ANALYSIS OF SULFONAMIDES AND QUINOLONES IN SHRIMP USING THE AGILENT 6460 TRIPLE QUADRUPOLE LC/MS

Solutions for Your Analytical Business Markets and Applications Programs

Solution Note

FOOD ANALYSIS

Authors

Ramesh Narayana and Ramaprasad Ganni

Agilent Technologies India Pvt Limited, Bangalore, INDIA

Abstract

The objective of this analysis is to determine Quinolone and Sulphonamide antibiotics using the Agilent 6460 Triple Quadrupole LC/MS instrument.

This application note demonstrates the QuEChERS method for two classes of veterinary drugs – quinolones and sulfanilamides in Shrimp sample matrix. The veterinary drugs were quantified using the Agilent JetStream ionisation source.

Introduction

Sulfonamides and Quinolones are antibacterials, widely used in food producing animals for purposes of treatment and prevention of diseases. The excessive use of these drugs can result in the presence of drug residue in animal tissue, which contributes to the long-term health effects, including microbial antibiotic resistance. Thus, Regulatory agencies have defined maximum residue levels (MRL) for various food products to the safety of food, have been made to protect consumers' health.

6	Alas hangan dali Taya Garl (CNS	
		IIIIIII

Hardware Introduction

The Agilent 6460 Triple Quadrupole LC/MS system utilises the high ESI ion generation and focussing of Agilent's Jet Stream Technology.

Agilent Jet Stream (AJS) thermal gradient focussing technology helps to overcome the two issues of analyte retention in spray droplets due to insufficient desolvation and movement of droplets and desolved ions away from the sampling orifice, due to insufficient capture using only an electrostatic field. A precisely micro-machined sprayer surrounds the droplets in a sheath of superheated gas and creates flow dynamics which concentrate ions in a well-characterised thermal confinement zone for effective

Figure 1. Agilent Jet-Stream Technology

sampling by the MS system. The source uniformly supports flow rates from 20 $\mu L/min$ up to 2 mL/min.

The quadrupoles used in the 6460 allow a mass range of 5 to 3,000 m/z with a scan speed of 12,500 Da/s. Pos/neg switching can be achieved in 30 ms and the minimum dwell time is 1 ms with no collision cell cross-talk.

Figure 2. Hyperbolic Quadrupole

Agilent's MS systems can be coupled to a range of Agilent HPLC and UHPLC modules including the 1290 Infinity and 1260 systems, the 1290 Infinity HTC sampler for higher throughput analysis, as well as the 7000 Series Capillary Electrophoresis system.

Figure 3. From left: 1290 Infinity, 1260, 1290 Infinity HTC sampler and 7000 CE systems.

Software

MassHunter Acquisition software provides MRM, dMRM and tMRM acquisition together with product ion and neutral loss scans. 4,000 MRM per second using dynamic MRM is possible. Automated optimisation of the ion optics and mass calibration is performed using a proprietary reference solution.

MassHunter Qualitative Analysis software allows compound-centric evaluation of data sets including *Find compounds by MRM*, integration functionality for MS, UV and other signals, and spectral extraction.

MassHunter Quantitative Analysis software provides Batch-at-a-Glance views, full calibration capability and library matching of tMRM generated spectra. It enables automatic importing of MRMs and associated metadata (compound name, retention time and sample type). Multiple reporting styles and customised templates are available, together with linkage to LIMS.

Experimental

Analyses were performed using an Agilent 1290 Infinity UHPLC system coupled to an Agilent 6460 Triple Quadrupole LC/MS.

Calibration Standard and Spike Sample Preparation

A series of calibration solutions were prepared in shrimp matrix by spiking with antibiotic mix stock solution prepared in 50% Methanol. The concentration levels used for the matrix matched calibration standards are tabulated below.

Calibration level	Shrimp Matrix in g	Calibration concentration (in ppb)
1	2.0 ±0.05	2.5
2	2.0 ±0.05	5.0
3	2.0 ±0.05	10.0
4	2.0 ±0.05	20.0
5	2.0 ±0.05	30.0
6	2.0 ±0.05	50.0
7	2.0 ±0.05	100.0

Spiked samples were prepared at 10, 15 and 25 ppb levels for recovery studies.

Spiked samples	Shrimp Matrix in g	Calibration concentration (in ppb)
А	2.0 ±0.05	10
В	2.0 ±0.05	15
С	2.0 ±0.05	25

Sample Preparation

The matrix matched calibration solutions and spiked samples were processed using the QuEChERS methodology as specified below.

