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Abstract
Agilent GeneSpring and Mass Profiler Professional (MPP) software was used 
to perform integrated multi-omics analysis of mRNA expression, miRNA 
expression, protein expression, and copy number aberration (CNA) associated 
with glioblastoma multiforme (GBM), the most frequent and lethal of the central 
nervous system tumors. The genomic data was obtained from The Cancer 
Genome Atlas (TCGA) project. The molecular subtypes defined by TCGA for GBM 
were based on mRNA expression. We applied GeneSpring metadata analysis 
framework to explore the relationship between GBM subtypes and genomic CNA. 
A multi-omics correlation analysis was performed between mRNAs involved 
in neurogenesis and their validated miRNAs highlighting the molecular events 
in Proneural tumors that result in suppression of p53 signaling. Furthermore, a 
combined analysis of mRNA expression data from TCGA with an independent, 
label-free GBM proteomics study revealed core subset of 54 signature genes and 
proteins highlighting the integrated biology analysis power of GeneSpring/MPP 
software. The core genomics signature clearly differentiated the known tumor 
subtypes in TCGA cohort. Intriguingly, while TCGA categorization of the 
proteomics samples were not experimentally determined, the core proteomics 
signature separated this cohort in 2 or 3 groups, suggesting that different TCGA 
subtypes may be present.



2

downloaded from the TCGA portal. The 
mRNA, miRNA, and protein expression 
datasets were imported as a generic 
single-color expression experiment in 
GeneSpring 13.0 (http://genespring-
support.com/).

Copy number aberrations were obtained 
from the sample-centric table (https://
tcga-data.nci.nih.gov/docs/publications/
gbm_2013/) generated by Brennan et al.8 
The table provided gene-wise CNA for 
the samples in the TCGA cohort. CNA 
is characterized by the measured copy 
number (expressed as log2 ratio versus 
normal euploid genome), and by the 
extent of the change in the genome. 
Aberration thresholds determined by 
Brennan et al.8 were: 

•	 Deletion (x ≤ –1)
•	 Partial deletion (–1 < x ≤ –0.7)
•	 Loss (x < –0.2)
•	 Gain (0.2 ≤ x < 1)
•	 Intermediate amplification 

(1 ≤ x < 2)
•	 Amplification (x ≥ 2)

Proteomics sample details 
Both GBM and epilepsy specimens 
were obtained from temporal, frontal, 
and occipital regions of the brain. GBM 
tumor tissue and epileptic brain tissue 
specimens were collected at the time of 
tissue resection and snap-frozen in liquid 
nitrogen within 30 minutes of removal. 
The samples were stored at –80 °C in 
the Brain and Spine Tissue Bank at the 
Medical College of Wisconsin (MCW) 
until used for sample analysis by mass 
spectrometry (MS).

A comprehensive analysis of 10 tumor 
tissue specimens of GBM and 10 epilepsy 
controls was performed using a 
high‑throughput label-free quantification 
approach by MS. All the tissue samples 
were processed, and trypsin digestion 
was performed as described earlier9. The 
homogenized tumor tissue proteome 
was fractionated through SDS-PAGE. 
Internal DNA markers were added during 
PAGE to facilitate consistent gel-based 
fractionation. The in-gel tryptic digested 

Highlights
•	 The molecular subtypes of GBM 

defined by TCGA study6 based on 
mRNA expression were extended 
to understand the relationship 
between the subtypes and the 
genomic copy number aberrations 
using a metadata analysis 
framework.

•	 Correlation analysis performed 
between mRNA and miRNA 
datasets from TCGA identified 
potential candidate miRNAs 
regulating the known Proneural 
signature genes OLIG2, NKX2-2, 
and SOX11. The molecular events 
in Proneural tumors leading to 
suppression of p53 signaling were 
highlighted.

•	 Analysis was performed on an 
independent discovery proteomics 
study of GBM and control (brain 
fragments from epilepsy surgery) 
subjects measured using a 
label-free proteomics approach. 
Sample-sample correlation and 
PCA analysis resulted in clear 
separation between control and 
tumor samples. In addition, the 
tumor samples were segregated 
into two to three subgroups.

