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A B S T R A C T

Metabolomics and lipidomics are rapidly growing fields, leading to novel discoveries and advancing the un
derstanding of biological processes at the molecular level. However, designing a proper workflow and choosing 
from countless options can be challenging, especially for beginners in the field. To address this challenge, we 
provide a comprehensive overview of metabolomics and lipidomics tools and a step-by-step guide that includes 
“tips and tricks” based on current metabolomics and lipidomics analysis approaches. We include power analysis, 
sample collection and preparation, separation and detection of metabolites using primarily liquid chromatog
raphy–mass spectrometry (LC–MS), processing of raw instrumental files, quality control, statistical analysis, and 
data sharing. This guide offers practical insights applicable to diverse research areas, covering all the essential 
steps in metabolomic and lipidomic profiling.

1. Introduction

Metabolomics and lipidomics study low-molecular-weight com
pounds (typically <2000 Da) in biological matrices such as biofluids, 
tissues, or cells under different conditions. While metabolomics pri
marily focuses on water-soluble polar metabolites, such as sugars, amino 
acids, organic acids, and nucleotides, lipidomics aims to identify and 
quantify various lipid species [1]. There is a partial overlap between 
these two omics fields, and in some studies, polar metabolites and 
complex lipids are also referred to by the general term “metabolomics.”

Understanding how biological processes work can be crucial for 
biomarker discovery, clinical studies, metabolic phenotyping, physi
ology, or toxicology. To this end, various techniques for analyzing the 
metabolome and lipidome are available. These techniques include mass 
spectrometry (MS) [2,3] and nuclear magnetic resonance (NMR) [4,5]. 
MS methods are performed as liquid chromatography–MS (LC–MS), gas 
chromatography–MS (GC–MS), capillary electrophoresis–MS (CE–MS), 
direct infusion–MS, and also ion mobility–MS (IM-MS). Currently, 
LC–MS represents the most applied tool for analyzing polar and 
nonpolar metabolites and offers the highest coverage of the metabolome 
and lipidome compared to other techniques.

Metabolome and lipidome can be studied using untargeted and tar
geted methods. Untargeted methods analyze all the detectable metab
olites in a sample and are mainly used for novel metabolite discovery 
and hypothesis-generating studies [6]. Conversely, targeted methods 
focus on analyzing defined metabolites for hypothesis-driven validation 

[6,7]. While untargeted methods provide semiquantitative data (i.e., 
results are reported as peak areas or heights in arbitrary units), the 
targeted methods provide quantitative data reported in molar concen
trations. In addition, untargeted and targeted methods can be combined, 
providing quantitative data for selected metabolites while reporting the 
other metabolites (including unknowns) in semiquantitative terms [8].

Since metabolomics and lipidomics are no longer emerging but 
rather well-established fields, dozens of untargeted and targeted 
analytical protocols based on MS or NMR, along with bioinformatics 
tools, are available. However, the availability of so many tools can be 
overwhelming for both beginners and experienced professionals in the 
field. Like other omics fields, metabolomics and lipidomics analyses are 
prone to biases. Thus, a community effort such as the recently estab
lished metabolomics Quality Assurance and Quality Control Consortium 
(mQACC, mqacc.org) may help standardize metabolomics and lip
idomics analyses [9]. In this context, we present a comprehensive 
overview of metabolomics and lipidomics tools (Fig. 1), accompanied by 
a step-by-step guide that includes “tips and tricks” to avoid possible 
pitfalls and optimize workflows for generating reliable data for 
interpretation.

2. Power analysis and sample size

Determining the sample size (both total and per group) is crucial in 
study design. Insufficient sample size can result in multiple errors. 
Interestingly, even small differences with no actual significance might 
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become statistically significant in a larger sample size. On the other 
hand, with a small number of samples, clinically important effects may 
appear statistically non-significant [10]. A small sample size can also 
cause a lack of precision. In contrast, a high sample size might lead to 
unnecessary waste of resources for minimal information gain. Addi
tionally, ethical restrictions must be considered when determining an 
appropriate number of samples per group, especially concerning ani
mals [11].

Calculating the minimal sample size is based on power analysis. 
Power analysis helps to determine the smallest number of samples per 
group, given a required significance level (usually α = 0.05, and 0.1–0.2 
for a pilot study), statistical power (usually 0.8), and effect size (d = 0.8, 
0.5, 0.2 for large, medium, small effect size, respectively) [12]. Power 
analysis can be done before and after data analysis. However, sufficient 
sample size is required to obtain statistically validated data. Therefore, it 
is necessary to perform the power analysis before the beginning of the 
experiment [13]. For instance, G*Power software can provide effect size 
calculators and graphic options [14].

However, power analysis in untargeted metabolomics and lipidomics 
studies is challenging because the list of measured metabolites and the 
effect size are not known a priori [15]. Choosing a known metabolite to 
represent the entire metabolome/lipidome and conducting a univariate 
method to estimate the sample size can be used, although such statistics 
might oversimplify the metabolome/lipidome changes. It is often rec
ommended that a pilot study is performed to obtain preliminary data 
before designing more extensive studies [16].

For metabolomics data, Billoir et al. [17] released an automated 
implementation of the Data-driven Sample size Determination (DSD) 
algorithm for MATLAB and GNU Octave, which enables the determi
nation of optimized sample size in metabolic phenotyping studies. Their 
approach also uses analytical data from a small pilot cohort. On the 
contrary, Nyamundanda et al. [18] developed MetSizeR to estimate 

sample size for metabolomics experiments even when experimental pilot 
data are unavailable. In 2020, Li et al. [19] introduced the online tool 
SSizer (idrblab.org/ssizer), enabling the assessment of sample suffi
ciency and determining the required number of samples for a user-input 
biological dataset.

2.1. Tips and tricks

• Since conducting power analysis for untargeted methods might be 
difficult, a general recommendation is used regarding the minimum 
samples per group to be analyzed. For cells under tightly controlled 
conditions, a minimum of 5 replicates is recommended [20], 
although some studies have used even fewer (3–4 replicates). In 
animal studies, factors such as age, housing, and diet are typically 
controlled; therefore, sample numbers can also be kept relatively low 
for ethical and practical reasons [20]. A minimum of 5–10 samples is 
recommended for biofluids and tissues per group (usually more for 
tissues due to their high heterogeneity) [21]. In human studies, at 
least 20–30 samples per class are advised [12,22]. However, the 
number of samples can range easily from hundreds [23] to even 
thousands [24] for reasonable statistics, leading to novel biomarker 
discoveries during clinical studies. Conversely, clinical studies may 
encounter limited subjects due to budget and recruiting constraints 
[15].

• The variation of animal and human metabolomes might be influ
enced (among others) by genetics, age, and sex. However, sex is still 
not always considered in metabolomics-based investigations, 
potentially limiting the comprehensive understanding of metabolic 
profiles and their implications. Therefore, in both animal and human 
studies, it is recommended to maintain a balanced ratio of male and 
female subjects to ensure a more accurate and representative 
exploration of metabolic dynamics [25].

Fig. 1. Metabolomics and lipidomics workflow.
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3. Sample collection

Sample collection methods differ depending on the sample type and 
analysis. The choice of biological material and the amount required for 
further processing steps are based on the experimental design and tested 
hypothesis. Incorrect sample collection or storage can lead to degrada
tion of metabolites, high variability, or interferences with instrumen
tation [26]. In animal studies, specially trained personnel are 
recommended to use the time between collection and organ dissection as 
efficiently as possible. Proper training and experience are crucial while 
collecting multiple biofluids and tissues from all animals [27].

Quenching the metabolism of samples needs to be done as soon as 
possible, followed by storage of these samples at ─80 ◦C. Quenching 
should terminate all enzyme and chemical activities and avoid the 
perturbation of existing metabolite levels during harvesting [28]. This 
process should be done by liquid nitrogen, dry ice, or freeze-clamping. 
Before tissue collection, it is essential to determine which part of each 
organ will be sampled. Furthermore, for studies including plasma, the 
type of coagulant (e.g., ethylenediaminetetraacetic acid, citrate, hepa
rin) must be specified in advance [29].

3.1. Tips and tricks

• Various sizes of plastic tubes are available to deliver biological 
samples for extraction. Remember that tissues undergo homogeni
zation supported by grinding balls made of stainless steel, tungsten 
carbide, or zirconium oxide; thus, the use of 2 mL conical bottom 
tubes is needed for effective homogenization (i.e., 1.5 mL “V” bottom 
tubes are not helpful and grinding balls may be stuck during 
homogenization).

• There is an ongoing discussion about whether serum or plasma is the 
best for metabolomics and lipidomics experiments [30,31]. 
Remember that serum is prepared from whole blood, allowing the 
blood to clot by leaving it undisturbed at room temperature (usually 
15–60 min, but this step is not always possible to keep under control 
and can vary based on the personnel’s experience and training). On 
the other hand, plasma is prepared by collecting the whole blood into 
commercially available anticoagulant-treated tubes (in human 
studies). For animal studies (e.g., mouse, rat) collecting low volumes 
(<100 μL) of blood, the quantity of anticoagulant could be too high 
in tubes for human studies; thus, low-volume commercially 
anticoagulant-treated tubes or in-house tubes with an appropriate 
amount of anticoagulant are advised.

