model’s predictive ability
(Qz) and the permutation test [140,141]. Good predictions will have
a high Q? value, and Q? >0.5 is considered very good in metab-
olomics studies [142]. If alow Q2 value or even a negative Q2 value is
obtained, it indicates that the model lacks predictive ability or is
overfitted, even if metabolites are reported with VIP >1.

11. Data sharing

Data sharing and open data have become fundamental in science
over the years. It is recommended that the data be shared in line with the
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Fig. 9. Example of peak height intensities of acetylcarnitine (CAR 2:0) in human plasma acquired using HILIC-ESI(+)-MS [73] in QC and study samples over two
batches. (a) Raw peak height intensities showing instrumental drift and batch effect; (b) peak height intensities after LOESS normalization and batch effect
correction. Relative standard deviations (RSD) of 4.7 % and 2.7 % were observed for QC samples analyzed within batches 1 and 2, respectively, with an overall high
RSD of 21.7 % for all QC samples due to batch effect. After LOESS normalization and batch effect correction, RSDs of 2.7 % and 1.6 % were obtained for QC samples
within batches 1 and 2, respectively, with an overall RSD of 2.3 % for all QC samples.
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Findable, Accessible, Interoperable, and Reusable (FAIR) Guiding Prin-
ciples for scientific data management and stewardship [143]. However,
studies show that metabolomics and lipidomics still lack data sharing
compared to other omics disciplines [144]. Dedicated data repositories,
such as Metabolomics Workbench (metabolomicsworkbench.org),
MetaboLights (ebi.ac.uk/metabolights), MassIVE (massive.ucsd.edu/
ProteoSAFe/static/massive.jsp), and the general-purpose open re-
pository Zenodo (zenodo.org), were developed to facilitate data sharing.
Data should be uploaded in the original proprietary vendor format or
converted to open access formats as mzML and mzXML using Proteo-
Wizard software (proteowizard.sourceforge.io) [27].

Recently, the concept of metabolomics and lipidomics atlases has
been introduced, aiming to provide open-access resources that charac-
terize metabolites’ quantitative distribution and relationships in
different biological matrices, further highlighting the need for data
reusability and sharing [145].

11.1. Tips and tricks

e When converting raw files to mzML and mzXML, remember that
these files are usually much bigger than the original raw files. Thus, it
is advised to apply reasonable filters such as centroiding (if profile
mode was used during data acquisition) and cutting the noise to
some extent.

e Raw LC-MS files from data repositories can also be helpful when

adapting the protocols from other labs, permitting faster and more

efficient method transfer by enabling direct comparison of newly
acquired LC-MS records.

Using authoritative identifiers, such as InChI keys or those from

bioinformatics resources like the HMDB (hmdb.ca) and LIPID MAPS

(lipidmaps.org), is advised to streamline the comparison of metab-

olites across studies.

Details of lipidomic analyses can be summarized in a newly intro-

duced minimal reporting checklist [146] and stored or shared in the

supporting materials of papers or on Zenodo (zenodo.org). A

reporting checklist is also available for different QC samples in

untargeted metabolomics studies [9].

12. Conclusions

Recent advances in sample preparation, instrumentation, data pro-
cessing, and bioinformatics have expanded the possibilities in metab-
olomics and lipidomics research. We have reviewed the steps involved in
metabolomics and lipidomics experiments and compiled a guide for
designing a tailored workflow based on some of the most popular
techniques used in various studies. However, as with other omics fields,
metabolomics and lipidomics analyses are prone to biases; therefore,
tips and tricks are provided to avoid potential pitfalls. Given that the
number of metabolomics and lipidomics studies has increased six-fold
compared to a decade ago, maintaining QC is even more crucial for
generating reliable data and meaningful biological interpretations.
Providing sufficient information on the robustness and methodological
details of novel metabolomics and lipidomics tools will be essential for
faster and more efficient method transfer while minimizing potential
pitfalls.

Future advancements in both omics fields are expected to merge
untargeted (hypothesis-generating) and targeted (hypothesis-driven)
workflows for comprehensive metabolite profiling, thanks to the avail-
ability of advanced mass spectrometers that enable faster data acquisi-
tion without compromising spectral quality. Additionally, spectral
libraries are likely to expand further, leading to higher annotation rates
during untargeted profiling. For processing raw LC-MS files, elucidating
the structure of unknown metabolites, and data interpretation,
advanced computational tools, including artificial intelligence and ma-
chine learning algorithms, may be crucial for automating and stream-
lining these processes. These improvements will accelerate and enhance
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our understanding of complex biological systems. However, a chain is
only as strong as its weakest link; thus, poorly acquired and processed
LC-MS data can undermine the effectiveness of these advancements.
Comprehensive training, rigorous standard operating procedures, and
continuous QC measures will be essential to fully benefit from these
technological improvements.
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