•	 Combined analysis of mRNA 
expression data from TCGA study 
and proteomics data from the 
label-free study identified a subset 
of the GBM subtype signatures, 
which clearly differentiate the 
known subtypes in the larger TCGA 
cohort.

Dataset and Methods
TCGA sample details
The mRNA expression dataset was 
obtained from https://tcga-data.nci.nih.
gov/docs/publications/gbm_exp/ in 
the form of unified expression values of 
840 mRNA profiles for 173 GBM tumor 
samples from multiple array platforms. 
Expression data of 534 miRNAs studied 
using the Agilent 8 × 15K array was 

Introduction
Gliomas are the most frequent central 
nervous system (CNS) tumors in adult 
humans. Gliomas are classified into 
astrocytomas, oligodendrogliomas, 
and ependymomas based on histology. 
Astrocytomas represent two thirds of 
all diagnosed gliomas and are graded 
from I to IV according to the World 
Health Organization (WHO)1. GBM 
(WHO grade IV Astrocytoma) is the 
most frequent and lethal among these 
tumors, with an estimated global 
incidence rate of approximately 3–4 per 
100,000 people per year (http://www.
pubcan.org/cancer/4938/glioblastoma/
epidemiology). Subjects with GBM 
have an overall median survival of only 
15 months2,3. 

The TCGA project has previously 
identified genetic changes in the DNA 
sequence and copy number, DNA 
methylation, gene expression, and 
physiological information for a set of 
GBM tumors4. The results generated great 
interest in compiling and characterizing 
changes in the genome, transcriptome, 
and proteome of human GBM tumors, 
so that aberrantly functioning molecular 
pathways and tumor subtypes could 
be identified. Phillips et al.5 and 
Verhaak et al.6, identified subtypes in 
primary GBM tumors by clustering 
mRNA expression datasets from TCGA. 
Phillips et al.5, categorized GBM into 
three subtypes: Proneural, Proliferative, 
and Mesenchymal. Verhaak et al.6 
integrated mRNA profiles from 
multiple array platforms to define four 
expression‑based subtypes called 
Proneural, Classical, Mesenchymal, 
and Neural. Noushmehr et al.7 profiled 
promoter DNA methylation alterations 
in GBM tumors to define a glioma-CpG 
island methylator phenotype (G-CIMP), 
which was preferentially enriched in the 
Proneural subtype. 

In this study, the metadata and 
correlation analysis framework in 
GeneSpring/MPP multi-omics software 
were used to understand the molecular 
events associated with GBM subtypes.
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Results and Discussion
mRNA expression-based molecular 
subtypes in GBM
The unified expression values of 
840 mRNA profiles for 173 GBM samples 
are shown in Figure 1A. As expected, 
the hierarchical clustering analysis 
revealed the four predominant clusters 
that coincide with the GBM subtypes. 
Additionally, the clustering on entities 
resulted in nine clusters, defined by their 
expression characteristics in the GBM 
subtype (Figure 1A); see miRNA section 
for discussion.

To exclude the possibility that the 
observed tumor subtyping was due to 
batch effects, sample quality control 
parameters such as batch, sample 
purity (% tumor nuclei), and sample 
quality (% necrosis) were visually 
correlated with the samples using the 
metadata framework in GeneSpring. 
Figure 1B summarizes the sample quality 
parameters, aligned against the cluster 
tree for the 173 GBM samples, as a heat 
map. 

The GeneSpring correlation analysis 
framework supports correlation between 
molecules studied by a single -omics 
platform or between two different -omics 
platforms. It also supports correlation on 
samples measured using a single -omics 
technology. In this study, all sample and 
entity correlation analysis was performed 
using the Pearson similarity metric. 

Correlation was performed between 
mRNA profiles and miRNA profiles for 
GBM using 159 GBM samples for which 
both mRNA and miRNA measurements 
were available. The targeting miRNA for 
genes involved in neurogenesis were 
identified by querying the miRWalk 
database (http://www.umm.uni-
heidelberg.de/apps/zmf/mirwalk/).

peptides were analyzed in triplicate in 
data-dependent mode using an Agilent 
HPLC-Chip/MS system interfaced to 
an Agilent 6550 iFunnel Q-TOF MS. 
The Q-TOF data was first processed by 
Agilent Spectrum Mill Software against 
the UniProt human database, and search 
results were auto-validated at 1 % FDR. 
Spectrum Mill has the unique ability to 
export protein abundances from database 
search results to the MPP module of 
GeneSpring software for statistical 
analysis.