• Some metabolites are more prone to degradation or rearrangement, 
and some are less. Based on the considered analytical platform, 
remember that some metabolites are extremely unstable and require 
proper handling and usually a separate (targeted) sample prepara
tion and instrumental platform; for instance, analysis of eicosanoids, 
endocannabinoids [32], dinucleotide redox cofactors 
(NADPH/NADP+, NADH/NAD+) [33], adenine nucleotides (AMP, 
ADP, and ATP), acyl-coenzymes A [34]. In addition, dry extracts are 
also prone to thermal reactions and should be stored at low tem
peratures (─80 ◦C or ─24 ◦C) [35].

4. Sample extraction

Effective metabolite extraction is key to successful metabolomics and 
lipidomics studies. It helps to separate metabolites from undesired 
compounds and makes samples suitable for instrumental analysis [36]. 
Biological fluids such as urine can be analyzed directly without sample 
extraction. Often used steps in urine sample preparation include buff
ering, dilution, evaporation, or centrifugation. However, these steps 
may lead to metabolite losses, high salt concentration can lead to ioni
zation suppression and altered adduct formation, and disrupt instru
mental performance by forming nonvolatile residues. These 
complications can be reduced by adding an effective extraction step.

On the other hand, biofluids such as plasma or serum, which contain 
a wide range of interfering proteins, are not commonly analyzed 
directly, and an extraction step is added for protein removal [37]. 
Organic-solvent-based protein precipitation or liquid–liquid extraction 
(LLE) methods are often used during the extraction. These methods 
enable the extraction of a wide range of metabolites and simultaneously 
remove unwanted substances in biological samples, such as bulk pro
teins and salts [38]. However, in recent years, the all-in-one single 
extraction methods have been developed to isolate metabolites differing 
in their physicochemical properties, followed by fractionation. Each 
fraction is then analyzed under different separation conditions based on 
the polarity [39].

Single-phase extraction methods have been introduced using an 
isopropanol or butanol/methanol mixture to simultaneously extract 
complex lipids and polar metabolites from human plasma [40]. These 
methods were evaluated based on the metabolome and lipidome 
coverage, extraction efficiencies, effectiveness of protein precipitation, 
and reproducibility, and they were suitable for large-scale human pop
ulation studies. Shortcomings of such methods might be found in ion 
suppression caused by co-eluting complex lipids in the chromatographic 
conditions during the analysis of polar metabolites.

Two-phase liquid extraction is commonly used in metabolomics and 
lipidomics, where one phase consists primarily of nonpolar metabolites 
(lipids), and the second phase holds mostly polar metabolites. This can 
be achieved using three solvent systems: methyl tert-butyl ether 
(MTBE)/methanol/water [41], chloroform/methanol/water [42], and 
dichloromethane/methanol/water [43].

Three-phase liquid extraction is possible using hexane, methyl ace
tate, acetonitrile, and water. The upper organic phase consists of neutral 
lipids such as triacylglycerols and cholesteryl esters, the middle organic 
phase is enriched in glycerophospholipids, and the bottom aqueous 
phase consists of polar metabolites and proteins [44]. Therefore, pro
teins need to be removed to analyze polar metabolites.

Along with the already mentioned LLE methods, solid-phase 
extraction (SPE) and solid-phase microextraction (SPME) methods are 
available for analyzing biological samples [45].

Besides biofluids, various tissues and cells are analyzed in metab
olomics and lipidomics studies. While biofluids are convenient during 
their analysis, tissues and cells provide deeper insights into metab
olomics, making them the focus of clinical research over the years [29].

4.1. Tips and tricks

• Different volumes of biofluids (e.g., plasma, serum, urine) and tissue 
amounts are needed for their analysis [46]. For untargeted methods, 
10–30 μL of biofluids and 5–20 mg of tissues are sufficient. For tar
geted methods usually covering trace concentrations of some me
tabolites (e.g., eicosanoids, fatty acyl esters of hydroxy fatty acid), 
200–1000 μL of biofluids and 50–200 mg of tissue samples are 
needed. Remember that it is always good to provide (or keep) backup 
samples if reanalysis is needed. For cells, usually at least 5 × 105 is 
needed. For adherent cells, a 6-well plate format is preferred. After 
completing the cell growth, the medium is removed, followed by 
washing with buffer (e.g., phosphate-buffered saline) to remove 
residues of the medium. After removing the washing buffer, the cells 
are either immediately extracted (with a cold organic solvent or 
mixture and scraping them) or frozen in liquid nitrogen and stored at 
─80 ◦C before conducting the extraction. For suspension cells, 
centrifugation at low speed (<1000×g) is used first, followed by 
aspiration and discarding of the culture medium.

• Manual or electronic pipettes have inaccuracy, which depends on the 
range of a particular pipet and the pipetted volume [47]. For 
instance, for a 10–100 μL range pipet, the inaccuracy while pipetting 
10 μL is usually ±0.3 μL (i.e., 3 %), while for 100 μL ±0.8 μL (i.e., 
0.8 %) based on the vendor. However, for a 1–10 μL range pipet 
while pipetting 10 μL, the inaccuracy is lower ±0.1 μL (i.e., 1 %); 
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thus, the pipetting volume should be considered when choosing the 
appropriate pipette for a specific task, taking into account the inac
curacy associated with the pipetted volume and the designated 
range. Although these errors fall within acceptable limits, regular 
maintenance, preferably annually, is advisable to ensure pipetting 
equipment’s continued precision and reliability. For weighing the 
tissue samples, analytical balance (readability 0.1 mg) should be 
used instead of precision balance (readability 1 mg) since low 
amounts of tissues (5–20 mg) are often used. A dedicated person 
should also regularly calibrate the balance to ensure accuracy.

• Biofluid extraction can be performed using either glassware or 
plastic consumables. Glassware such as tubes, syringes, and pipettes 
is typically recommended to prevent background signals or the 
sorption of metabolites. However, when conducting large sample 
studies, using glassware consumables becomes impractical. In such 
cases, it is beneficial to evaluate background signals for various types 
of plastic tubes, typically made of polypropylene, and monitor po
tential leaking contaminants such as palmitate, stearate, phthalates, 
and butylated hydroxytoluene. It has been shown that using plastic 
consumables introduces a competing background signal of palmitate 
during fluxomics analysis [48]. On the contrary, a study comparing 
extraction in plastic tubes and glass vials using radioactive lipids 
found comparable recoveries [49].

• The choice of the extraction method also depends on the expected 
metabolite coverage. For instance, single-phase extraction can be 
sufficient for proper coverage of polar metabolites (e.g., extraction 
using methanol, acetonitrile, a mixture of isopropanol/acetonitrile/ 
water, acetonitrile/methanol [50,51]) or complex lipids (e.g., 
extraction using isopropanol [52]). However, differences in the 
number of detected metabolites and method reproducibility should 
be anticipated [43]. On the other hand, for the simultaneous 
extraction of polar metabolites and complex lipids, bi-phase extrac
tion using MTBE/methanol/water will ensure proper metabolome 
and lipidome coverage [53]. In addition, remember that each sample 
preparation may have a different efficiency in protein removal [54], 
which impacts the method’s robustness, specifically the instrumental 
part (e.g., column clogging, retention time shifts, worsening sepa
ration of isomers).

• When employing two-phase liquid extraction methods, remember 
that in MTBE (ρ 0.74 g/cm3)/methanol (ρ 0.79 g/cm3)/water (ρ 1.00 
g/cm3) protocol [41], the upper phase comprises the organic layer 
(MTBE and methanol), primarily containing complex lipids. In 
contrast, the lower phase consists of water (with a small portion of 
methanol), containing polar metabolites. Conversely, in chloroform 
(ρ 1.49 g/cm3)/methanol/water [42] and dichloromethane (ρ 1.33 
g/cm3)/methanol/water protocols [43], the upper (polar) phase 
contains polar metabolites, and the bottom (organic) phase is 
enriched with complex lipids.

• While validation parameters such as selectivity, specificity, matrix 
effect, range, accuracy, precision, carry-over, dilution integrity, and 
stability are commonly employed for targeted methods, there are no 
established guidelines for validating the analytical aspect in an 
untargeted approach [55]. Instead, emphasis is placed on developing 
the extraction method with minimal steps, ensuring compatibility 
with the instrumental technique, and achieving comprehensive 
coverage of metabolites with high precision. These methods can be 
assessed by evaluating precision (intra-assay and inter-assay) to 
calculate the relative standard deviation (RSD) of molecular features 
(retention time–m/z pairs) or already annotated metabolites. 
Acceptable values are typically close to a 30 % RSD [56]. Further
more, linearity can be confirmed by diluting the sample used during 
validation and employing more concentrated extracts to mimic po
tential ion suppression effects. Method blanks should also be incor
porated to identify and address carryover during method 
development. Any features detected in blanks should be considered 
background signals [55].

• Using internal standards in the extraction and resuspension solvents 
ensures proper quality control (QC), such as that identical aliquots 
were collected from all extracts or that the autosampler injected the 
correct volume. Reanalysis is needed for samples where internal 
standards are completely missing or at low intensity compared to the 
rest of the study.

5. Instrumental analysis

LC–MS is the most popular platform for metabolomics and lip
idomics, followed by GC–MS. GC–MS is used mainly to analyze volatile 
and primary metabolites after derivatization. CE–MS helps analyze polar 
charged metabolites. Recently, there has also been increased interest in 
IM-MS. In addition, analysis of polar and nonpolar metabolites can be 
done with NMR. However, the NMR method does not provide many 
annotated metabolites compared to MS [27].

Metabolomics and lipidomics detect many metabolites with high 
chemical diversity and complexity. LC–MS allows for separating and 
detecting isobars and isomers, reducing ion-suppression effects, and 
separating compounds according to their physicochemical properties 
[35]. No single method can cover the true breadth of a metab
olome/lipidome. However, LC offers various stationary phases, column 
dimensions, mobile phase modifiers, and solvents [57]. Thus, different 
LC–MS separation modes enable the coverage of a wide range of 
metabolites.

