Automating Rapid High-throughput mAb Attribute Screening of **Microbioreactor Cell Culture Media Samples**

Alireza Aghayee¹, <u>Yamin Htet</u>², Lindsay Morrison², Stephan M. Koza², Ying Qing Yu² ¹Pall Corporation, Westborough, MA, USA; ²Waters Corporation, Milford, MA, USA

INTRODUCTION

- Rapid and high-throughput screening of monoclonal antibodies • (mAb) can potentially streamline their development
- Implementation of laboratory automation for routine analysis of ٠ biotherapeutics can improve data reliability and laboratory efficiency
- A high-throughput automated analytical platform combining a • compact pipetting robot and benchtop TOF LC-MS for routine analysis of antibody from cell culture media is presented
- Small sample volumes (20-100 µL) of the mAb media samples were ٠ evaluated for this study either directly (unpurified media) or as Protein A purified samples for subunit, and possibly peptide or glycan level analyses

EXPERIMENTAL METHODS

Chemicals	Materials	Volume	
Cell Culture Media	Filtered CHO Cells Culture Spent Media	100 µL	
Magnetic Beads	Promega Magne™ Protein A Magnetic Affinity Beads	50 µL	
Equilibration Buffer	1X Phosphate Buffer Saline (PBS), pH 7.4	3 × 150 µL	
Wash Buffers	1X PBS pH 7.4 and Water	3 × 150 μL	
Elution Buffer	Glycine-HCl, 200 mM, pH 2.5	2 × 50 µL	
Neutralization Buffer	MES 100 mM and Tris-HCl 900 mM pH 7.5	60 µL	
Enzyme	Ides 2 unites/µL in water	15 µL	
Reducing agent	DTT in Guanidine-HCl 6 M and Tris-HCl 200 mM	35 µL	

Figure 1. Rapid high-throughput mAb subunit screening workflow

antibodies

Figure 2. Reproducibility of mAb recovery for automated purification protocol

Figure 3. LC-MS analysis of protein A purified digested mAb

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS

Waters[™] | ⁽

RESULTS AND DISCUSSION

		Subunits (n = 8)	Control Average Subunits Mass (Da)	Manual Average Subunits Mass (Da)	Andrew+ Average Subunits Mass (Da)
84 24225.29215 00 24000 24200		LC	23443.26 ± 0.03	23443.18 ± 0.05	23443.19 ± 0.05
		Fd'	25383.39 ± 0.07	25383.13 ± 0.09	25383.59 ± 0.07
		Fc/2			
the state of the s		• G0	25089.67 ± 0.08	25089.30 ± 0.16	25089.04 ± 0.13
26 25721.44732 28000.40336 25800 28000		• G0F	25236.05 ± 0.05	25236.07 ± 0.11	25236.02 ± 0.09
		• G1F	25398.37 ± 0.06	25398.30 ± 0.12	25398.46 ± 0.08
22+==== 22+===		• G2F	25560.82 ± 0.12	25560.64 ± 0.26	25560.14 ± 0.26

Figure 4. Reproducibility of selected mAb subunit mass

Figure 5. Reproducibility of relative glycan abundance determinations

666	Posi- tion	Dominos and con- nected devices
	1, 2, 3, 4, 5	Tip Insertion System Domino
	6, 7	Microplate Domino
Deck layout 5 6 7 7 8 8	8	Plate Heater-Shaker+
	9	96-PCR Plate Magnet+
Narrow 9 10 10 11 1	10, 11	Deepwell Microplate

Figure 6. Andrew+ domino configuration for automated subunit protocol. 2.5 h for 48 samples

CONCLUSION

- Rapid turnaround time for sample preparation and analysis
- 2.5 h for 48 samples on Andrew+ Pipetting Robot™
- 5 min per LC-MS analysis on BioAccord™
- Easily modifiable OneLab[™] automated protocol works with a broad range of sample titers during the cell cloning process (0.5 mg/ml or higher)
- Low sample volume (100 µL) requirement for automated protocol is compatible with microbioreactors
- Automated data acquisition and processing in Unifi[™] for rapid mass confirmation of subunits on BioAccord

References

3.

- Aghayee, A.; Htet, Y.; Morrison, L.; Koza, M. S.; Yu, Y. Q. Waters Corporation April 2021. (In preparation)
- Htet, Y.; Koza, M. S.; Chen, W. Chen. 720007343, Waters Corporation August 2021. 2
- Dong, J. et. al., Anal. Chem. 2016 Aug, 88, 5673–8679.