Data analysis
All analyses reported in this study were 
performed using GeneSpring/MPP 13.0 
multi-omic bioinformatics software. GBM 
subtypes were recreated by hierarchical 
clustering of the 840 mRNA profiles 
using Euclidean Distance metric and 
Ward's Linkage rule. Genomic aberration 
information, that is, copy number values 
and other sample parameters obtained 
from TCGA were imported as metadata 
in GeneSpring. The GeneSpring metadata 
framework was used to assess batch 
effects and sample quality parameters 
commonly known to interfere with gene 
expression analysis. The metadata 
framework was also used to visually 
correlate the expression subtypes with 
copy number events.

Principal Component Analysis (PCA) was 
used to confirm the GBM subtypes from 
TCGA sample data, and to identify sample 
groups in the proteomics study. The data 
was mean-centered and scaled prior to 
performing the PCA.

Gene ontology (GO) analysis was 
performed based on the GO terms 
provided by the GO Consortium  
(http://geneontology.org). The clusters 
obtained from hierarchical clustering 
were translated into an Agilent whole 
genome array experiment in GeneSpring 
to identify significant GO terms. 
Hypergeometric distribution was used 
to identify the GO terms enriched in 
the clusters with respect to all known 
annotated genes.
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Figure 1. A) Molecular subtypes in GBM defined by Verhaak et al.6 validated in Agilent GeneSpring. The 
entities could be grouped into nine different clusters. B) Sample quality metadata visualized as a heat map.
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Batch effects are a notorious problem 
in high-throughput experiments; in 
some cases they can mask biological 
phenomena. We did not observe batch 
effects or gender bias in the GBM 
samples. There is also no concordance 
between sample purity and the 
molecular subtypes defined for GBM. 
The metadata analysis confirms that the 
molecular subtypes defined for GBM 
based on mRNA expression are truly 
biological in nature and are not caused 
by experimental artifacts, which are 
commonly observed in genomic analysis.

Pearson correlation analysis performed 
on the 173 GBM samples, using the same 
mRNA expression profiles, confirmed 
the subtypes observed in the clustering 
analysis. The sample correlation analysis 
indicates the similarity in the expression 
of samples within a group and condition 
if it exists between the sample groups. 
As shown in Figure 2A, most samples 
within the same subtype were positively 
correlated to each other, indicating the 
similarity in their expression profiles. 
The inter-sample variability was found 

Proneural

Neural

Mesenchymal

Classical

-1 0 1

PC2BA

PC3

PC1

Classical
Mesenchymal

Neural
Proneural

Figure 2. Presence of four subtypes in the TCGA cohort confirmed by using sample-sample correlation and PCAs of 173 GBM samples in Agilent GeneSpring 
(A) Pearson correlation between GBM samples and (B) PCA.

to be minimal for Proneural (Figure 1A 
and Figure 2). The Proneural subtype 
is known to mimic the expression of 
a differentiated neuron and has a low 
rate of proliferation5. This could explain 
the observation that Proneural samples 
cluster more tightly compared to other 
subtypes. Proneural tumors are also 
known to be less proliferative than 
Mesenchymal and Classical subtypes. 
Consistent with this fact, we observed 
that almost all of the Proneural samples 
are negatively correlated to Mesenchymal 
and Classical samples, indicating the 
striking contrast in their expression 
profiles. The largest sample‑sample 
variability was observed in the Neural 
subtype.

PCA performed based on the 840 mRNA 
profiles further confirmed the presence 
of GBM subtypes. The scores plot for 
the PCA is shown in Figure 2B. In PCA, 
principle component 1 (PC1) is the 
Eigen vector that captures the primary 
variation in the dataset. In our analysis, 
though the sample groups are separated 
by PC1, maximum variation across PC1 

is observed between the Proneural and 
Mesenchymal tumors. PC2 captured 
the variation between the Classical and 
Neural sample groups.

