SHIMADZU

Highly sensitive direct analysis of glyphosate, glufosinate and AMPA in the beverages by LC-MS/MS

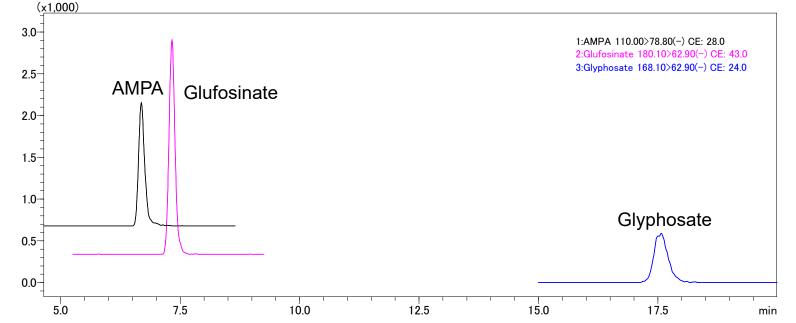
Manami Kobayashi¹; Miho Kawashima²; Yusuke Inohana²; Nozomi Maeshima¹; Junichi Masuda¹; Yoshihiro Hayakawa², Eberhardt Kuhn³ 1 Shimadzu Corporation, Kanagawa, Japan 2 Shimadzu Corporation, Kyoto, Japan, 3 Shimadzu USA

Overview

Development of a direct analysis method by LC/MS/MS for glyphosate, glufosinate and AMPA in beverages.

1. Introduction

Glyphosate and glufosinate are active ingredients in widely used herbicides. It is wellknown that glyphosate is degraded into aminomethylphosphonic acid (AMPA) as a metabolite in soil and water. The required LLOQ for glyphosate and AMPA in water is 0.1 ug/L (ng/mL) in the EU. Since glyphosate, glufosinate and AMPA are highly polar compounds, their retention on the reversed phase column are weak. Therefore, a derivatization method with such as FMOC is performed for these compounds. To reduce the complex and time-consuming derivatization, we introduce a high-sensitivity direct analysis of glyphosate, glufosinate and AMPA without derivatization. With limited pretreatment procedures such as filtering and dilution, highly sensitive results could be obtained with good recovery factors for vary of beverages.


2. Methods and Materials **2-1.** Analytical conditions

UHPLC-MS/MS analysis was performed on an LCMS-8050 with a heated ESI ion source, equipped with a Nexera[™] X2 system (Shimadzu Corporation). Glyphosate, glufosinate and AMPA are difficult to separate in reversed phase column, respectively, due to their hydrophilicity and weak retentions. Thus, hydrophilic interaction liquid chromatography (HILIC) column was used to evaluate the analytical condition for separation and sensitivity. As the result, the chromatographic separation had been optimized using a HILIC column (Shodex[®] HILICpak[®] VT-50 2D) and LCMS compatible mobile phases as ammonium bicarbonate aqueous solution with acetonitrile system in 30 minutes gradient elution. Shodex[®] HILICpak[®] VT-50 2D has quaternary ammonium group binding on all porous sphere with polyvinyl alcohol base and PEEK body. In order to prevent the adsorption of glyphosate and glufosinate on the surface of the metal tubing, PEEK tubing (0.13 mmi.d.) was used instead of the autosampler standard metal outlet tube.