UHPLC Conditions

Mobile phase:	5 mM Ammonium formate + 0.1% Formic acid (A)					
	0.1% Formic acid in Acetonitrile (B)					
Flow rate:	0.5 mL/min					
Column:	RRHD ZORBAX Eclipse Plus C18 (3.0 x 100 mm), 1.8 µm					
Column Temp.:	30°C					
Injection volume:	5 μL					
Gradient progra	III: Time (min) % of B					

lime (min)	% of B
1.0	10
4.0	25
8.0	60
9.0	95
11.0	95
11.1	10

MS Conditions

Agilent JetStream ESI + mode						
Gas Temp:	300°C					
Gas Flow:	7 L/min					
Nebuliser:	j20 psi					
Sheath Gas Temp:	400°C					
Sheath Gas Flow:	11 L/min					
Capillary:	2500 V					
Nozzle Voltage:	0 V					
Delta EMV:	300 V					

MRM transitions

Compound Name	ISTD?	Precursor	lon	Res	lon	Res	Fragmentor	Energy	Accelerator	Voltage
			MS1	Product	MS2	Dwell	Collision	Cell		Polarity
Ciprofloxacin	FALSE	332.1	Unit	314.1	Unit	10	130	18	7	Positive
Ciprofloxacin	FALSE	332.1	Unit	231	Unit	10	130	42	7	Positive
Danofloxacin	FALSE	358.2	Unit	340.1	Unit	10	140	22	7	Positive
Danofloxacin	FALSE	358.2	Unit	82	Unit	10	140	40	7	Positive
Enrofloxacin	FALSE	360	Unit	342.1	Unit	10	130	18	7	Positive
Enrofloxacin	FALSE	360	Unit	316.2	Unit	10	130	18	7	Positive
Fleroxacin	FALSE	370.1	Unit	326	Unit	10	110	18	7	Positive
Fleroxacin	FALSE	370.1	Unit	269	Unit	10	110	25	7	Positive
Flumequine	FALSE	262	Unit	244	Unit	10	80	13	7	Positive
Flumequine	FALSE	262	Unit	202	Unit	10	80	33	7	Positive
Levoflaxacin	FALSE	362.1	Unit	318	Unit	10	130	8	7	Positive
Levoflaxacin	FALSE	362.1	Unit	261	Unit	10	130	25	7	Positive
Marbofloxacin	FALSE	363	Unit	345.1	Unit	10	120	17	7	Positive
Marbofloxacin	FALSE	363	Unit	320.1	Unit	10	120	9	7	Positive
Nalidixic acid	FALSE	233	Unit	215	Unit	10	60	8	7	Positive
Nalidixic acid	FALSE	233	Unit	187	Unit	10	60	23	7	Positive
Norfloxacin	FALSE	320	Unit	302.1	Unit	10	140	17	7	Positive
Norfloxacin	FALSE	320	Unit	276.1	Unit	10	140	13	7	Positive
Orbifloxacin	FALSE	396	Unit	352	Unit	10	120	15	7	Positive
Orbifloxacin	FALSE	396	Unit	295	Unit	10	120	22	7	Positive
Oxalinic acid	FALSE	262.1	Unit	244	Unit	10	100	13	7	Positive
Oxalinic acid	FALSE	262.1	Unit	216	Unit	10	100	30	7	Positive
Sarafloxacin	FALSE	386.1	Unit	368.1	Unit	10	140	18	7	Positive
Sarafloxacin	FALSE	386.1	Unit	342.1	Unit	10	140	14	7	Positive
Sparfloxacin	FALSE	393.1	Unit	349	Unit	10	140	20	7	Positive
Sparfloxacin	FALSE	393.1	Unit	292	Unit	10	140	23	7	Positive
Sulfachloropyridazine	FALSE	285	Unit	156	Unit	10	100	10	7	Positive
Sulfachloropyridazine	FALSE	85	Unit	108	Unit	10	100	22	7	Positive
Sulfadiazine	FALSE	251.1	Unit	156	Unit	10	100	10	7	Positive
Sulfadiazine	FALSE	251.1	Unit	108	Unit	10	100	22	7	Positive
Sulfadimethoxine	FALSE	311.1	Unit	156	Unit	10	125	17	7	Positive
Sulfadimethoxine	FALSE	311.1	Unit	108	Unit	10	125	26	7	Positive
Sulfadoxine	FALSE	311.1	Unit	156	Unit	10	120	14	7	Positive
Sulfadoxine	FALSE	311.1	Unit	92	Unit	10	120	30	7	Positive
Sulfamerazine	FALSE	265.1	Unit	172	Unit	10	120	13	7	Positive
Sulfamerazine	FALSE	265.1	Unit	92	Unit	10	120	30	7	Positive
Sulfamethazine	FALSE	279.1	Unit	186	Unit	10	120	14	7	Positive
Sulfamethazine	FALSE	279.1	Unit	124	Unit	10	120	18	7	Positive
Sulfamethizole	FALSE	271	Unit	156	Unit	10	100	10	7	Positive
Sulfamethizole	FALSE	271	Unit	108	Unit	10	100	22	7	Positive
Sulfamethoxazole	FALSE	254.1	Unit	156	Unit	10	100	10	7	Positive
Sulfamethoxazole	FALSE	254.1	Unit	92	Unit	10	100	26	7	Positive
Sulfamethoxypyridazine	FALSE	281.1	Unit	156	Unit	10	125	14	7	Positive
Sulfamethoxynyridazine	FALSE	281.1	Unit	108	Unit	10	125	22	7	Positive
Sulfanyridine	FALSE	250.1	Unit	18/	Unit	10	100	1/	7	Positivo
Sulfanyriding	FAISE	250.1	Unit	156	Unit	10	100	10	7	Positivo
Sulfaquinovalino	EVICE	301.1	Unit	156	Unit	10	110	11	7	Positivo
Sulfaquinovalino	FALSE	201.1	Unit	0211	Unit	10	110	20	7	Positivo
Sulfathiazolo	EVICE	256	Unit	156	Unit	10	100	0	7	Positivo
Sulfathiazole	FALSE	256	Unit	108	Unit	10	100	21	7	Positive