Reversed-phase LC (RPLC) separates polar to mid-polar metabolites, 
and hydrophilic interaction chromatography (HILIC) separates highly 
polar metabolites. In addition to RPLC and HILIC, lipidomics also uses 
normal-phase LC (NPLC) and supercritical fluid chromatography (SFC) 
for sample separation [58,59]. In RPLC, C18 columns dominate, fol
lowed by C8 and C30. HILIC, on the other hand, employs more diverse 
stationary phase chemistries such as silica, aminopropylsilane, alkyl 
amide, and sulfobetaine groups [57]. Mobile phases containing water, 
acetonitrile, or methanol are used to analyze polar metabolites. In 
contrast, for RPLC-based lipidomics, stronger mobile phases with a high 
percentage of isopropanol are needed. The separation time usually 
ranges from 10 to 30 min. Fig. 2 shows the separation of very polar 
metabolites, demonstrating the benefits of HILIC configuration (high 
retention and separation of metabolites, Fig. 2A) compared to RPLC 
(elution of metabolites near the void volume, Fig. 2B).

Ultrahigh-performance LC (UHPLC) systems with sub-2 μm particles 
significantly increased LC performance, such as improved speed, reso
lution, and sensitivity. Currently, LC–MS-based metabolomics and lip
idomics studies apply short (50–150 mm) microbore columns (2.1 mm 
internal diameter, i.d.) with sub-2 μm particles [7]. The following 
studies have described different applications [60,61]. Gray et al. [60] 
employed a 1 mm i.d. LC column rather than a <2.1 mm i.d. column, 
resulting in equivalent or superior performance in peak capacity, 
sensitivity, and robustness compared to conventional methodology. This 
miniaturized method required system optimization, such as reducing 
dispersion and ensuring appropriate connections to minimize 
band-broadening. This setup reduced solvent and sample consumption. 
Conversely, Schönberg et al. [61] employed a propylamine column (50 
× 2 mm i.d., 3 μm propylamine particles) for the analysis of polar me
tabolites and a microLC column (100 × 0.3 mm i.d., 1.8 μm C18 parti
cles) for the analysis of signaling lipids and retinoids. A sample was 
loaded with a short trap column (10 × 1 mm i.d., 1.8 μm C18 particles). 
This low-input metabolomics and lipidomics was applied to hemato
poietic stem cells.

High-throughput LC–MS methods (<10 min) enable analyzing over a 
hundred samples daily. That can be achieved by modifying conventional 
UHPLC–MS methods, including using shorter columns, increasing col
umn flow rate and temperature, and adjusting the LC gradient, ion 
source and MS settings (Fig. S1). High-throughput methods are popular 
in large-scale metabolomics and lipidomics. However, a lower annota
tion rate and chromatographic resolution compared to conventional 
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methods should be anticipated [27].
After separating compounds, they undergo ionization in an ion 

source, forming charged species. Electrospray ionization (ESI) is the 
most frequently used method in LC–MS. It permits the ionization of 
small molecules (<2000 Da) as well as large molecules (peptides and 
proteins). ESI is considered a soft ionization technique, minimizing the 
fragmentation of the molecular ions. However, some metabolites can 
still be too fragile during ESI, resulting in various in-source fragments 
[62]. These fragments may also contribute to false metabolite annota
tions. Recent findings demonstrated that in-source fragments accounted 
for over 70 % of the observed peaks, suggesting that the spectra are 
largely influenced by fragment ions generated during ionization [63].

The presence of salts also impacts ESI performance; thus, the LC 
methods are limited to the use of only volatile mobile phase modifiers, 
with the most frequently used formic acid, acetic acid, ammonium hy
droxide, ammonium formate, ammonium acetate, and ammonium bi
carbonate [3]. In addition, ion suppression can occur because various 
analytes or other components of the analyzed matrix compete for ioni
zation [64].

ESI can be operated in positive or negative ion mode, forming gas- 
phase cations or anions. Different ion forms can be formed based on 
the mobile phase modifiers, with protonated [M+H]+ or deprotonated 
[M− H]− molecules the most commonly observed species. However, 
when ammonium salts (e.g., ammonium formate, ammonium acetate) 
are used as mobile phase modifiers, some metabolites tend to form 
[M+NH4]+ adducts (e.g., diacylglycerols, triacylglycerols, cholesteryl 
esters) in positive mode, or [M+HCOO]− /[M+CH3COO]− adducts in 
negative mode (e.g., phosphatidylcholines, ceramides, sphingomyelins) 
[59]. Furthermore, adducts such as [M+Na]+, [M+K]+, or [M+Cl]− are 
commonly observed due to leaking metals from glass bottles (mobile 
phase reservoirs) or their presence in analyzed extracts.

Different MS techniques are used for compound detection in targeted 
and untargeted metabolomics and lipidomics. These MS techniques can 
be divided into low-resolution MS and high-resolution MS instruments 
[7]. Low-resolution (tandem mass spectrometry) triple-quadrupole 
(QqQ) and quadrupole/linear ion trap (QLIT) are vastly used in tar
geted metabolomics and lipidomics. QqQ and QLIT generally operate in 

a multiple reaction monitoring (MRM) mode. In principle, the precursor 
ion is isolated, followed by its fragmentation and subsequent detection 
of the generated fragment(s) (e.g., for TMAO, precursor ion m/z 76.2 → 
collision energy (fragmentation) → product ion m/z 58.2). These 
low-resolution mass analyzers enable metabolite identification and 
quantification, lowering the chance of false annotation; however, they 
can be used only for a defined number of metabolites and do not allow 
retrospective data analysis [65]. Contrarily, high-resolution mass ana
lyzers used in untargeted approaches routinely operate in full mass 
spectra acquisition mode, which enables retrospective data mining [66].

High-resolution single-stage mass analyzers as time-of-flight (TOF) 
and orbital ion trap (Orbitrap) and hybrid analyzers as quadrupole/ 
time-of-flight (QTOF) and quadrupole/orbital ion trap (Q/Orbitrap) 
are the main instruments used in the untargeted approach. High- 
resolution MS (HRMS) provides accurate mass data and improves the 
quality of the annotation of metabolites. The current mass resolving 
power for HRMS is usually 10,000–500,000 full width at half maximum 
(FWHM), which is much higher than the resolving power for low- 
resolution MS (~1000 FWHM) [67]. Additionally, LC–HRMS reduces 
the analysis time during metabolomics and lipidomics studies compared 
to LC–QqQ/QLIT analyzers [68]. It has been shown that a resolving 
power above 60,000 FWHM does not increase the number of molecular 
features [69]. However, higher resolving power can be beneficial during 
fluxomics analysis, where isotopologues must be resolved from other 
ions, including background ions. This capability minimizes the risk of 
spectral coelutions [70].

High-resolution tandem mass spectrometry (HR-MS/MS) is 
commonly used in metabolomics and lipidomics to increase confidence 
during metabolite annotation. HR-MS/MS experiments are performed in 
data-dependent acquisition (DDA) or data-independent acquisition 
(DIA) modes. In DDA mode, precursor ions are selected above a preset 
intensity threshold and using a narrow isolation window (0.4–4 m/z 
units) for further fragmentation; thus, product ions are then easily 
related to precursor ions. However, low-abundant precursor ions are 
often absent from MS/MS measurement [71]. DDA provides selective 
MS/MS spectra due to a narrow isolation window; however, DDA set
tings are more complicated than DIA settings, leading to a higher risk of 

Fig. 2. Examples of separating polar metabolites in human serum extracts using fast HILIC–ESI(+)-MS and RPLC–ESI(+)-MS methods (4.4 min injection-to-injection 
time): trimethylamine N-oxide (TMAO) (XlogP ─0.93), glucose (XlogP ─2.9), asparagine (XlogP ─4.3), trimethyllysine (XlogP ─6.2), lysine (XlogP ─3.2). (a) The 
ACQUITY Premier BEH Amide column (50 mm × 2.1 mm i.d.; 1.7 μm particle size) equipped with a VanGuard FIT cartridge (5 mm × 2.1 mm i.d.; 1.7 μm particle 
size) (Waters, Milford, MA, USA) was utilized to separate polar metabolites based on the HILIC mechanism. (B) The ACQUITY Premier HSS T3 column (50 mm × 2.1 
mm i.d.; 1.8 μm particle size) equipped with a VanGuard FIT cartridge (5 mm × 2.1 mm i.d.; 1.8 μm particle size) (Waters) was utilized to separate polar metabolites 
based on the RPLC mechanism. Details of separation conditions are provided in Ref. [35]. XlogP data for representative metabolites were taken from the HMDB 
(hmdb.ca).

S. Rakusanova and T. Cajka                                                                                                                                                                                                                 Trends in Analytical Chemistry 180 (2024) 117940 

5 

https://hmdb.ca/


errors in method development and application [65].
Conversely, the DIA approach works with a wider precursor ion 

isolation window, allowing fragmentation of all precursor ions within 
the pre-set window. However, with such complex MS/MS spectra, it is 
hard to determine the relationship between multiple precursor ions and 
their fragments. Thus, DIA offers more comprehensive coverage for low- 
abundance precursor ions; however, the spectra quality is usually lower. 
Often used DIA methods include all-ion fragmentation modes (e.g., MSE, 
Wide-band Fragmentation, All Ion Fragmentation, MS/MSALL), which 
fragments all the precursor ions in wider windows (e.g., 1000 m/z or 
more), and sequential window acquisition of all theoretical mass spectra 
(SWATH-MS/MS), which usually uses 20–50 m/z unit window [72]. 
With a wider isolation window, the risk of contamination increases. 
Several programs have been developed to deconvolute the raw MS/MS 
spectra (e.g., MS-DIAL, DecoMetDIA, DecoID) [27].

