HIGH THROUGHPUT SAMPLE PREPARATION IN AMINO ACID ANALYSIS

Danielle Cullen¹, Niamh Staffford¹, Ning Zhang²

Waters Technologies Ireland Ltd. IDA business park, Drinagh, Wexford, Y35 D431, Ireland. Waters Corporation 34 Maple Street, Milford, MA 01757²

THE SCIENCE OF WHAT'S POSSIBLE.™

INTRODUCTION

The analysis of amino acids is an essential technique in areas such as the food and drink industry to ensure products meet requirements. An automation compatible AccQ-Tag Ultra reagent Kit has been developed in parallel with a Food and Feed Standards Kit that enables the analysis of 21 amino acids. In conjunction with the automation kit, a new 32 sample protocol on Andrew+ has been created in addition to two previously released automation scripts on the Hamilton Microlab star and Tecan Freedom EVO 100/4 providing a highly efficient and time saving preparation method.

B:AccQ•Tag Ultra, 1.7 μm, 2.1 X 100 mm Column; C:AccQ

Tag Ultra **Derivatization Automation** D:Amino Acid Food and Feed Standard Kit: E: Internal NVa std

Figure 1: Waters amino acid analysis automation solution

- Automation compatible reagent kit designed in a 3 x 32 sample format, containing extra reagent volume required for automation platforms.
- Labware adapted from vials used in manual preparation to a 96 well plate format for ease of plate transfer and heating steps.
- Food and Feed standard is provided in a two vial format which can be combined to give 21 amino acids at 500µM in 500µl to create a series of 7 calibrators.
- Food and Feed standard kit in lyophilised format to allow for enhanced stability.
- Norvaline internal standard option included with excess volume for automation.

HAMILT®N

•TECAN•

Figure 2: Amino acid analysis automation platforms: Tecan, Hamilton, and Andrew +

Automation scripts for amino acid analysis using AccQTag Ultra reagents are developed and optimized for all three automation platforms with the following features:

- 96 samples: Run time < 1hr
- Minimal user interventions included (only at start and end of script).
- User inputs for starting well and number of samples;
- Optional sample concentration normalization;
- Optional standards serial dilution to create a calibration curve;
- Optional internal standard spiking;
- Derivatization;
- Barcode scanning included to allow sample IDs to be recorded into excel. (Hamilton and Tecan);
- Deck loading instructions or user prompts added to Care and Use Manual to direct user

METHODS

Table 1. LC Conditions

AccQ-Tag Profiling method - Food and Feed			
LC System	ACQUITY® UPLC® H-Class and H-Class Bio Syster TUV		
Sample temp	20°C		
Analytical Column Temp	49°C		
Flow rate	700 μL/min		
Injection Volume	1µL		
Column	AccQTag Ultra Column 2.1 x 100 mm, 1.7µm		
UV detection	260 nm		
Mobile Phase A	100% AccQ Tag Ultra eluent A concentrate		
Mobile Phase B	90:10 Water: AccQ Tag Ultra eluent B		
Mobile Phase C	100% HPLC-grade water		
Mobile Phase D	100% AccQ Tag Ultra eluent B		

RESULTS

A set of three panels spanning the concentration range (10μM, 200μM and 400μM) containing 21 food and feed amino acids were prepared along with a 7 point cali-bration I on the Andrew+. The Andrew+32 sample protocol was performed to prepare 6 single preparations from each panel. The same preparation was also performed manually for comparison.

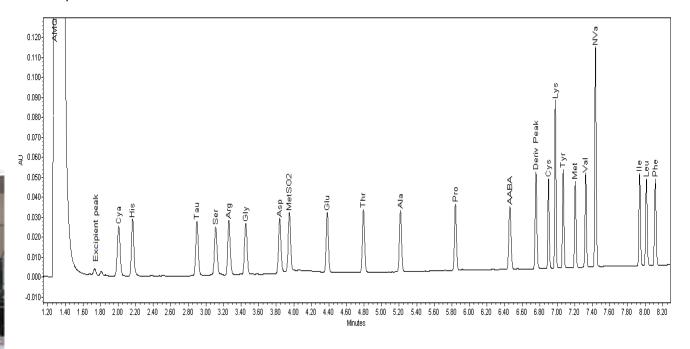


Figure 3. A Representative Chromatogram of 10 pmols of the Food and Feed standard

PRECISION

Precision was previously assessed using the high throughput automation platforms (Tecan Freedom EVO 100/4 and the Hamilton Microlab Star). An example of the Food and Feed preparation of a 200µM panel for high throughput is shown below with data obtained on a Tecan Freedom EVO 100/4. The run contained three single preparations of a spiked panel (200µM) with three replicate injections of each. The comparison data shown below for manual and Andrew preparations with a 200µM panel were performed using 6 single preparations with 1 injection for each prep.

