## ANALYSIS OF PER/POLYFLUOROALKYL SUBSTANCES (PFASs) IN WATER

Agilent Ultivo Triple Quadrupole LC/MS System



**Figure 1.** Agilent Ultivo Triple Quadrupole LC/MS integrated into the Agilent 1290 Infinity II LC.

## Introduction

Per/Polyfluoroalkyl substances (PFASs) are widely used in manufacturing and industry due to their highly desirable properties. They are used as surfactants, fire-retardants, nonstick cookware coatings, and other applications. Because of their unique properties, they have been detected almost ubiquitously in the environment.

The United States Environmental Protection Agency (USEPA) has issued drinking water health advisories for two PFASs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at 70 ng/L. Several US states also have public health guidelines for PFASs ranging from 20–400 ng/L in drinking water.

This study describes a method for the sensitive quantification of 17 PFASs in drinking water, including all 14 in the USEPAs method 537. The analysis was performed in a single run using the Agilent Ultivo Triple Quadrupole LC/MS system.

Innovative technologies within Ultivo allow for reduction of its overall footprint, while conserving the comparable performance level of much larger MS systems. The numerous innovations of Ultivo not only maximize quantitative performance in a small package, but also enhance instrument reliability and robustness to provide greater uptime. Moreover, Ultivo reduces user intervention for system maintenance, making system operation and maintenance manageable for nonexpert MS users.

For more information, visit: www.agilent.com/chem/Ultivo



## **Experimental**

### **Sample preparation**

Water samples (250 mL) were extracted using the Agilent SampliQ Weak Anion Exchange (WAX) cartridges. Extraction conditions were similar to those in EPA method 537 with a final extract in 96/4 (v/v) methanol (MeOH)/water.

### LC/Triple quadrupole instrument conditions

### Table 1. Agilent 1290 Infinity II LC parameters.

| Parameter          | Value                                                                      |
|--------------------|----------------------------------------------------------------------------|
| Delay column       | Agilent ZORBAX Eclipse Plus C18, 4.6 × 50 mm, 3.5 μm                       |
| Analytical column  | Agilent ZORBAX Eclipse Plus C18, 3.0 × 50 mm, 1.8 μm                       |
| Injection volume   | 5 μL                                                                       |
| Column temperature | 50 °C                                                                      |
| Flow rate          | 0.4 mL/min                                                                 |
| Mobile phase       | A) 5 mM Ammonium acetate in water<br>B) 5 mM Ammonium acetate in 95 % MeOH |
| Run time           | 19.0 minutes                                                               |

#### Table 2. MRM transitions and RT for 17 PFASs.

| Compound  | Precursor ion | Product ion<br>(secondary transition) | RT (min) |  |
|-----------|---------------|---------------------------------------|----------|--|
| PFBA      | 213           | 168.9                                 | 3.88     |  |
| PFPeA     | 263           | 218.9                                 | 6.52     |  |
| PFBS      | 289.9         | 98.9 (80)                             | 7.06     |  |
| PFHxA     | 313           | 268.9 (119)                           | 8.52     |  |
| PFHpA     | 362.9         | 319 (169)                             | 9.90     |  |
| PFHxS     | 398.9         | 99 (80)                               | 10.07    |  |
| PFOA      | 413           | 369 (169)                             | 11.05    |  |
| PFNA      | 463           | 419 (169)                             | 11.95    |  |
| PFOS      | 498.9         | 99 (80)                               | 11.95    |  |
| PFDA      | 513           | 469 (218.7)                           | 12.71    |  |
| PFUdA     | 563           | 519 (218.7)                           | 13.37    |  |
| N-MeFOSAA | 570           | 482.9 (418.9)                         | 13.04    |  |
| N-EtFOSAA | 584           | 525.9 (418.9)                         | 13.38    |  |
| PFDS      | 598.9         | 99 (80)                               | 13.32    |  |
| PFDoA     | 613           | 569 (268.9)                           | 13.93    |  |
| PFTrDA    | 663           | 619 (169)                             | 14.40    |  |
| PFTeDA    | 713           | 669 (169)                             | 14.82    |  |

#### Table 3. LC Gradient conditions.

| Time (min) | %B  |
|------------|-----|
| 0.0        | 10  |
| 0.5        | 10  |
| 2.0        | 30  |
| 14.0       | 95  |
| 14.5       | 100 |

# **Table 4.** Agilent Ultivo Triple Quadrupole LC/MS conditions.

| Parameter          | Value         |
|--------------------|---------------|
| Gas temperature    | 230 °C        |
| Gas flow rate      | 5 L/min       |
| Sheath temperature | 350 °C        |
| Sheath flow rate   | 12 L/min      |
| Nebulizer          | 45 psi        |
| Capillary          | 2,500 V       |
| Nozzle             | 0 V           |
| lonization         | Negative, ESI |

## **Results and Discussion**

### Instrument performance

Excellent peak shapes and sensitive detection of all PFASs in water were achieved with the Ultivo LC/TQ.

