

Confidently perform target and suspect screening using accurate mass

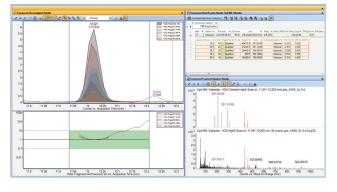
Demand for comprehensive water-screening methods continues to grow, driven by new regulations and increasing interest in contaminants of emerging concern—such as pharmaceuticals and personal-care products (PPCPs).

You can screen for more than 1,400 water contaminants with highly confident identification using accurate mass MS/MS spectra, by combining TOF or Q-TOF LC/MS instruments with the NEW Agilent Water-Screening Personal Compound Database and Library (PCDL).

Retrospective analysis is an added benefit, as All lons MS/MS acquisition allows you to measure precursor ions and fragments for a virtually unlimited number of compounds. That means you can re-analyze or mine the data at any time—without reruns—to investigate samples for newly emerging contaminants.

The PCDL includes the following components that save time and maximize performance:

- Curated accurate-mass database with more than 1,400 compounds
- Searchable user notes containing compound class and regulation tags
- Chinese names for over 500 compounds and Japanese names for over 250 compounds
- Accurate-mass MS/MS spectra for more than 1,000 compounds
- Retention times for over 260 compounds
- Quick-start guide with data examples and familiarization exercises
- Application note with detailed LC/MS method information
- Latest version of PCDL Manager Software

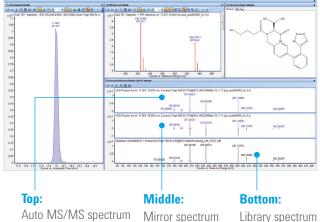


Target and suspect screening workflows with the PCDL

The Agilent Water-Screening PCDL, combined with the accurate mass capabilities of LC/TOF and Q-TOF instruments, enables you to:

- Acquire full-spectrum, untargeted data using All Ions MS/MS and identify compounds through accurate mass, retention time, isotope pattern, and fragment confirmation
- Perform presumptive matching of acquired spectra with library spectra—without the need to source standards
- Retention times add another degree of identification confidence and help avoid false positives
- Create a custom PCDL for a more focused screening approach
- Propose a suspect list with MS data and the "Find by Formula" algorithm, then confirm contaminant presence and eliminate false positives with targeted MS/MS and library search

Easy data mining and unambiguous identification using All lons Software



• Mine data from Auto MS/MS experiments using "Molecular Feature Extraction," and search for proposed compounds against the PCDL

- Add your own unique compounds and library spectra to create PCDLs specific to your analysis
- Perform retrospective analysis of data with compounds newly added to the PCDL, without a need to re-run samples

The NEW Water-Screening PCDL makes compound confirmation and data mining easier—even for high-volume labs—to perform truly comprehensive screening of an unlimited number of compounds.

Attain compound confirmation by library matching using Auto MS/MS

PCDL Manager Software provides easy management of the database and library

	Edit View PCDL Links Help													
Fin	nd Spectra 🎒 📄 🗋 🞯 🐺 👹 🥹 👘													
Sir	ngle Search Batch Search B	Ratch Summary	Edit Compounds		Spectral Sear	ch	Browse Spectra	Edit S	pectra					
las	8								Graphic	Mass List				
ole	sursorion:ppm () mDa sion energy rance: 2.0 eV	lon polarity: lonization mode:	(Any) (Any)	•					Library sp 310 100 100 100 80 80 70		235.0 98	9782 291.14 48 100.0	1786 00	
ecl	tra for compound: Valsartan								60				1	418.22375
ecl	tra for compound: Valsartan Compound Name	Ion Species	Precursor Ion C	E (V)	Polarity	Ionization	Instrument		50		207.09167		362.22	269 50.03
ec		Ion Species (M+H)+	Precursor Ion C 436.23432			Ionization ESI	Instrument QTOF		50 40		207.09167 35.34		362.22 43.4	269 50.03
ecl	Compound Name			10	Positive				50		207.09167 35.34		362 22	269 50.03
eci	Compound Name Valsertan	(M+H)+	436.23432	10 20	Positive Positive	ESI	QTOF		50 40		207.09167 35.34		362 22 43.4	269 50.03
ec	Compound Name Valsartan Valsartan	(M+H)+ (M+H)+	436.23432 436.23432	10 20 40	Positive Positive Positive	ESI ESI	QTOF QTOF		50 40 30		207.09167 35.34		362 22 43.4	269 50.03
ec	Compound Name Valsartan Valsartan Valsartan	(M+H)+ (M+H)+ (M+H)+	436.23432 436.23432 436.23432	10 20 40 10	Positive Positive Positive Negative	ESI ESI ESI	QTOF QTOF QTOF		50 40 30 20	84.07809 1.06	207.09167 35.34		43.4	0