Table 2. Analysis of Food and Feed 200µM solvent panel using high through-put Tecan, manual and Andrew+ preparations. *Hamilton data is available upon request.

	%CV of Aminno Acid Conc.			
Amino Acid	Tecan	Manual	Andrew +	
Cya	2.3	2.5	0.9	
His	2.3	2.8	1.0	
Tau	2.2	2.8	1.0	
Ser	2.3	2.8	0.8	
Arg	2.2	2.9	1.0	
Gly	2.2	2.8	1.0	
Asp	2.2	2.7	1.2	
MetSO2	2.2	2.9	0.8	
Glu	2.2	2.8	1.0	
Thr	2.2	2.9	0.8	
Ala	2.2	2.8	0.9	
Pro	2.2	2.8	0.8	
AABA	2.4	2.8	0.8	
Cys	2.2	2.8	1.0	
Lys	2.2	2.8	1.2	
Tyr	2.2	2.9	1.0	
Met	2.2	2.8	0.9	
Val	2.2	2.9	0.8	
lle	2.2	2.9	0.8	
Leu	2.2	2.8	0.8	
Phe	2.2	2.8	1.0	

ACCURACY

A set of solvent panels spanning different concentration levels (10µM, 200µM and 400µM) containing 21 Food and Feed amino acids were prepared both manually and with the Andrew+ using the newly developed 32 sample protocol. The mean %Recovery across all Food and Feed amino acids at each con-centration level (10μM, 200μM and 400μM) on the Andrew+ was determined. Results for recovery were within ±10% for both manual and automation.

Automation Vs Manual % Recovery 400μM

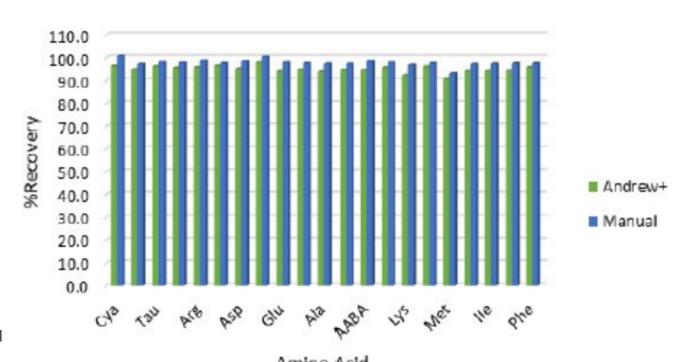


Figure 4. Comparison of %Recovery at concentration level of 400μM for both manual and Andrew+ preparations. * %Recovery data at concentration levels of 10μM and 200μM are available upon request.

LINEARITY

Linearity was assessed using the food and feed standard prepared at seven concentration levels for each amino acid across a range of 0.5-500 µM (cystine 0.25-250 µM). All analytical runs were assessed for linearity. All runs had a correlation coefficient value of ≥ 0.995 .

Table 3. Comparison of Linearity for both manual and Andrew + preparations.

	Linearity R ²		
	Manual	Andrew	
Cya	0.999653	0.999597	
His	0.998973	0.999581	
Tau	0.998871	0.999701	
Ser	0.998914	0.999263	
Arg	0.997997	0.999451	
Gly	0.998944	0.99967	
Asp	0.998228	0.998057	
MetSO2	0.999086	0.999624	
Glu	0.998358	0.998394	
Thr	0.998949	0.999534	
Ala	0.998741	0.999002	
Pro	0.999046	0.999399	
AABA	0.998936	0.99922	
Cys	0.998788	0.99964	
Lys	0.998473	0.998545	
Tyr	0.998983	0.999628	
Met	0.998533	0.99956	
Val	0.998534	0.99941	
lle	0.998962	0.999393	
Leu	0.999033	0.99944	
Phe	0.999006	0.999629	

CONCLUSIONS

- Amino acid analysis scripts available on the Andrew+, Hamilton, and Tecan automation platforms. Results are comparable to the current manual preparation option with better %RSD.
- Automated sample prep greatly improves testing efficiency, reduced the risks of contamination and human error, and allow analysts work remotely.
- Ease the analyst training and facilitate method transfer between labortories.

Welcome to Waters other AOAC poster:

Title: A Complete Analysis of the Amino Acid Content in Dog and Cat Food: From Hydrolysis to Quantitation

Poster Category: Food Nutrition and Food Allergens Poster Reference Number: 0462 0668 000112