Copy number events correlated 
with molecular subtypes in GBM
To gain insights into the genomic events 
differentiating the expression subtypes, 
we examined their relationship with 
genomic CNA. Figure 3A provides the 
copy number amplification and deletion 
of EGFR, CDKN2A, PDGFRA, TP53, 
NF1, PTEN, and FGFR2 genes as a heat 
map along with the subtype heat map. 
Ordering the samples by their molecular 
subtype reveals certain interesting 
relationships. For example, the GBM 
samples of Classical subtype do not 
harbor any copy number changes in TP53 
or NF1. Instead, deletion of CDKN2A and 
amplification of EGFR is more prominent 
in the Classical subtype. These findings 
confirm observations reported by 
Verhaak et al.6
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GeneSpring metadata framework reveals 
other notable events occurring in GBM 
subtypes:

•	 EGFR and CDKN2A mutations are 
the most common, occurring in 
a large number of GBM subjects. 
While more prominent in Classical, 
these mutations are not confined 
to any one subtype, but are present 
across all subtypes (Figure 3A).

•	 TP53 deletion is conspicuously 
absent in the Classical subtype and 
is observed predominantly in the 
Proneural subtype, as reported.

•	 High level amplification of PDGFRA 
has been reported to be mostly 
restricted to Proneural6, but we 
also observe that intermediate 
levels of amplification of PDGFRA 
are not restricted to any single 
subtype (data not shown, can be 
observed by sorting on PDGFRA 
heat map).
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Figure 3. A) Copy number aberrations of some of the key genes- EGFR, CDKN2A, PDGFRA, TP53, NF1, PTEN, and FGFR2 in relation to the GBM samples sorted 
by their molecular subtypes. B) Genomic copy number aberrations sorted based on NF1 and FGFR2, respectively, as indicated by the arrow (C) GBM samples 
sorted based on their MGMT gene methylation status. Note the total loss of clustering pattern observed in Figure 3A.

Sorting the heat map by copy number 
values of the key marker genes can 
further clarify their distribution between 
GBM subtypes. It is evident from 
Figure 3B, (heat map sorted on NF1) 

that, in addition to Classical and Neural, 
Proneural tumors also typically do not 
have NF1 mutations. Instead, as reported 
by Verhaak et al.6, NF1 hemizygous 
deletion is a distinct characteristic of the 
Mesenchymal subtype.
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•	 Klinz et al.12 had summarized the 
frequency of copy number events 
in GBM subtypes (Table 1). The 
analysis performed using the 
metadata framework in GeneSpring 
was found to be broadly in sync 
with the copy number events 
summarized by Klinz et al.12

miRNA regulation in 
subtype‑specific expression
Figure 4 illustrates the mRNA expression 
pattern of the nine clusters noted in 
hierarchical clustering (Figure 1A). GO 
functional enrichment analysis for the 
clusters identified the 840 signature 
genes to be primarily involved in cellular 

shows that about one third of the 
samples have deletion of FGFR2. 
The deletion pattern coincides with 
the deletion of PTEN.

•	 A comparison of the two sorted 
heat maps in Figure 3B shows 
that the FGFR2 deletion pattern 
closely mirrors the deletion pattern 
of PTEN in a substantial number 
of samples, indicating that these 
samples might have had a single 
deletion event leading to the 
loss of both PTEN and FGFR2 
located on 10q23.3 and 10q26.1, 
respectively. 

•	 MGMT methylation is a predictive 
marker for treatment response in 
the Classical subtype8. However, 
we did not find any pattern 
that would associate MGMT 
methylation with GBM subtypes, 
suggesting that yet unidentified 
factors may exist (Figure 3C).

•	 FGFR2 has been suggested to 
function as a tumor suppressor 
gene in Glioma10,11. However, 
PathCards does not include FGFR2 
in Glioma or the GBM pathway 
(http://pathcards.genecards.
org/pathway/2538). Figure 3B 
(heat map sorted on FGFR2), 
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Figure 4. Box plot visualization of the nine clusters showing subtype specific expression patterns.