Protect our water supply and comply with regulatory standards

The Agilent Water-Screening PCDL can help you meet the strict requirements established by global compliance agencies. It includes more than 1,400 compounds—including those specified by the following regulations and lists:

EU regulations

Priority compounds from the EU water framework directive

U.S. regulations

Environmental Protection Agency methods 521, 535, 539, 1694, 1698, 1699, and Draft CCL4

Chinese regulations and lists

- CN-EPA screening list
- CN-NY methods 193, 235, 265, 560
- CN-CDC survey list
- CN-antibiotics list
- CN-GB 2763-2014

Japanese regulations and lists

- Japan positive list
- JDWQS

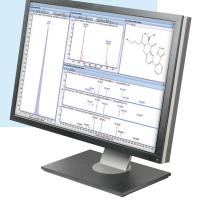
Available class tags

PPCPs, pesticides, veterinary drugs, human drugs, polar metabolites, cyanotoxins, and class tags for all regulations and lists above

Database and library curation assure highest data quality

Each curated database entry includes:

- Compound common name
- · Accurate mass of neutral molecule
- IUPAC name
- Molecular formula
- Molecular structure
- Ion type (Anion, Cation, or Neutral)
- CAS number/PubChem link (if existing)
- ChemSpider ID and hyperlink (if existing)


Accurate mass spectral library curation:

- Each precursor and product ion peak corrected to theoretical accurate mass
- Spectra acquired at 10, 20, and 40eV Collision Energy
- Spectra measured in positive and/or negative ion mode where applicable
- Spectra are filtered for signal intensity and curated for:
 - Spectrum noise
 - Chemical impurities
 - Incorrectly set instrumentation parameters

Complete your water analysis workflow with leading-edge solutions from Agilent

- MassHunter data acquisition and analysis software lets you quickly implement high-quality screening methods, which you can modify to meet your future needs. You can also customize your PCDL.
- The Agilent 1290 Infinity II LC system provides unmatched chromatographic resolution and reduced runtimes, delivering the high-quality data you need for sensitive and reproducible screening applications. What's more, the Agilent Jet Stream electrospray ion source dramatically lowers detection limits for emerging contaminants in water.
- Agilent TOF and Q-TOF LC/MS systems give you reliable MS and MS/MS mass accuracy. The full-scan capability of All lons MS/MS lets you access all the data, all the time, so you can screen for large numbers of suspect analytes and unknown contaminants.
- Best-in-class application consulting

plus a large portfolio of sample-prep products, LC column phases, and other consumables—increases productivity and helps you focus on what *you* do best.

Ordering Information:

Agilent Water-Screening Personal Compound Database and Library (G6882CA)

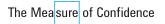
The following are required, but not included, with the Water-Screening PCDL:

- Agilent 6200 Series TOF or 6500 Series Q-TOF LC/MS systems
- Agilent MassHunter Acquisition Software B.05 (or higher) and Windows 7 (64-Bit)
- Agilent MassHunter Qualitative Analysis Software B.07 Sp1 (or higher)
- Agilent MassHunter Quantitative Analysis Software B.07 (or higher)

To learn more about the Agilent Water-Screening PCDL, visit www.agilent.com/chem/waterscreening

Put your lab on the productivity fast track.

Contact your local Agilent Representative or Agilent Authorized Distributor at www.agilent.com/chem/contactus


Or call **800-227-9770** (in the U.S. or Canada)

Visit **www.agilent.com/chem/ms** for a description of available Analyzers and Application Kits

> Agilent products are for research use only. Not for use in diagnostic procedures. Information, descriptions and specifications in this publication are subject to change without notice.

> > © Agilent Technologies, Inc. 2016 Published in USA, April 12, 2016 5991-6536EN