5.1. Tips and tricks

• A multiplatform LC–MS-based approach is commonly used during 
metabolomics and lipidomics analysis [73]. Remember that plat
forms might overlap, but some can provide unique detection capa
bilities for particular metabolites. For instance, LC–MS-based 
lipidomics in positive mode provide unique coverage for lipid sub
classes such as diacylglycerols (DG), triacylglycerols (TG), choles
teryl esters (CE), and free cholesterol. In contrast, the negative mode 
detects free fatty acids (FA), fatty acid esters of hydroxy fatty acids 
(FAHFA), and cholesterol sulfate. Phospholipids such as (lyso-) 
phosphatidylcholines (LPC/PC), (lyso-)phosphatidylethanolamines 
(LPE/PE), (lyso-)phosphatidylinositols (LPI/PI), (lyso-)phosphati
dylserines (LPS/PS), and (lyso-)phosphatidylglycerols (LPG/PG) can 
be detected in both platforms, but usually, one platform provides 
more annotations than the other (e.g., better coverage of LPC/PC in 
positive mode vs. LPE/PE in negative mode) [74].

• When using bi-phase extraction, two LC− MS platforms are typically 
required for acylcarnitines since they are partitioned into the polar 
phase (carbon chain lengths from 2 to 10) and the organic phase 
(carbon chain lengths above 12) [75]. HILIC is preferred for shorter 
(polar) acylcarnitines, while RPLC separation is optimal for longer 
(less polar) acylcarnitines.

• Polar metabolites are separated using RPLC or HILIC. However, 
HILIC is more efficient for very polar metabolites, while RPLC is for 
less polar metabolites. For instance, carnitine (XlogP = − 4.9) can be 
detected using both RPLC and HILIC. However, in RPLC, the elution 
is close to a void volume where ion suppression can be expected 
(elution of other very polar metabolites, salts), while HILIC provides 
better retention and separation selectivity [76]. As a rule of thumb, 
an XlogP >0 indicates a more hydrophobic analyte suitable for RPLC, 
while an XlogP <0 suggests a more hydrophilic analyte for HILIC.

• RPLC–MS and HILIC–MS methods require different resuspension (or 
reconstitution) solvent compositions to be compatible with the initial 
conditions of the LC gradient. In RPLC–MS-based metabolomics, fa
voring a high percentage of water at the beginning of the gradient, 
the resuspension solvent should also contain a high percentage of 
water as well to avoid peak deterioration of early eluting metabo
lites, especially when high injection volumes are used (e.g., 5 μL) 
[77]. For HILIC–MS, typically featuring a high percentage of aceto
nitrile at the beginning of the gradient, a compromise is necessary 
due to the solubility of polar metabolites. This requires a high per
centage of water in the resuspension solvent (i.e., 70–80 % aceto
nitrile) compared to initial conditions (e.g., 90–95 % acetonitrile) 
[78]. This compromise may negatively impact the peak shape of 
early eluting metabolites during the injection of high volumes.

• Vial caps can release polydimethylsiloxanes, especially during 
repeated injections from the same vial (Fig. 3A and B). In RPLC–MS- 
based lipidomic profiling, when using isopropanol as a strong mobile 
phase component, they elute as homologous series separated by a 
74.0189 m/z unit, potentially impacting the intensity of endogenous 

Fig. 3. RPLC–ESI(+)-MS lipidomic profiling of human serum extracts (a) with and (b) without elution of polydimethylsiloxanes released from a vial cap (indicated by 
red circles ). Polydimethylsiloxanes are eluted either as separate peaks or coeluting with the lipids. (c, d) Examples of RPLC–ESI(+)-MS analysis with a mobile 
phase containing LC–MS-grade isopropanol from two vendors show the total ion chromatograms (m/z 70–1050) and MS1 spectra of mobile phase impurities. The 
ACQUITY Premier BEH C18 column (50 mm × 2.1 mm i.d.; 1.7 μm particle size) equipped with a VanGuard FIT cartridge (5 mm × 2.1 mm i.d.; 1.7 μm particle size) 
(Waters) was used for lipid separation with the mobile phase including (A) 60:40 acetonitrile/water with 10 mM ammonium formate and 0.1 % formic acid, and (B) 
90:10:0.1 isopropanol/acetonitrile/water with 10 mM ammonium formate and 0.1 % formic acid. To improve the solubility of ammonium salts, they should first be 
dissolved in a small aliquot of water before being added to the 90:10 isopropanol/acetonitrile mixture. Fig. 3C and D reproduced (modified) with permission from 
Ref. [81]. Further details of separation conditions are provided in Refs. [73,81]. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.)
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lipid species [79]. When multiple injections from a single vial are 
considered in the RPLC–MS method due to limited extract volume, 
vial caps from different vendors should be evaluated to minimize 
such contaminations. On the other hand, when using RPLC–MS and 
HILIC–MS with less strong mobile phases, polydimethylsiloxanes are 
usually not eluted; however, they tend to accumulate on the column. 
Thus, occasional rinsing of the column with isopropanol is helpful to 
remove this contamination.

• As a common rule, LC–MS-grade solvents and mobile-phase modi
fiers should be used during LC–MS analysis. These chemicals meet 
criteria such as a low mass noise level, minimal organic contami
nation, and minimal metal content [80]. However, the choice of such 
chemicals can be overwhelming because they are all labeled as 
“LC–MS-grade,” yet vendors may use different technologies to 
deliver the final products, resulting in variations in quality. Thus, it is 
recommended that solvent quality in LC–MS analysis be evaluated, 
especially when developing new methods. The choice of organic 
solvents can significantly impact the LC–MS system’s overall per
formance, affecting the ionization and detection of analytes [81]. 
Notably, a study evaluating isopropanol, a commonly used solvent, 
during RPLC–MS lipidomic profiling found that the most abundant 
mobile-phase impurities included the homologous series of amines, 
dioctyl phthalate, erucamide, Irgafos 168 oxide and its oxidized 
form, and Irganox 1076 [81]. Fig. 3C and D compare the use of 
isopropanol from two vendors, indicating significant differences in 
background contamination originating from mobile phases. Other 
common interferences and contaminants encountered during LC–MS 
are summarized in a review by Keller et al. [82].

• Mobile phase modifiers significantly impact metabolite retention, 
peak width and intensity, the ability to separate isomers, and the 
long-term stability of the retention times. For instance, a HILIC col
umn based on a trifunctionally bonded amide phase, using 10 mM 
ammonium formate and 0.125 % formic acid, has outperformed 
other mobile phase modifiers [73]. Nevertheless, when evaluating a 
new column, it is advised to test mobile phase modifiers differing in 
composition and pH to optimize separation efficiency and selectivity 

for a panel of expected groups of metabolites (e.g., amino acids, 
organic acids, biogenic amines, sugars) using a scoring system 
employing retention time, peak height intensity, peak width, and the 
ability to resolve isomers (e.g., leucine/isoleucine). Fig. 4 shows the 
impact of various mobile phase modifiers during HILIC–MS metab
olomics analysis on the amino acid arginine in human serum extracts 
[73]. For RPLC–MS lipidomic profiling with a C18 column, 10 mM 
ammonium formate or 10 mM ammonium formate with 0.1 % formic 
acid in positive mode has been advised. On the other hand, using 10 
mM ammonium acetate with 0.1 % acetic acid has been shown as a 
reasonable compromise regarding the signal intensity of the detected 
lipids and the stability of the retention times during long-term se
quences (Fig. S2) [73].

• For targeted LC–MS methods operated in MRM mode, evaluating the 
sample preparation step or SPE cleanup is recommended by moni
toring highly abundant phospholipids typically occurring in biolog
ical samples [83]. To this end, using additional MRM transitions for 
these lipids, precursor ion scan of m/z 184, or operating the mass 
spec in full scan mode helps with method optimization and avoiding 
carry-over of these lipids or achieving separation from target me
tabolites. For more in-depth characterization of potentially inter
fering lipids, including annotation using in-silico MS/MS spectra, it is 
recommended to use HRMS operated in MS/MS mode with the 
identical LC method [84].

• Current HRMS instruments for untargeted analysis usually have a 
linear dynamic range of about four orders of magnitude. Thus, it is 
necessary to determine the appropriate dilution of the extracts for 
injection and the typical intensity readout for the detector through 
an initial evaluation. To this end, serially diluted extracts are injected 
for a particular LC–MS platform ranging from very low to very high 
concentrated extracts. TOF instruments usually have an upper line
arity of total ion chromatogram (TIC) limit of around 106–107, while 
Orbitrap instruments reach around 109. In TOF instruments, either 
saturation of the multichannel plate detector or reaching the analog- 
to-digital or time-to-digital converter limit leads to nonlinear signal 
behavior. In contrast, in Orbitrap instruments, highly abundant ions 

Fig. 4. Separation of arginine ([M+H]+, m/z 175.1178) in human serum extracts using an ACQUITY UPLC BEH Amide column (50 mm × 2.1 mm i.d.; 1.7 μm 
particle size) coupled to an ACQUITY UPLC BEH Amide VanGuard pre-column (5 mm × 2.1 mm i.d.; 1.7 μm particle size) (Waters) under different mobile phase 
modifiers. Reproduced (modified) with permission from Ref. [73]. Legend: AmF, ammonium formate; FA, formic acid; AmF, ammonium formate; AmAc, ammonium 
acetate; NH4OH, ammonium hydroxide; AmBicarb, ammonium bicarbonate.

