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INTRODUCTION

Understanding isoform specific glycoprotein
alterations and total amounts related to disease
by means of bottom-up based LC-MS
approaches are challenged by several
parameters, including glycan composition
heterogeneity, adsorption, enzymatic digestion
efficiency, as well as the concentration levels
that need to be reached for clinical research
purposes. Approaches and methods to address
the two latter parameters will be presented for
the detection of example cancer and virus
protein biomarkers.

Proteolytic digestion efficiency was optimized
off-line by means of a combined
deglycosylation/digestion method using single
stage on-bead amidase/protease hydrolysis.
Affinity enrichment efficiency was assessed by
comparing performance against traditional
antibodies for generic oncology marker and
virus proteins using similar automated bead-
based protocols combined with LC-MS/MS.
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Figure 1. Investigated proteins and applied affinity technologies.
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Figure 2. Development of Affimers using phage display as an in vitro selection method.

METHODS

Materials

Affinity reagents, which are overviewed in Figure 1, for CEA, CA-125
and Spike protein were conjugated to glass beads or a solid support
through biotin-streptavidin interaction linkage or amine coupling.

Affimer® reagents were from Leeds University, and Molecular
Imprinted Polymers from MIP Discovery. The (bio)chemical
development process principles of Affimers and MIPs are graphically
summarized in Figures 2 and 3, respectively.

Recombinant protein standards were obtained from Bio-Techne
ACROBIosystems and Native Antigen Company, and antibodies from
Bio-Techne, AMSBIO and ACROBIosystems. All other affinity and
digestion materials and reagents were from Thermo Fisher Scientific
or Merck Group.
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Figure 3. Chemical manufacturing process of Molecular Imprinted Polymer (MIP) affinity
reagents.

Digestion and LC-MS/MS

The enrichment and digestion processes are graphically summarized
in Figure 4, including an example raw time-scheduled MRM
chromatogram of tryptic digested deglycosylated CEA.

Following affinity enrichment, the proteins were RapiGest™ SF
denatured, dithiothreitol (DDT), reduced and iodoacetamide (I1AA)
alkylated whilst still residing on the surface of the bead. PNGase F
and trypsin were added next, followed by overnight incubation. Buffer
washes and elution steps were conducted next, and the supernatants
collected.

A Xevo™ TQ-XS MS tandem quadruple mass spectrometer (MS)
equipped with an electrospray ionization (ESI) source coupled to an
ACQUITY™ UPLC™ I-Class PLUS Chromatography System was
used to collect reversed phase (RP) peptide separation LC-MS/MS
data in positive-ionisation Multiple Reaction Monitoring (MRM) mode.
The LC-MS data were processed using TargetLynx™ Software or
Skyline.
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Figure 4. Generalized protein affinity enrichment, digestion and LC-MS/MS (MRM) detection
principle (A) and example MRM chromatogram tryptic digest deglycosylated CEA (B).
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RESULTS

Glycoprotein digestion

A-specific binding was overcome by conducting off-line experiments in
the presence of Bovine Serum Albumin (BSA) or Bovine -casein, or
dilution of the standards into blank plasma solution. The results shown
in Figure 5 illustrate a > 10”5 increase in signal when including
PNGase F N-glycan removal into the digestion process and a
dependency on the stage of alkylation and reduction of recombinant
CEA.

A more modest increase in LC-MS signal, about ~ 10 - 50 times, was
observed for CA-125 with the same digestion strategy applied, as
summarized in Figure 6. Affinity enrichment was however not further
explored given the uncertainty about the molecular identity of the
recognized epitopes of circulating CA-125.
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Figure 5. CEA amino acid sequence with tryptic peptide of interest highlighted in blue (A), MRM
chromatograms with/without PNGase F incorporation (B), and relative signal response for
sequential and combined digestion with PNGase F and trypsin (C).
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Figure 6. Partial amino acid sequence epigenetic region CA-125 with tryptic peptide of interest
highlighted in blue (A), amounts normalized LC-MS/MS response (B), and MRM
chromatograms with/without PNGase F incorporation (C).
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Figure 7. ELISA antibody evaluation; bar color = antibody vendor (A) and semi-quantitative
SDS-PAGE (B) and LC-MS/MS assessment Affimer loadability (B) and (C).

Affimer Affinity Enrichment

Various recombinant sources of CEA, shown in Figure 7, were initially
evaluated using ELISA using two Affimers and two antibodies,
respectively, and quantification assessed by loading various amount
of CEA on magnetic supports followed by SDS-PAGE and bottom-up
LC-MS/MS MRM analysis.

Enrichment protocol optimization suggests that similar overall
protein/affinity reagent binding efficiency and sensitivity levels can be
reached for CEA using both antibody and Affimer based enrichment,
as illustrated in Figure 8.
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Figure 8. MRM chromatograms for Affimer (left) and Ab (right) enriched CEA in human plasma
at 20 ng/mL following on-bead amidase/protease hydrolysis using trypsin/PNGase F.

MIP Affinity Enrichment

Signature Spike protein peptides and MRM transitions were identified
through a discovery and semi-automated MRM selection/optimization
driven workflow, which is shown graphically in Figure 9. As expected,
including de-glycosylation of Spike protein into the workflow did not
significantly improve either coverage or sensitivity given the minimal
glycosylation of the recombinant standard. The selective and
guantitative response of a Spike protein-selective MIP immobilised on
glass beads is shown in Figure 9 as well.
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Figure 9. Coomassie-stained SDS-PAGE showing purified non-glycosylated SARS-CoV-2
Spike S1 protein (A), literature and high-resolution MS broadband Data Independent Analysis
based peptide selection (B), MRM selection/optimization (C) and MIP response vs. two
negative controls (D).

Compared with previously published discovery results, a relatively
large number of peptide candidates were detected, which was
attributed to the absence of the Spike protein carbohydrate surface
moiety. Moreover, the main proteotypic tryptic target peptide
VYSTGSNVFQTR did not amino acid sequence overlap with the
epitope CGNSNNLDSKVGG of Spike protein.

Following the MIP development and MRM selection/optimization
processes, the quantitative application of the affinity MIP was
accessed through loading various amounts of HRP conjugated Spike
protein and Spike protein onto glass bead immobilised Spike protein
MIPs, respectively.
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Figure 10. Off-line MIP on-bead UV absorbance (left) and on-bead digestion, MRM LC-MS/MS
workflows (right, pending) and quantitative response, respectively.

The immobilised MIPs were rigorously washed and the Spike protein
either labelled (HRP conjugated) or proteolytically digested (native,
non-conjugated), as illustrated in Figure 10. Quantitative readout was
either via UV absorbance or scheduled MRM based LC-MS/MS and
linear response observed within the investigated concentration ranges.

CONCLUSION

Glycan removal can be beneficial for non-
isoform specific bottom-up LC-MS based
detection of glycoproteins by increasing
digestion efficiency

No negative effects were observed as a
function of the addition of deglycosylation
into the sample preparation processes,

that is, the digestion of non-glycosylated
proteins was not affected by the presence of
PNGase F)

The binding affinity was found to be similar
for the investigated materials, but
independent method optimization was
required; additionally, non-specific binding to
some of the applied supports was noted,
which was/can be largely mitigated by using
appropriate blocking agents or alternative
supports

Antibody, Affimer and MIP affinity binding
were found to be quantitative and can be
integrated in both offline or online LC-MS
based workflows
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OUTLOOK

Automation

The investigated materials can be applied in various formats, allowing for a higher degree of sample preparation in the form of affinity isolation or
separation compared to the investigative data on this poster, providing ultimately increased throughput, precision and accuracy.
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