Table 1. Frequency of copy number alterations in Glioblastoma subtypes (Klinz et al.12).
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physiology events such as extracellular 
matrix organization, response to 
wound healing, response to stress, 
nervous system development, glial 
cell differentiation, actin cytoskeleton 
organization, and chromatin organization. 
Additional analysis performed in 
GeneSpring confirmed that there is no 
significant overlap between the genes 
known to participate in pathways 
implicated for GBM (such as RTK, 
AKT, RB, P53, and PI3K) and the gene 
signature that defines the molecular 
subtypes (data not shown).

GO analysis identified nervous system 
development (that is, neurogenesis) 
as the primary biological process 
enriched in the cluster of genes that 
were up-regulated in Proneural and 
down-regulated in Mesenchymal tumors 
(Figure 1A). Twenty-five genes in the 
cluster were functionally annotated to be 
involved in nervous system development 
(Figure 5). We selected these 25 genes as 
representative Proneural genes. Selected 
genes included previously reported 
Proneural signature genes OLIG2, 
NKX2‑2, SOX11, and ASCL15,6.

MicroRNAs contribute to tumorigenesis 
by modulating both on oncogenic and 
tumor suppressor pathways in Glioma13,14. 
We identified the miRNAs which have 
been reported to be targeting genes 
involved in nervous system development, 
by querying the miRWalk database15; 
miRNAs tagged as validated in the 
miRWalk database were considered for 
downstream analysis. 

Pearson pair-wise correlation, for all 
subtypes, was performed between the 
25 mRNAs involved in nervous system 
development and the 38 validated 
miRNAs, using the multi-omic correlation 
analysis framework in GeneSpring. 
A group of 159 GBM samples from 
TCGA for which both mRNA and miRNA 
measurements were available were used 
for the analysis. Of the 38 miRNAs that 
had significant differential expression 
(moderated t-test p ≤ 0.05) between the 
Proneural and Mesenchymal subtypes, 
miR-222, miR-221, miR-223, miR-34a, 

Mesenchymal Proneural

Condition

PAFAH1B3
ZEB2
NKX2-2
MTSS1
CRMP1
MYT1
SOX11
DBN1
DPYSL4
TNRC4
CDK5R1
STMN1
EPHB1
VAX2
NRXN1
RUFY3
NRXN2
MAPT
OLIG2
CSPG5
ASCL1
CKB
BEX1
MPPED2
SH3GL2

Subtype

Mesenchymal

Proneural

-4.5 0 4.5

Figure 5. GO analysis of the genes up-regulated in Proneural and down-regulated in Mesenchymal tumors, 
against the entire set of genes, identified 25 genes that are involved in nervous system development.

miR-29a, miR-27a, miR-155, and miR‑21 
displayed negative correlation to the 
25 mRNAs (Figure 6). The miRNAs 
up‑regulated in Mesenchymal subtype 
by 1.5 fold in comparison to Proneural 
are significantly enriched in the cluster 
that displayed negative correlation to the 
genes in nervous system development. 
In Figure 6, the enriched miRNAs are 
highlighted by red bars. Most of the 
miRNA-mRNA pairs in this cluster had 
negative correlation values in the range 
of –0.3 to –0.5.

To further understand the mRNA-miRNA 
regulatory component within a given 
GBM subtype, we selected the miRNAs 
that displayed negative correlation in 
Figure 6, and four reported Proneural 
markers OLIG2, NKX2-2, SOX11, and 
ASCL1. The correlation of the selected 
mRNAs and miRNAs was performed 
based on their expression similarity 
within the Proneural and Mesenchymal 
samples, respectively. The results of 
the correlation performed are shown in 
Figure 7 and Table 2. 
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Figure 7. Correlation of OLIG2, NKX2-2, SOX11, and ASCL1 with miRNAs that showed up-regulation in 
Mesenchymal tumors. Correlation in Proneural samples (A) and Mesenchymal samples (B).

Table 2. Observed correlation coefficients between the Proneural markers NKX2-2, SOX11, and OLIG2 and some 
of the miRNAs down-regulated in proneural samples.