S. Rakusanova and T. Cajka                                                                                                                                                                                                                 Trends in Analytical Chemistry 180 (2024) 117940 

7 



quickly reach the automatic gain control (AGC) target, triggering 
automatic ion injection into the detector. This process can poten
tially lead to insufficient capacity to accumulate and detect the ions. 
Fig. 5, which illustrates examples of lipid extracts injected within 
(Fig. 5A) and outside (Fig. 5B) the linear dynamic range of the de
tector, highlights this phenomenon. While working within the linear 
dynamic range for quantitative and semiquantitative analysis is 
crucial, utilizing (reasonably) more concentrated samples can yield 
additional MS/MS spectra and improve their overall quality.

• High mass resolving power is crucial for removing potential in
terferences and separating isobaric compounds (e.g., compounds 
with the same nominal mass but different accurate masses). For 
example, in RPLC–MS-based lipidomics analysis, two lipids, PC P- 
34:1 ([M+H]+, m/z 744.5902) and PE 36:2 ([M+H]+, m/z 
744.5538) are typically closely eluted [74]. A mass resolving power 
of at least 40,000 FWHM is required to achieve complete spectral 
separation of these two isobaric compounds. Therefore, low mass 
resolving power results in spectral co-elution, detecting these two 
lipids as a single mass peak with biased mass accuracy (Fig. S3).

• During DDA experiments, precursor ions can be isolated within a 
relatively narrow window, typically 0.4–1 m/z unit, resulting in 
highly selective isolation. However, this narrow window often re
duces the intensity of MS/MS fragments due to the lower trans
mission of precursor ions. Conversely, employing a wider isolation 
window, such as 3–4 m/z units, enhances the sensitivity of detected 
fragments. However, it also increases the likelihood of potential in
terferences, as metabolites differing in mass by 2–3 m/z units can be 
co-isolated (Figs. S4 and S5). This results in mixed MS/MS spectra 
and a worse spectral match during library search.

• Since conventional DDA for acquiring MS/MS spectra is inefficient 
for low-abundance precursor ions, iterative exclusion-MS may help 

increase the total number of MS/MS scans for metabolite annotation. 
Usually, the pool QC sample is injected, followed by excluding pre
cursor ions for which MS/MS were acquired; thus, in sequential in
jections, low-abundant precursor ions are selected for MS/MS 
analysis, leading to a higher metabolite annotation rate [85].

6. Processing raw files

Processing raw instrumental files usually includes feature detection, 
chromatogram building, deisotoping, peak alignment, and gap-filling 
[86,87]. Typical untargeted metabolomics and lipidomics analyses can 
produce hundreds of annotated metabolites and countless unknowns. A 
wide range of processing tools have been developed in recent years, 
including commercial vendor software (e.g., MarkerLynx, MarkerView, 
Mass Profiler Professional, MetaboScape, Compound Discoverer) or 
from independent developers (e.g., GeneData), open access software (e. 
g., XCMS, MZmine, MS-DIAL, MetAlign, IDEOM) or script platform (e.g., 
Matlab, R) [27]. Recently, it has been reported that the main differences 
among the data processing software programs were found in the number 
of false positive/negative peaks and gap-filling capability [88,89]. 
However, data quality is continuously improving through consistent 
software updates.

6.1. Tips and tricks

• “Trust, but verify” − software that allows reviewing and curating 
annotated metabolites should be used to remove false positives or 
annotations that appear multiple times due to increased baseline for 
particular metabolites.

• Using internal standards helps quickly assess the quality of generated 
data during data processing since they represent true positives in the 

Fig. 5. Examples of TIC (m/z 200–1700) of lipid extracts from human serum injected (a) within the linear dynamic range (TIC 1.2 × 109) and (b) outside the linear 
dynamic range (TIC 4.5 × 109) on the Q Exactive Plus instrument. Working within the linear dynamic range provided a linear response (R2 >0.99) for lipids when 
using serial dilution samples of the lipid extracts. On the other hand, the linearity for highly abundant lipids (example shown for PC 34:2, [M+H]+, m/z 758.5694) 
deteriorated when highly concentrated lipid extracts were injected. The ACQUITY Premier BEH C18 column (50 mm × 2.1 mm i.d.; 1.7 μm particle size) equipped 
with a VanGuard FIT cartridge (5 mm × 2.1 mm i.d.; 1.7 μm particle size) (Waters) was used for lipid separation with the mobile phase including (A) 60:40 
acetonitrile/water with 10 mM ammonium formate and 0.1 % formic acid, and (B) 90:10:0.1 isopropanol/acetonitrile/water with 10 mM ammonium formate and 
0.1 % formic acid. Further details of the RPLC–MS method can be found in Ref. [81].
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sample. If they do not appear in the exported dataset, the cause 
should be investigated. This may include chromatographic or mass 
accuracy drift, wrong setting of data processing parameters, gross 
error during sample preparation, or LC malfunction.

• Parameters of data processing software, such as the minimal 
threshold (or signal-to-noise ratio, noise level, peak amplitude), 
should be optimized based on the MS instrument used; otherwise, 
excessively noisy data may appear in the exported dataset, thereby 
increasing data processing time. Furthermore, the smoothing level 
should be chosen judiciously to prevent the generation of artifact 
peaks from noise or the degradation of partially coeluted peaks 
detected afterward as a single peak.

• Spectral deconvolution (i.e., obtaining distinct peaks) of isomers is 
challenging during data processing, especially for partially co-eluted 
metabolites. When optimizing data processing settings, special 
attention should be given to parameters that may affect the ability to 
distinguish between isomers. Examples of these compounds include 
leucine/isoleucine, 3-hydroxybutyrate/3-hydroxyisobutyrate/2- 
hydroxybutyrate, citrate/isocitrate, or sugar phosphates for polar 
metabolites. For lipids, examples of isomers may include phospha
tidylcholines (e.g., PC 36:3–5, PC 38:4–5) or triacylglycerols (e.g., 
TG 54:5–7), each providing multiple isomers reported in plasma 
during RPLC–MS lipidomics analysis [90]. Additionally, lyso-forms 
of phospholipids are prone to isomerization, leading to 1-acyl-2-ly
so-phospholipid and 1-lyso-2-acyl-phospholipid and detected as a 
double peak [91]. Fig. 6 shows examples of isomers that can be used 
to optimize data processing parameters.

• With new updates or versions of data processing software, their 
performance should be evaluated using validation data sets (instru
mental files) for each platform, and data processing outcomes should 
be compared. This includes evaluating the total number of features, 
the efficiency of deconvolution of fully and partially separated iso
mers, and the impact on metabolite annotation, including annotation 
of new lipid subclasses if the new version provides such an update.

7. Metabolite annotation

Due to the structural complexity of metabolites, their annotation 
might be challenging [92]. Thousands of metabolite signals in a single 
sample can be obtained using untargeted metabolomics and lipidomics. 
However, only a small percentage of these signals is structurally known 

[93].
The Metabolomics Standardization Initiative (MSI) explains how to 

report and perform metabolomics workflow using a community-based 
guideline. MSI proposed four confidence levels: (1) identified com
pounds, (2) putatively annotated compounds, (3) putatively character
ized compound classes, and (4) unknown compounds [94]. However, 
multiple researchers have initiated revisions and possible modifications 
of the metabolite reporting standards to fit the current needs [95,96]. In 
2020, the Lipidomics Standardization Initiative (LSI) was introduced, 
aiming to create guidelines for lipidomics workflows, including lipid 
annotation guidelines based on the hierarchical concept and application 
of shorthand notation [97].

The experimental MS/MS libraries play one of the key roles in 
metabolite annotation. Various public and commercial libraries are 
available. The most extensive spectral library, METLIN Gen2 (metlin.sc 
ripps.edu), contains over 900,000 molecular standards with MS/MS 
data generated in positive and negative ionization modes at multiple 
collision energies, collectively containing over 4 million tandem mass 
spectra [98]. The next largest library updated in 2023, the National 
Institute of Standards and Technology (NIST) MS/MS library (chemdata. 
nist.gov), includes over 2.3 million spectra from over 51 thousand 
standards.

One of the most comprehensive free access libraries is MassBank of 
North America (MoNA), which allows users to download and upload 
MS/MS spectra freely (massbank.us). MoNA contains over 2 million MS/ 
MS spectra records, including experimental spectra for compounds such 
as natural products or endogenous metabolites [27]. Other public 
MS/MS spectral libraries are available, such as MassBank (massbank.jp), 
ReSpect (spectra.psc.riken.jp), RIKEN PlaSMA (plasma.riken.jp), 
mzCloud (mzcloud.org), GNPS (gnps.ucsd.edu), MSforID (msforid.com), 
or HMBD (hmdb.ca). As an example, Fig. 7 shows the visualization of 
processed LC–MS data in MS-DIAL software, including MS/MS library 
search and annotation.

In addition, the MS/MS spectral library can annotate simple and 
complex lipids (included in MS-DIAL and MZmine) or be available in a 
mass searchable format (MSP) for other data processing software 
(downloaded from MoNA). These in-silico libraries were created since 
many lipids break in an MS/MS experiment predictably, leading to 
fragmentation rules. These rules were then applied to lipid structures 
generated using in-silico methods to yield a comprehensive lipidomics 
library for compound annotations [99].