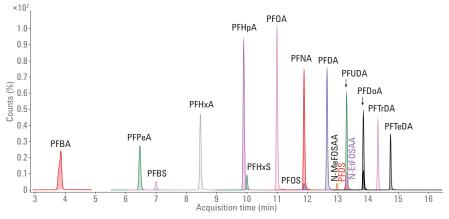



Figure 2. LC/Triple quadrupole chromatogram of 17 PFASs analyzed at 1.0 ng/mL.

### Linearity and sensitivity

All 17 PFASs, with 4–14 carbon chain length, had linear calibration curves with  $R^2 > 0.99$ . Quantification using a seven-point calibration curve at 0.1, 0.5, 1.0, 2.5, 5.0, 10, and 20 ng/mL was performed for all water samples.

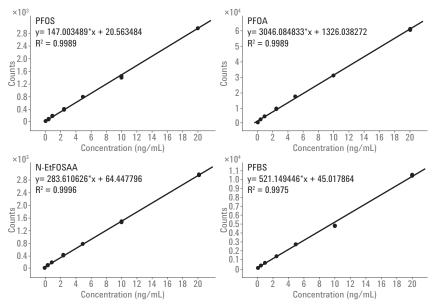
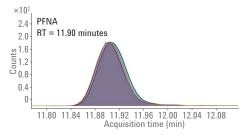




Figure 3. Calibration curves for PFOS, PFOA, N-Et FOSAA, and PFBS.

### Precision



**Figure 4.** PFNA peak shape and retention time stability at 1 ng/mL with five replicate injections.

| Table 5. Precision expressed in %RSD for the 17 PFASs post-spiked at |
|----------------------------------------------------------------------|
| $1 \mu g/L$ in a water extract (n = 5).                              |

| Compound | % RSD | Compound  | % RSD |
|----------|-------|-----------|-------|
| PFBA     | 0.28  | PFOS      | 5.30  |
| PFPeA    | 1.69  | PFDA      | 1.62  |
| PFBS     | 4.49  | N-MeFOSAA | 1.77  |
| PFHxA    | 0.51  | PFUdA     | 2.93  |
| PFHpA    | 3.99  | N-EtF0SAA | 4.56  |
| PFHxS    | 4.72  | PFDoA     | 2.43  |
| PFOA     | 1.39  | PFTeDA    | 4.89  |
| PFNA     | 0.98  | PFTrDA    | 5.08  |
|          |       |           |       |

1 ug/L post spike is equivalent to 4 ng/L in the original water sample

### **Recovery and % RSD**

Figure 5 shows the recovery of the 17 PFASs determined at 1  $\mu$ g/L (4 ng/L equiv. in water) and 5  $\mu$ g/L (20 ng/L equiv. in water) post-spiked into a drinking water extract. The overall recovery was between 70–125 % for both spiking levels. Relative standard deviation (RSD) was 0.3–10.8 % for all compounds at both the 1  $\mu$ g/L and 5  $\mu$ g/L spike levels.

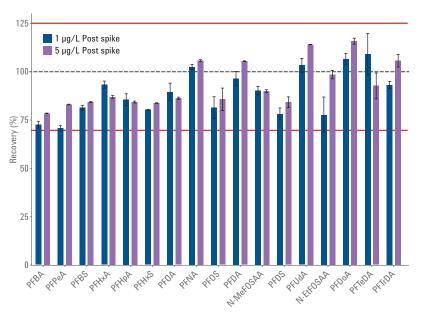
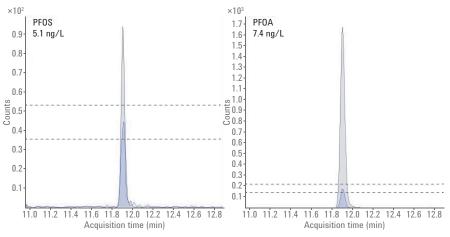




Figure 5. Recovery and %RSDs for the PFASs evaluated at 1 and 5 ng/mL post-spiked into a water extract.

### Analysis in real water samples

Finished drinking water samples from Northeast USA were analyzed for the 17 PFASs using the extraction and analysis technique mentioned here. Figure 6 depicts the presence of PFOS and PFOA detected at low ng/L levels in two samples along with the quantifier ion. The Ultivo was able to detect the presence of these low concentration PFASs, suggesting good sensitivity and robustness for the analysis of water samples.



**Figure 6.** Overlay of qualifier and quantifier ion for PFOS and PFOA detected in finished drinking water samples at low ng/L levels using an Agilent Ultivo LC/TQ.

## Conclusions

The Agilent Ultivo Triple Quadrupole LC/MS provides sensitive, reliable, and robust quantification of PFAS in water, including:

- · Excellent sensitivity for PFAS analysis with a reduced footprint
- · Good recoveries and low RSDs achieved through innovative technologies
- Complete workflow and solution for PFAS analysis that includes the Agilent 1290
   Infinity II LC, Ultivo Triple Quadrupole LC/MS, and Agilent MassHunter software

www.agilent.com Information, descriptions and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc. 2017 Published in USA, June 22, 2017 5991-8156EN Rev 1.0



Agilent Technologies