■UHPLC con	•	-	•	
Column	•	· ·	× 2.0 mm l.D., 5.0 μm, Shodex®)	G
Mobile phase A	: 50 mmol/L Amr	nonium bicarbon	ate - Water	
Mobile phase B	: Acetonitrile			G
Flow rate	: 0.25 mL/min			
Time program	: B Conc. 50 % (0	.0 - 3.0 min) →5 %	% (7.0 - 20.0 min) → 50 % (20.01 - 30.0 min)	
Column temp.	: 40 °C			
Injection vol.	: 50 μL			
MS condition	s (LCMS-8050)		Wink On and Mana On a during tar	
Ionization	: ESI, Negative N	1RM mode	High Speed Mass Spectrometer Ultra Fast Polarity Switching -5 msec	
IF voltage	: -3 KV		Ultra Fast MRM -Max.555 transition/sec	
DL temp.	: 250 °C			
Interface temp.	: 300 °C			_
Heat block temp.	: 400 °C			Co
Nebulizer gas	: 2 L /min			
Heating gas	: 10 L/min			
Drying gas	: 10 L/min			
CID gas press.	: 325 Kpa			Gl
MRM transition	: AMPA	110.00>78.80	CE: 28 V	GI
	Glufosinate	180.10>62.90	CE: 43 V	
	Glyphosate	168.10>62.90	CE: 24 V	

3. Result **3-1.** Analysis of Standard Solution

The chromatogram of each compound at a concentration of 5 µg/L is shown in Figure 1 and the calibration curves are shown in Figure 2. The accuracy and area repeatability (%RSD) values of each calibration point are listed in Table 1. The accuracy of the calibration points are within 95.3 to 106.9 % for each compound, respectively.

MRM Chromatograms of AMPA, Glufosinate and Glyphosate (each 5 µg/L) Figure 1

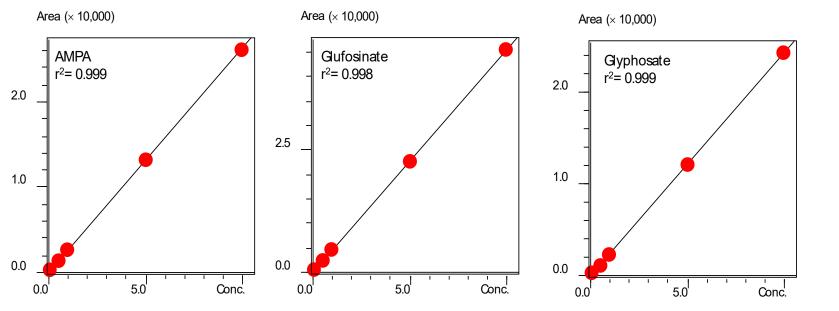
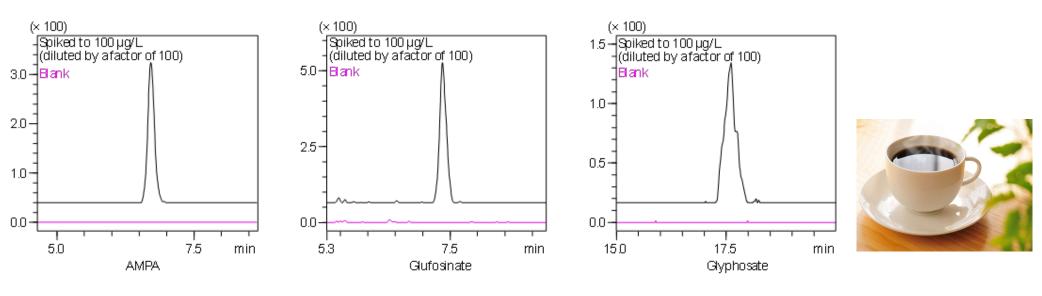


Figure 2 Calibration Curves of AMPA, Glufosinate and Glyphosate $(0.1 \sim 100 \mu g/L)$