Fig. 6. Examples of isomers for optimization of data processing software: HILIC–MS metabolomic profiling: leucine and isoleucine ([M+H]+, m/z 132.1019) in 
human serum extract; hexose X-phosphates ([M− H]− , m/z 259.0224) in 3T3-L1 cell extract; RPLC–MS metabolomic profiling: 3-hydroxybutyrate, 3-hydrox
yisobutyrate, and 2-hydroxybutyrate ([M− H]− , m/z 103.0400) in human serum extract; RPLC–MS lipidomic profiling: LPC 16:0 (LPC 0:0/16:0 and LPC 16:0/0:0, 
[M+H]+, m/z 496.3398), PC 36:3 (PC 18:1_18:2 and PC 16:0_20:3, [M+H]+, m/z 784.5851), TG 54:6 (TG 18:1_18:2_18:3 and TG 16:0_18:2_20:4, [M+NH4]+, m/z 
896.7702) in human serum extract. The details of the LC–MS methods can be found in Ref. [73].
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Furthermore, most libraries are not specific for metabolites and 
include MS/MS spectra for other small molecules (e.g., food additives, 
pharmaceutical drugs, pesticides). Additionally, attention should be 
paid to the applied mass analyzers (e.g., QTOF or Orbitrap), collision 
energy, concentration and purity of chemical standards, and other 
experimental conditions because different libraries were acquired using 
different parameters [100]. Recently, Hoang et al. conducted 
cross-platform compassion (using QTOFs from Agilent, Bruker, SCIEX, 
Waters, and Orbitrap from Thermo) and tested collisional energies at 0, 
10, 20, and 40 eV. They suggested that a collision energy of 20 eV 
provides optimal congruency and could significantly enhance unifor
mity and sensitivity, ultimately enhancing the accessibility and repro
ducibility of scientific data [101].

Another method that can be considered for compound annotation is 
IM-MS and LC–IM-MS. IM-MS provides an additional physicochemical 
property, CCS (collision cross section), which can be used for compound 
annotation and identification [102]. Coupling LC–MS with ion mobility 
separation (LC–IM-MS) improves the accuracy of metabolite annotation. 
It can also help with the process by improving peak capacity and 
resolving power, reducing the matrix effect, and increasing 
signal-to-noise ratios of metabolites [100]. Multiple experimental CCS 
databases for small molecules have been introduced [84,103,104].

It is estimated that only 10–20 % of molecular features detected 
during untargeted LC–MS-based metabolomics can be annotated ac
cording to mass spectra library matches [105]. In the next step, 
computational simulations predict the mass spectra from input struc
tures, aiming to increase the annotation rate [106]. Various in-silico 
fragmentation software programs (Mass Frontier, CSI:FingerID, 
CFM-ID, MS-FINDER, MIDAS-G, and MetFrag) are used to determine 
these chemical structures [107]. Internal compound databases (e.g., 
HMDB, hmdb.ca; PubChem, pubchem.ncbi.nlm.nih.gov) provide puta
tive chemical structures for “known unknowns” (i.e., existing but not yet 

identified or characterized metabolites). For “unknown unknowns” (i.e., 
completely unknown and uncharacterized metabolites), in-silico tools 
for generating new metabolite structures (e.g., MINE, minedatabase.mc 
s.anl.gov; BioTransformer, biotransformer.ca) or network-based ap
proaches (e.g., Global Natural Product Social Molecular Networking, 
gnps.ucsd.edu) are available to complement the metabolite coverage 
[108]. Furthermore, additional orthogonal filters can be based on 
retention time prediction [109,110] or hydrogen/deuterium exchange 
mass spectrometry (HDX-MS) [111,112].

7.1. Tips and tricks

• Typical metabolomics reports distinguish between Level 1 (matching 
based on retention time, MS1, and MS/MS spectrum) and Level 2 
(matching based on MS1 and MS/MS spectrum). In Level 1, the term 
“identified” is used, whereas “annotated” is the appropriate termi
nology in the latter case [94]. Annotation based only on matching 
MS1 accurate mass (Level 3) may lead to many misannotations.

• As a common standard, the metabolite should be annotated with 
MS1 accurate mass and MS/MS spectra, which removes many false 
positive annotations. Using data processing software and spectral 
libraries, this is performed using settings such as narrow mass 
tolerance (e.g., ±0.005 Da) for MS1 precursor ions and MS/MS 
fragments and calculating similarity scores (e.g., dot product, 
reversed dot product). On the other hand, even a combination of MS1 
and MS/MS for metabolite annotation can be inefficient, especially 
for isomeric compounds such as hexose phosphates, citrate/iso
citrate, or leucine/isoleucine with identical or very similar MS/MS 
spectra, thus, requiring retention time information for proper 
annotation [28].

• During LC–MS-based metabolomics analysis, thousands of molecular 
features are detected in biological samples per analysis. These 

Fig. 7. Visualization of processed LC–MS data in MS-DIAL software: (1) list of processed LC–MS raw files; (2) alignment navigator; (3) peak filters; (4) peak spot 
viewer (spots colored based on the intensity of detected features/metabolites); (5) extracted ion chromatograms of aligned spot; (6) MS1 spectrum (full mass range of 
m/z 60–900); (7) details of annotated metabolite creatine in human plasma extract, showing that the difference between experimental (accurate) mass (m/z 
132.07668) and calculated (exact) mass (m/z 132.0768) was as low as 0.12 mDa, passing through the MS1 accurate mass tolerance of 0.005 Da (5 mDa); (8) MS/MS 
spectrum acquire at stepped normalized collision energies of 20, 30, and 40 % using a Q Exactive Plus (upper panel) and reference (library) MS/MS spectrum acquire 
at stepped normalized collision energies of 20, 30, and 40 % using a Q Exactive HF available from MoNA (bottom panel), passing through the MS/MS accurate mass 
tolerance of 0.005 Da (5 mDa) as well. For separation, an ACQUITY UPLC BEH Amide column (50 mm × 2.1 mm i.d.; 1.7 μm particle size) coupled to an ACQUITY 
UPLC BEH Amide VanGuard pre-column (5 mm × 2.1 mm i.d.; 1.7 μm particle size) (Waters) was utilized [73].
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molecular features do not necessarily correspond to unique metab
olites; they include isotopes, adducts, artifacts, and contaminants. 
For instance, Fig. 8A and B show an example of triacylglycerol TG 
50:2 detected as multiple adducts ([M+NH4]+, [M+Na]+, [M+K]+, 
[2M+NH4]+, [2M+Na]+), each with multiple isotopes, resulting in 
21 molecular features. Furthermore, in-source fragmentation, which 
leads to diacylglycerol fragment ions (Fig. 8C), contributed eight 
additional molecular features. While adducts can be annotated based 
on typical mass differences, annotating in-source fragments can be 
more challenging. However, these fragments are typically chro
matographically coeluted, exhibit the same peak shape, correlate in 
peak intensities across samples, and have similar statistical outcomes 
as molecular ions. They may also coincide with those obtained 
during MS/MS analysis (Fig. 8D). This underscores the importance of 
proper data processing and curation to yield a concise list of unique 
metabolites and relevant molecular features for statistical analysis. 
Furthermore, it has been shown that a systems-level annotation of a 
metabolomics dataset can reduce 25,000 molecular features to fewer 
than 1000 unique metabolites [113].

• Repeated annotations of some metabolites in LC–MS can be due to in- 
source artifact formation; for instance, glutamine and glutamic acid 
generate an in-source artifact by cyclizing to pyroglutamic acid 
(Fig. S6) [114]. Further, when the intensity of a particular metabolite 
is too high, the tailing peak may lead to additional annotations of the 
same metabolite (Fig. S7), which should be removed during data 
curation.

• Complex lipids are reported based on the structural resolution from 
MS1 and MS/MS analysis, such as carbons and double bonds (e.g., PC 
36:2) and fatty acyl constituents (e.g., PC 18:0_18:2). The use of the 
underscore “_” means that there is certainty in the composition of the 
fatty acyl constituents, but not their placement on the glycerol 
backbone [115]. Lipid annotation, where the positional isomeric 
level of the fatty acyl chains (sn1 and sn2) is known, is indicated by a 
slash “/” (e.g., PC 18:0/18:2).

• Some lipids consist of a mixture of two or even more lipid isomers 
with the same number of carbon atoms and double bonds but 
differing in acyl chain lengths (e.g., TG 52:3; TG 16:1_18:1_18:1 and 

TG 16:0_18:1_18:2, Fig. S8). Such coelutions unavoidably occur 
during LC–MS-based lipidomic profiling. In such instances, the 
software typically annotates the specific lipid with the acyl chain 
composition most similar to the in-silico MS/MS spectrum. However, 
other possible compositions may also be considered during data 
curation [99].

• Isomeric bis(monoacylglycero)phosphate (BMP) and phosphatidyl
glycerol (PG) species can be detected in positive (as [M+NH4]+) and 
negative (as [M− H]− ) ion modes using LC− MS. However, only the 
positive mode provides MS/MS spectra for reliable differentiation, 
while the negative mode provides identical MS/MS spectra for both 
lipid subclasses (Fig. S9) [84].

• Proposed guidelines on the expected fatty acyl chains in the major 
species of phospholipids, glycerolipids, and sphingolipids in 
mammalian samples should be checked to assess the likelihood of 
particular lipid species [116].