OLIG2 NKX2-2 SOX11
 Proneural Mesenchymal Proneural Mesenchymal Proneural Mesenchymal
hsa-miR-21 –0.278 –0.036   0.18 –0.272   0.168 –0.322
hsa-miR-214   0.193 –0.238   0.218 –0.106   0.2 –0.014
hsa-miR-221 –0.124   0.12   0.139 –0.17   0.36 –0.34
hsa-miR-222 –0.112   0.078   0.155 –0.113   0.276 –0.31
hsa-miR-223 –0.149 –0.236 –0.162 –0.178 –0.127 –0.23
hsa-miR-27a –0.175   0.072 –0.007 –0.208 –0.145 –0.317
hsa-miR-29a –0.12   0.18 –0.093 –0.216 –0.267 –0.41
hsa-miR-31 –0.113 –0.195   0.101 –0.126   0.067 –0.239
hsa-miR-34a –0.312   0.177 –0.024 –0.069   0.091 –0.288

Figure 6. Pearson pair-wise correlation between the 25 genes involved in nervous system development and 38 miRNAs that had significant differential 
expression (moderated t-test p ≤ 0.05) between the Proneural and Mesenchymal subtypes. Expanded view shows the second quadrant with miRNA on x-axis 
and mRNAs on y-axis. Similarity is calculated based on the profile of the mRNAs and miRNAs across the four subtypes.
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miR-21, known to induce proliferation and 
invasiveness16, is positively correlated 
to transcriptional activators NKX2‑2 
and SOX11 in Proneural samples 
but displayed negative correlation in 
Mesenchymal samples. Literature on 
targets for miR-2117, and our query in the 
miRWalk database do not show NKX2-2 
and SOX11 as targets for miR-21. Our 
study indicates the possibility of potential 
regulation of NKX2-2 and SOX11 by 
miR‑21 in GBM tumors.

The oligodendrocytic development 
regulator OLIG2 displayed negative 
correlation to miR-34a, miR-21, and 
miR-155 in the Proneural samples, 
but either positive or no correlation 
in the Mesenchymal samples. Earlier 
reports identified TP53 mutations 
and LOH events as characteristic to 
Proneural subtype. Here we observed 
increased expression of oligodendrocytic 
development regulator OLIG2 and 
decreased expression of miR‑34a in the 
Proneural cohort (Figure 8). OLIG2 plays a 
central role in directing cell fate decisions 
and controlling cell proliferation and it 
has been reported to repress the p53 
tumor‑suppressor pathway effector p2118. 
miR-34a is a tumor suppressor regulating 
the p53 signaling pathway19,20. This 
suggests the possibility that functional 
loss of TP53 in Proneural samples is 
caused either by deletion of the gene or 
by its repression due to elevated levels 
of OLIG2 and decreased levels of miR-34a.

Figure 8. Box plot representation of (A) OLIG2 and (B) miR-34a expression in Proneural and Mesenchymal 
samples.
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Proteomics analysis
mRNA expression does not always 
translate directly to protein abundance 
levels. To validate genomic observations 
in GBM at the protein level, we generated 
an independent proteomics dataset. 
The motivation was to identify GBM 
signatures relevant at both RNA and 
protein levels, and to confirm TCGA 
observations in an independent cohort 
using an independent technology.

Label-free proteomics analysis
Initial profiling analysis was performed 
in MPP software on a label-free 
proteomic dataset for 10 GBM tumors 
and 10 controls (epileptic brain tissue) 
samples. The protein database search 
results identified a total of 14,187 unique 
protein groups across the entire data set. 

Expression profiling showed that one 
of the tumor samples was close to the 
control group samples, and therefore, 
that tumor sample was excluded from 
subsequent analysis (data not shown).

Statistical analysis of the nine GBM 
and 10 control samples identified 587 
differentially expressed proteins (T-test, 
corrected p-value ≤ 0.05 and FC ≥ 2.0). 
These 587 proteins clearly discriminated 
the tumor from control samples. This 
was confirmed by the sample-sample 
correlation and PCA analysis (Figure 9A 
and 9B). The PCA and correlation analysis 
reflected clear differences between the 
protein expression profile of the control 
and tumor samples. Our analysis also 
identified potential patterns of tumor 
subgroups within the limited number of 
tumor samples which were studied. 
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Figure 9. Separation between control (-E) and tumor (-T) samples based on 587 proteins differentially expressed between control and tumor samples.  
A) Sample-sample correlation; B) PCA.
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Figure 11. Venn diagram displays the overlap between 587 proteins from discovery differential analysis 
and 840 subtype specific genes from TCGA; 655 of the 840 genes were measured in the proteomics 
experiment.

