Overview

Purpose : Analysis of the ginsenoside constituents of American ginseng

Methods :

Solvent Extraction of raw American ginseng and further separation with silica-gel chromatography LC-MS/MS analysis on a LCMS-IT-TOF allowing for MSⁿ fragmentation and mass accuracy

Results :

Dimeric species of ginsenosides were observed.

Fragmentation patterns lead to unique identifications for isomeric ainsenosides.

14 known ginsenoside species were identified from 6 fractions within a mass accuracy of 5 ppm or less.

References

¹Wang, X.; Sakuma, T.; Asafu-Adaje, E.; Shu, G.K. Anal. Chem. 1999, 71, 1579-1584. ²Taniguchi, J.; Kawatoh, E.; Itoi, H.

Bilsborough, S.; Loftus, N.; Miseki, K. Proc. 52nd ASMS Conf. Mass Spectrom. and Allied Topics. Nashville, TN, 2004. ³Fuzzati, N. J. Chromatogr. B 2004, 812, 119-133.

Natural Product Analysis Utilizing an Ion Trap – Time-of-Flight Mass Spectrometer (IT-TOF)

Joy M. Ginter¹; Holly M. Shackman¹; Joseph P. Fox¹; Masayuki Nishimura¹; Masahiko Taniguchi²; Yoshihide Usami²; Kuo-Hsiung Lee² ¹Shimadzu Scientific Instruments, Columbia, MD ; ²University of North Carolina, Chapel Hill, NC

Introduction

Recently, the popularity of remedies consisting of natural products found in foods, roots, and herbs has increased in both the domestic and global healthcare markets. These compounds, termed "Nutraceuticals", refer to natural, biologically active chemical species that may be useful in disease prevention or have other additional medicinal properties. As a result of this renewed focus on natural remedies, efficient identification and analysis of the active compounds in these products is a growing area of method development. The LCMS-IT-TOF allows researchers in this field to obtain both chemical and structural information as it utilizes both the fragmentation power of the ion trap and the high resolution, and mass accuracy, of a time-of-flight mass spectrometer.

Ginsenoside	R1	R2	R3	
Rb1	-Glc ² -Glc	-Glc ⁶ -Glc	Н	
Rb2	-Glc ² -Glc	-Glc ⁶ -Ara(p)	н	
Rc	-Glc ² -Glc	-Glc6-Ara(f)	н	
Rd	-Glc ² -Glc	-Glc	Н	
Re	-H	-Glc	-O-Glc2-Rha	
Rg1	-H	-Glc	-O-Glc	

Figure 1. Structure of ginsenosides in forms of 20(S)-protopanaxadiol and -triol.¹

Methods

- E The constituents of Panax guinguefolius or American ginseng were first extracted with hot methanol. The extract was further partitioned with ethyl acetate and water. The water layer was extracted with butanol, and this final extract separated via silica gel chromatography. Elution solvent included a mixture of CH₂Cl₂:MeOH:H₂O from a ratio of 50:10:1 – 5:5:1.
- Bamples were further separated via RP-LCMS on a Shimadzu Prominence series LC utilizing a Shimadzu Shim-pack VP-ODS column ($150 \times 2.0 \text{ mm}$: 5.0 µm).
- B Mass spectrometric analysis [(-) ESI] was carried out on a Shimadzu LCMS-IT-TOF with argon gas for ion cooling and CID experiments. MSⁿ data was acquired using the "Automatic" mode or data-dependent function.

B Shimadzu's Composition Formula Predictor was also used to verify identifications.

Instrumental Design²

Quadrupole Ion Trap (QIT)

Time-of-Flight mass analyzer Dual-stage gridless reflectron

Results

Figure 3. LC-MS chromatograms for fractions of extracted American ginseng. Fractions were collected with varying ratios of extraction solvent CH₂Cl₂:MeOH:H₂O. A – AG4fr4-9 (50:10:1): B – AG4fr10-12 (50:10:1); C – AG4fr13-14 (50:10:1); D – AG4fr15 (7:3:0.5); E – AG4fr16-26 (7:3:0.5); F – AG4fr33-37 (5:5:1).

Figure 6. Mass spectra for ginsenoside Rb2 or Rc (C53H90O22). The MS² spectrum shows first the loss of the arabinose group and then subsequent glucose groups (MS³).

Figure 5. Fragmentation of the 945 m/z ion eluting at RT ~8 min gave a fragment at 475 m/z characteristic of the protopanaxatriol group leading to an assignment of ginsenoside Re.

Figure 7. Dissociation pathway for ginsenoside Rb2 or Rc.

Results

Figure 10. Mass spectra showing the dimeric complex of Rb1 and its dissociation after MS/MS experiments.

Discussion and Conclusions

- acid and dimeric complexes were observed.
- 🕀 Within one experiment, structural information and mass accuracy data can be obtained.
- 🕀 Mass accuracy was routinely below 5 ppm for the analysis utilizing a simple auto-tuning prior to the start of experiments (~ 30 min).
- 🔁 Fragmentation data successfully lead to the correct assignment of ginsenosides with similar chemical formulae.
- B Shimadzu's Composition Formula Predictor Software utilizes both mass accuracy and fragmentation information from MSⁿ experiments to aid researchers in determining the composition of unknowns.

f Dimer – charged			
nents			
750 m/z	z		

Figure 9. Composition Formula Predictor results for 931 m/z.

1	Name	Formula [M]	[M-H] ⁻ Calculated (monoisotopic)	[M-H] ⁻ Observed (monoisotopic)	Mass Accuracy (ppm)
	Rb1	C54H92O23	1107.5951	1107.5979	2.5
m/z	Rb2 or Rc	C53H90O22	1077.5845	1077.5906	5.6
	Rd	C48H82O18	945.5423	945.5420	0.3
	Re	C48H82O18	945.5423	945.5430	0.7
	Rd/Re + formic acid	C49H84O20	991.5478	991.5496	1.8
	Ginsenoside Base	C30H52O4	475.3787	475.3774	2.7*
_	Ginsenoside Base	C30H52O3	459.3838	459.3825	2.8*
d	Rg1 + formic acid	C43H74O16	845.4899	845.4868	3.7
	F11	C42H72O14	799.4844	799.4820	3.0
m/z	Ro	C48H76O19	955.4903	955.4879	2.5
	Rg3	C42H72O13	783.4895	783.4859	4.6
	Rg3 + formic acid	C43H74O15	829.4949	829.4921	3.4
	Rh1 + formic acid	C37H64O11	683.4370	683.4352	2.6
	Rh2 + formic acid	C37H64O10	667.4421	667.4419	0.3
	F1	C36H62O9	637.4316	637.4296	3.1
	Rs3	C44H74O14	825.5000	825.4966	4.1
	Notoginsenoside R1	C47H80O18	931.5266	931.5250	1.7

Table 1. Mass accuracy data for the analysis of ginsenosides on
 the LCMS-IT-TOF.

* MS/MS mass accuracy

🔁 Ginsenosides from American Ginseng were successfully separated and analyzed using Shimadzu's LCMS-IT-TOF. Adducts with formic