• During structure elucidation, the first step is properly annotating the 
ion form (adduct). Since multiple ion forms can be formed during 
ESI, it is suggested that ions with characteristic differences be 
explored to confirm particular adducts. In ESI(+), typically [M+H]+, 
[M+NH4]+, [M+Na]+, and [M+K]+ species are formed. A mass 
difference of 21.9819 m/z indicates the presence of [M+H]+ and 
[M+Na]+, while a mass difference of 4.9554 m/z shows the presence 
of [M+NH4]+ and [M+Na]+. In ESI(− ), [M− H]− , [M+Cl]− , and 
[M+HCOO]− /[M+CH3COO]− based on mobile phase modifiers can 
be observed. Thus, a mass difference of 35.9767 m/z indicates 
[M− H]− and [M+Cl]− , while mass differences of 46.0055 and 
60.0211 m/z are observed for [M− H]− and [M+HCOO]− / 
[M+CH3COO]− ions, respectively. Additionally, it is useful to 
compare data acquired in both ionization modes. For instance, if a 
mass difference of 2.0146 m/z is observed, the molecule forms both 
[M+H]+ and [M− H]− ions.

• The isotopic pattern of an unknown molecule with a suggested ion 
form should then be submitted to an in-silico software program to 
determine its elemental composition. In this step, the mass tolerance 
filter (e.g., 0.005 Da), isotopic ratio tolerance, selected elements, and 
selection of internal databases will significantly impact the number 

Fig. 8. Detection of TG 50:2 during RPLC–ESI(+)-MS lipidomic profiling [81] of human serum extract: (a) intensity of [M+NH4]+, [M+Na]+, [M+K]+ adducts and 
their isotopes; (b) intensity of [2M+NH4]+, [2M+Na]+ adducts and their isotopes; (c) intensity of in-source fragments of TG 50:2; (d) MS/MS spectrum (fragments) of 
TG 50:2 (precursor ions m/z 848.7692, retention time 5.24 min) leading to annotation of this TG as a mixture of TG 16:0_16:1_18:1 and TG 16:0_16:0_18:2 using 
MS-DIAL [84].
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of possible formulae reported. Next, the MS/MS spectrum is used to 
generate a list of isomeric (scored) candidate structures from com
pound databases based on applied in-silico fragmentation rules 
(Fig. S10).

• A list of candidate structures can be reduced by applying HDX-MS. 
Exchangeable hydrogen atoms, bound to heteroatoms such as oxy
gen, nitrogen, and sulfur, readily exchange with deuterium, while 
those bound to carbon remain unaltered. When metabolites are 
exposed to deuterium-containing solvents (e.g., H2O → D2O; meth
anol → methanol-OD or methanol-D4; isopropanol → isopropanol- 
OD or isopropanol-D8) and mobile phase modifiers (e.g., formic 
acid → D2-formic acid; ammonium formate → D5-ammonium 
formate), labile hydrogens within various functional groups (− NH− , 
–NH2, –OH, –COOH, –SH) are substituted with deuterium [112]. The 
number of replaced hydrogens in the molecule can be determined by 
measuring the molecular mass before and after HDX (Fig. S11) using 
a mass spectrometer. As a final step, validation should be performed 
by analyzing authentic standards under the same LC–MS conditions 
and comparing retention times, MS1, and MS/MS spectra.

8. Quality control

The changes in the instrument’s sensitivity are caused by the 
degradation of the extracts, contamination of ion source by nonvolatiles, 
or retention-time shifts, which can occur over time during the analytical 
run [7]. Therefore, the order of samples during the run should be ran
domized. Internal standards should also be added to the samples during 
analysis, which could help monitor chromatographic and mass accuracy 
drift and fluctuation of the signal intensity [9].

QC samples are generally employed to monitor the precision and 
stability of the method. It can also be used for signal correction and 
method standardization [117]. These samples should be identical bio
logical samples, and their metabolic and sample matrix composition 
should be similar to the studied samples. These QC samples are injected 
regularly every 10–20 samples, depending on the analysis time and the 
number of biological samples [27].

QC samples are prepared as pooled aliquots from the study samples. 
The resulting mixture contains the mean concentration of all metabolites 
in these samples. However, this approach may not work for large-scale 
studies with over a thousand samples. In this case, the pooled QC sam
ple may be replaced with a bulk “control” sample, a pool containing only 
a part of the study samples (preferably with samples covering all 
groups), or commercially available biofluids composed of multiple 
biological samples not present in the study [118]. Both approaches can 
also be combined [119]. A highly recommended commercial reference 
material is NIST Standard Reference Material 1950 – Metabolites in 
Frozen Human Plasma [83], used for human studies focusing on plasma 
or serum analysis [120].

The analysis should also include blanks and a serial dilution of QC 
samples. The no-injection blank runs mobile phase through the column 
without injection in the port of the instrument. At the beginning of the 
sequence, they aim to clean and condition the LC system, while within 
the sequence they provide information on carry-over of analytes or 
contaminants from previous injections. Reagent blanks are used to 
monitor potential contamination because manufacturing process modi
fications or supply chain changes can affect solvent quality without prior 
notice. Method blanks undergo the same steps during the analysis as the 
real samples but without a particular matrix. Both blanks and a serial 
dilution of QC samples help identify contamination in study samples and 
remove compounds with nonlinear behavior [9].

8.1. Tips and tricks

• Various measures such as (i) randomization of the samples within the 
sequence, (ii) regular injection of QC pool samples at the beginning, 
end, and between every ten actual samples for a specific matrix, (iii) 

analysis of method blanks, (iv) analysis of serially diluted extracts 
prepared from QC sample (0, 1/16, 1/8, 1/4, 1/2, 1) (Fig. S12), and 
(v) control of the chromatographic peak shape, retention time, and 
intensity of internal standards are helpful to ensure QC [35].

• In practice, exported data sets can be filtered by removing metabo
lites with (i) a max sample peak height/blank peak height average 
<10, (ii) an R2 <0.8 from a dilution series of QC sample, and (iii) a 
relative standard deviation (RSD) >30 % from QC samples injected 
between 10 actual study samples [35]. Data can be further normal
ized using locally estimated scatterplot smoothing (LOESS) with QC 
samples injected between 10 actual study samples. In addition, the 
frequency (occurrence) cut-off (e.g., 50 %) of a particular metabolite 
within the entire data set or sample groups can be used.

• The total number of analyzed samples does not equal the number of 
injections per analytical platform. For instance, in a study with 100 
study samples, the LC–MS sequence may include initial injections (e. 
g., solvent, QC samples) to ensure the stability of a particular plat
form (10 injections), system suitability tests (3 injections of a stan
dard mixture or biological sample), method blanks (3 injections), a 
serial dilution of QC samples (6 injections), QC samples (12 in
jections), and study samples (100 injections). This means 34 more 
injections are needed to maintain proper QC (25 % of the total in
jections). Moreover, additional injections are required if the study is 
acquired in MS1 mode only, and MS/MS spectra are needed for 
metabolite annotations.

• Some lipids, such as (free) palmitic (FA 16:0) and stearic (FA 18:0) 
acids, are present when plastic tubes and tips are used [121]. Based 
on their signal intensity in method blanks and study samples, they 
can be removed during data filtration.

• Monitoring charts in untargeted metabolomics and lipidomics help 
visualize and track the performance and quality of analyses over 
time. Several types of monitoring charts can be implemented in the 
lab using analysis of QC samples at regular intervals to monitor the 
stability and consistency of each LC–MS platform. The extracted data 
from these injections can evaluate (i) the overall ion intensity (TIC) 
of the QC samples over time, (ii) retention times, peak heights and 
areas, and mass accuracy error of specific metabolites or internal 
standards across different runs, and (iii) the responses of blank 
samples and emerging new background contaminants. These pa
rameters also help establish each LC–MS platform’s “reference” sta
tus, allowing researchers to quickly identify and address any issues in 
the analytical process.

9. Data normalization

Normalization is crucial in removing undesired variations in the data 
while maintaining biological information. These variations can occur in 
ion intensities during the sequence and batches or sample-preparation 
steps. However, some unwanted biases in particular datasets might be 
challenging to remove. A wide range of strategies, from statistical 
methods to software tools, has been developed to address this issue. 
These normalization strategies are sample-based and data-based [122].

Sample-based strategies include intrinsic factors (e.g., ploidy/DNA, 
RNA, metabolites), cell-based approaches (e.g., count, volume), weight- 
based (e.g., fresh or dry weight), internal standards (e.g., isotopologues, 
stable-isotope labeled cells or extracts), QC-based (e.g., pooled QCs, 
standard reference material-based QCs), and others (e.g., specific grav
ity, osmolality). Data-based strategies include statistical methods (e.g., 
log, median, average) for batch effects (e.g., LOESS, ComBat) and 
analytical platform-based (e.g., total ion chromatogram) [123]. Multiple 
software tools have also been introduced, such as MetabR, MetaboDrift, 
NOREVA, and SERRF [124]. Fig. 9 shows an example of normalization 
using LOESS applied to two batches of study samples and accompanied 
QC samples.

However, choosing the appropriate normalization strategy can be 
difficult. Wu et al. [125] reviewed several strategies to help select a 
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proper normalization method. The review studied papers that worked 
with urine samples, cell extracts, and other biological samples (blood, 
sweat, and milk). Furthermore, Yang et al. [126] assessed 17 methods 
and their 110 possible combinations based on their performance. 
Various methods such as mean, cyclic LOESS, range scaling, and level 
scaling performed well under given criteria when combined with other 
normalizations.