587 proteins differentially 
expressed from profiling 
analysis. T-test p-value ~ 0.05 
and FC ¡ 2.0

655 of the 840 subtype-specific 
genes from TCGA measured in 
proteomics experiment

533 54 601

The GeneSpring metadata framework was 
used to verify if the observed subgroup 
pattern can be explained by available 
metadata for the tumor samples. Figure 
10 shows observed tumor subgroups 
aligned to sample metadata such as age, 
sex, tumor location, and methylation 
status of MGMT (known prognostic 
marker for GBM). The metadata did 
not clearly explain the sub-grouping 
observed within the tumors based on the 
differentially expressed proteins. 

Combined analysis of proteomics 
and gene expression
To explain the subgroups observed 
within GBM tumors, we conducted 
integrated analysis of the differentially 
expressed proteins identified in our 
proteomics study and the differentially 
expressed genes identified by TCGA. The 
intersection between the 587 differentially 
expressed proteins (see previous section) 
and the 840 subtype‑specific genes 
reported by Verhaak et al.6 contains 
54 genes and the 54 proteins they encode 
(Figure 11). Using these 54 molecules, 
we were able to confirm some of the key 
findings of both studies.

In the previous section, we described 
separation between tumor and normal 
samples and identification of the tumor 
subgroups based on the abundance 
of the 587 differentially expressed 
proteins. Figures 12A and 12B show the 
sample‑sample correlation heat map 
and PCA plot based on abundance of 
the 54 proteins. The same separation 
between tumor and normal samples as 
well as the tumor subgroups are clearly 
visible in these figures.
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To validate if the subgroups observed 
in this proteomics study are related 
to the molecular subtypes reported 
in GBM, genes corresponding to the 
54 proteins were clustered based on 
TCGA mRNA expression data. Figure 13 
shows a gene‑sample clustering analysis 
performed on the mRNA expression 
profiles of the 54 genes. Figure 13 
confirms that expression of the 54 genes 
classify GBM tumors into four reported 
molecular subtypes with a high degree of 
certainty. 

Conclusions
GeneSpring/MPP software offers a suite 
of powerful data analysis tools enabling 
a thorough investigation of complex 
biological datasets. In this case study, 
we performed multidimensional analysis 
of GBM tumors leveraging published 
and newly generated genomics and 
proteomics datasets. Using innovative 
metadata and correlation frameworks 
now available in GeneSpring/MPP 
software, we reproduced and expanded 
key findings of a large-scale TCGA study. 
For example, in a single GeneSpring 
experiment we were able to confirm the 
genomics subtype classification of GBM 
tumors reported by TCGA. Furthermore, 
while somatic deletions of key genes in 
GBM were reported by TCGA, GeneSpring 
metadata framework revealed a higher 
than expected rate of simultaneous 
deletions of FGFR2 and PTEN in the 
same samples. This important finding 
suggests that these two genes may 
become aberrant due to a single 
genomic rearrangement rather than two 
independent deletion events.

Comparing data from several -omics 
technologies revealed previously 
unknown information about the biology 
of GBM tumors. For example, the 
TCGA project identified 840 genes 
capable of classifying GBM tumors in 
four known subtypes. Our proteomics 
data identified 587 proteins which 
were differentially expressed in tumor 
versus normal tissues and indicated an 
ability to classify tumors based only on 
their protein expression. By comparing 
genomics and proteomics datasets in the 
GeneSpring/MPP correlation framework, 
we identified a core signature comprised 
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of only 54 genes and proteins. The core 
signature demonstrated classification 
power comparable to both the 840 genes 
and the 587 proteins, highlighting the 
power of multi-omics data analysis in 
GeneSpring. Our observation suggests 
that heterogeneity of GBM tumors may 
be best characterized by both mRNA 
and protein abundance of the signature 
genes, opening a possibility for follow‑up 
studies with potential significance beyond 
the research scope.
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