All the calibration standards were injected in duplicate and spiked samples were analysed in triplicate.

Results and Discussion

MRM Chromatogram

Reference Matrix Based Calibrations: 2.5 -100 ppb (1.25 – 50 pg on column)

Summary of Recovery Results

Analytes	10 ng/g fortified QC	15 ng/g fortified QC	25 ng/g fortified QC	
Ciprofloxacin	11.33	15.91	26.97	
Danofloxacin	10.65	16.19	27.87	
Enrofloxacin	10.66	15.70	27.02	
Fleroxacin	10.57	15.95	27.63	
Flumequine	10.87	16.83	27.59	
Levofloxacin	10.72	15.93	26.73	
Marbofloxacin	11.21	16.25	26.44	
Nalidixic acid	10.54	16.25	25.68	
Norfloxacin	10.92	15.65	27.79	
Orbifloxacin	10.65	15.65	24.78	
Oxalinic acid	10.32	16.70	29.40	
Sarafloxacin	10.50	15.76	26.43	
Sparfloxacin	10.26	15.52	24.87	
Sulfachloropyridazine	10.25	15.86	24.40	
Sulfadiazine	10.01	15.20	24.49	
Sulfadimethoxine	10.25	15.85	25.11	
Sulfadoxine	9.77	14.87	23.69	
Sulfamerazine	10.27	14.91	25.74	
Sulfamethazine	9.95	15.27	26.37	
Sulfamethizole	9.40	14.99	25.04	
Sulfamethoxazole	10.07	14.76	23.94	
Sulfapyridine	9.85	15.48	25.50	
Sulfaquinoxaline	10.39	15.68	24.95	
Sulfathiazole	9.80	14.89	23.42	

Conclusions

- The Agilent 6460 Triple Quadrupole LC/MS with JetStream ESI in positive mode was used for the analysis of Sulfonamides and Quinolones in Shrimp matrix.
- Matrix-matched calibration standards were used to compensate for matrix effects. The calibration range used was 2.5 - 100 ppb (1.25 - 50 pg on column concentration) for all twenty five Sulfonamides and Quinolones.
- The QuEChERS method was used for the sample clean-up process.
- The spiking studies were carried out at three concentration levels, with average recovery >98% for all compounds.

Appendix – MRM Chromatograms with Qualifier and Quantifier Ratio

maps_agilent@agilent.com www.solutions-to-win.com Agilent Products are for Research Use Only. Not for use in diagnostic procedures. Information, descriptions and specifications in this publication are subject to change without notice.

> © Agilent Technologies, Inc. 2014 Published in USA, July 1, 2014 5991-4870EN

Agilent Technologies