9.1. Tips and tricks

• No sample-based normalization is usually needed for plasma and 
serum. On the other hand, normalization to creatinine or osmolality 
values is the most adopted strategy for urine with high variability in 
concentration and composition [127]. Fluorescence-based methods 
for DNA quantification can be used for cells [128]. For tissue mass 
(wet or dry), total protein concentration or DNA content can be used 
to recalculate the actual levels of metabolites in samples [122]. 
However, these approaches require additional analysis (e.g., DNA 
quantification, protein concentration, creatinine concentration).

• Data-based normalization includes TIC for all detected molecular 
features or mTIC with only genuine metabolites. Usually, there is a 
correlation between (m)TIC and cell numbers [129]; thus, this 
approach is helpful if sample-based normalization is impossible. 
However, the (m)TIC approach assumes that the decrease in the 
concentration of metabolites in one group is balanced with the in
crease in one group of metabolites. However, this assumption may 
not always be valid because a specific systematic error may affect 
some metabolites differently than others [124].

10. Statistical analysis

Many metabolomics and lipidomics studies aim to discover 
biomarker metabolites or understand the investigated biological pro
cesses. Various statistical methods have been introduced to identify key 
metabolites and molecular features. The t-test, a typically used univar
iate statistical method for two groups, provides a p-value corrected using 
Bonferroni correction [130] or the Benjamini–Hochberg [131] false 
discovery rate (FDR) control procedure to avoid a high number of false 
positives. For three or more groups, one-way analysis of variance 
(ANOVA) with one independent variable or two-way ANOVA with two 
independent variables (e.g., diet and sex) is employed, followed by post 
hoc tests [132] to determine specific groups responsible for significant 
differences detected by ANOVA. Multivariate methods mainly include 
principal component analysis, hierarchical cluster analysis, and partial 
least squares discriminant analysis (PLS-DA) [133]. Among various 
statistical tools and software, MetaboAnalyst (metaboanalyst.ca) is one 
of the most popular platforms for comprehensive metabolomics and 
lipidomics data analysis and interpretation [134].

Integrating the results of an experiment with biological domain 
knowledge is necessary. For that purpose, metabolic network mapping 
can be performed with many software packages (e.g., MetaMapR, Met
abNet, GNPS, MS2LDA). Metabolic pathway mapping can also be done 
with tools such as MetaboAnalyst or MetFlow [27]. For complex lipids, 
an ontology database and enrichment analysis (LION, lipidontology. 
com) and lipid over-representation analysis (LORA, lora.metabol 
omics.fgu.cas.cz) are available [135].

10.1. Tips and tricks

• When starting with statistical analysis, using test data available in 
MetaboAnalyst helps familiarize with the required data structure and 
available tools. In addition, the data for statistical analysis are 
available in some papers, usually in supporting materials, including 
the outcomes of the statistical analysis. Thus, these data sets can be 
used for practical hands-on exercises and to validate the acquired 
skills.

• Identifiers such as InChI Key, HMDB ID, or KEGG ID are helpful (and 
some are required) for advanced statistical methods such as enrich
ment and pathway analysis [134]. The Chemical Translation Service 
(cts.fiehnlab.ucdavis.edu) can translate different database identifiers 
or trivial names in metabolomics publications and databases to 
identifiers needed for bioinformatics tools [136]. Trivial names can 
also be converted to HMDB identifiers using MetaboAnalyst.

• A metabolite with a p-value ≤0.05 is typically used for further 
interpretation. For two-class comparison, fold-change can also be 
used as an additional measure (i.e., volcano plot). For instance, in 
MetaboAnalyst, a fold change of 2 is used as a default setting, 
although even fold changes of 1.3–1.5 have been shown to provide 
biologically meaningful sets rather than relying solely on p-values 
[137].

• When using PLS-DA, metabolites are sorted by their importance 
based on variable importance in projection (VIP) scores. A VIP score 
>1 is the typical rule for selecting relevant metabolites [138], 
although a higher value, such as 1.5 or even 2, can be considered a 
reasonable cut-off [139]. Consideration should also be given to 
PLS-DA cross-validation, specifically the model’s predictive ability 
(Q2) and the permutation test [140,141]. Good predictions will have 
a high Q2 value, and Q2 >0.5 is considered very good in metab
olomics studies [142]. If a low Q2 value or even a negative Q2 value is 
obtained, it indicates that the model lacks predictive ability or is 
overfitted, even if metabolites are reported with VIP >1.

11. Data sharing

Data sharing and open data have become fundamental in science 
over the years. It is recommended that the data be shared in line with the 

Fig. 9. Example of peak height intensities of acetylcarnitine (CAR 2:0) in human plasma acquired using HILIC–ESI(+)-MS [73] in QC and study samples over two 
batches. (a) Raw peak height intensities showing instrumental drift and batch effect; (b) peak height intensities after LOESS normalization and batch effect 
correction. Relative standard deviations (RSD) of 4.7 % and 2.7 % were observed for QC samples analyzed within batches 1 and 2, respectively, with an overall high 
RSD of 21.7 % for all QC samples due to batch effect. After LOESS normalization and batch effect correction, RSDs of 2.7 % and 1.6 % were obtained for QC samples 
within batches 1 and 2, respectively, with an overall RSD of 2.3 % for all QC samples.
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Findable, Accessible, Interoperable, and Reusable (FAIR) Guiding Prin
ciples for scientific data management and stewardship [143]. However, 
studies show that metabolomics and lipidomics still lack data sharing 
compared to other omics disciplines [144]. Dedicated data repositories, 
such as Metabolomics Workbench (metabolomicsworkbench.org), 
MetaboLights (ebi.ac.uk/metabolights), MassIVE (massive.ucsd.edu/ 
ProteoSAFe/static/massive.jsp), and the general-purpose open re
pository Zenodo (zenodo.org), were developed to facilitate data sharing. 
Data should be uploaded in the original proprietary vendor format or 
converted to open access formats as mzML and mzXML using Proteo
Wizard software (proteowizard.sourceforge.io) [27].

Recently, the concept of metabolomics and lipidomics atlases has 
been introduced, aiming to provide open-access resources that charac
terize metabolites’ quantitative distribution and relationships in 
different biological matrices, further highlighting the need for data 
reusability and sharing [145].

11.1. Tips and tricks

• When converting raw files to mzML and mzXML, remember that 
these files are usually much bigger than the original raw files. Thus, it 
is advised to apply reasonable filters such as centroiding (if profile 
mode was used during data acquisition) and cutting the noise to 
some extent.

• Raw LC–MS files from data repositories can also be helpful when 
adapting the protocols from other labs, permitting faster and more 
efficient method transfer by enabling direct comparison of newly 
acquired LC–MS records.

• Using authoritative identifiers, such as InChI keys or those from 
bioinformatics resources like the HMDB (hmdb.ca) and LIPID MAPS 
(lipidmaps.org), is advised to streamline the comparison of metab
olites across studies.

• Details of lipidomic analyses can be summarized in a newly intro
duced minimal reporting checklist [146] and stored or shared in the 
supporting materials of papers or on Zenodo (zenodo.org). A 
reporting checklist is also available for different QC samples in 
untargeted metabolomics studies [9].

12. Conclusions

Recent advances in sample preparation, instrumentation, data pro
cessing, and bioinformatics have expanded the possibilities in metab
olomics and lipidomics research. We have reviewed the steps involved in 
metabolomics and lipidomics experiments and compiled a guide for 
designing a tailored workflow based on some of the most popular 
techniques used in various studies. However, as with other omics fields, 
metabolomics and lipidomics analyses are prone to biases; therefore, 
tips and tricks are provided to avoid potential pitfalls. Given that the 
number of metabolomics and lipidomics studies has increased six-fold 
compared to a decade ago, maintaining QC is even more crucial for 
generating reliable data and meaningful biological interpretations. 
Providing sufficient information on the robustness and methodological 
details of novel metabolomics and lipidomics tools will be essential for 
faster and more efficient method transfer while minimizing potential 
pitfalls.

Future advancements in both omics fields are expected to merge 
untargeted (hypothesis-generating) and targeted (hypothesis-driven) 
workflows for comprehensive metabolite profiling, thanks to the avail
ability of advanced mass spectrometers that enable faster data acquisi
tion without compromising spectral quality. Additionally, spectral 
libraries are likely to expand further, leading to higher annotation rates 
during untargeted profiling. For processing raw LC–MS files, elucidating 
the structure of unknown metabolites, and data interpretation, 
advanced computational tools, including artificial intelligence and ma
chine learning algorithms, may be crucial for automating and stream
lining these processes. These improvements will accelerate and enhance 

our understanding of complex biological systems. However, a chain is 
only as strong as its weakest link; thus, poorly acquired and processed 
LC–MS data can undermine the effectiveness of these advancements. 
Comprehensive training, rigorous standard operating procedures, and 
continuous QC measures will be essential to fully benefit from these 
technological improvements.
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Z. Kuklenyik, I.J. Kurland, M. Leadley, K. Lin, K.R. Maddipati, D. McDougall, P. 
J. Meikle, N.A. Mellett, C. Monnin, M.A. Moseley, R. Nandakumar, M. Oresic, 
R. Patterson, D. Peake, J.S. Pierce, M. Post, A.D. Postle, R. Pugh, Y. Qiu, 
O. Quehenberger, P. Ramrup, J. Rees, B. Rembiesa, D. Reynaud, M.R. Roth, 
S. Sales, K. Schuhmann, M.L. Schwartzman, C.N. Serhan, A. Shevchenko, S. 
E. Somerville, L. St John-Williams, M.A. Surma, H. Takeda, R. Thakare, J. 
W. Thompson, F. Torta, A. Triebl, M. Trötzmüller, S.J.K. Ubhayasekera, 
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