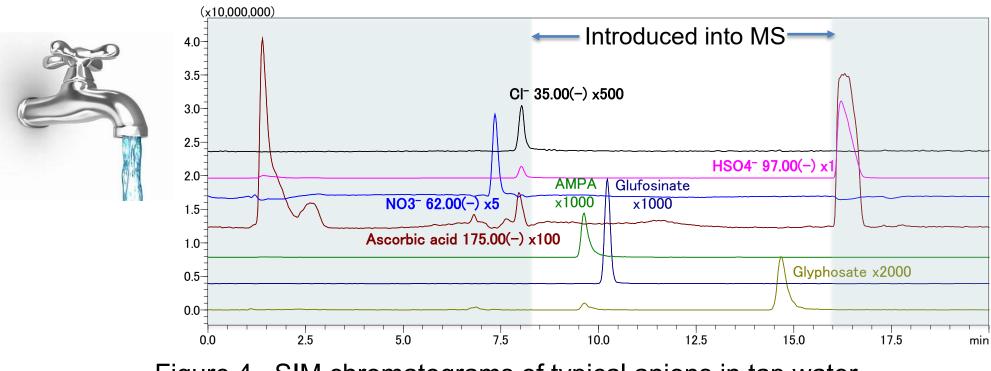
Table 1	The accuracy and area repeatability (%, n=3)
---------	--

0.1 μg/L		0.5 μg/L		1 μ	1 μg/L		5 μg/L		10 µg/L	
Accuracy	Repeatability									
100.8	9.61	95.3	3.69	101.4	4.60	102.1	4.29	100.4	2.23	
98.8	8.43	106.9	5.82	99.3	7.59	96.8	2.65	98.2	1.90	
100.2	7.32	100.1	5.76	97.8	1.67	100.7	1.94	101.2	0.96	


3-2. Analysis of the Beverages

Seven kinds of beverages (coffee, tea, red wine, white wine, apple juice, mineral water and beer) were filtered by membrane filter (0.22 µm). After that they were spiked with AMPA, glufosinate and glyphosate to a concentration of 100 µg/L. Each sample was 100-fold diluted with ultra pure water followed by measuring to determine their recoveries. The obtained values are listed in Table 2.

Table 2 The recovery rate and area repeatability of the beverage samples (%, n=3)


Cof	fee	Te	ea	Red	Wine	White	Wine	Apple	Juice	Minera	l Water	Be	er
Recovery	Repeatability												
89.5	6.83	92.6	5.93	76.2	9.67	76.6	10.38	78.5	1.60	95.5	8.69	84.1	3.76
83.5	6.80	91.5	4.13	72.9	3.42	77.5	4.76	86.5	5.88	98.1	7.66	77.5	5.08
97.0	4.57	96.9	6.91	94.8	7.67	104.9	10.34	86.9	1.99	74.4	10.01	92.8	11.90

As an example, the typical chromatograms of the coffee samples are shown in Figure 3. General pretreatment of samples includes a clean-up method such as solid-phase extraction; however, the procedures is often complex and takes time and effort. This method had very simple pretreatment procedures comprising only filtering and dilution while achieving favorable recoveries ranging from 72.9 to 104.9 % with the samples.

3-3. Trial test for direct analysis of tap water

Analysis of glyphosate group compounds in tap water is important. Tap water contains a variety of anions (Cl⁻, HSO₄⁻, NO₃⁻ etc.) as matrix compounds. A typical anion in tap water was monitored by SIM mode. The time program of LC gradient was optimized in order to separate the glyphosate group compounds and the typical anions to decrease the matrix effects (Figure 4). Usually in the pesticide test method, ascorbic acid is added to tap water to eliminate the effect of residual chlorine. Without adding of ascorbic acid, glyphosate group compounds in tap water is not detected. It was confirmed that ascorbic acid was added to the standard solution to be 10 mg/L, it did not affect the target compounds.

Column

Mobile p

Mobile p Flow rate Time pro

Column Injection

Figure 3 MRM Chromatograms of Spike and Recovery Test Samples (Coffee)

Figure 4 SIM chromatograms of typical anions in tap water

■UHPLC conditions for tap water

	: HILICpak [®] VT-50 2D
	(150 mm L. × 2.0 mm l.D., 5.0 μm)
phase A	: 50 mmol/L Ammonium bicarbonate
	– Water (pH 9)
phase B	: Acetonitrile
te	: 0.25 mL/min
ogram	: B Conc. 75 % (0.0 - 2.0 min) →
	5 % (18.0 - 23.0 min) →
	75 % (23.10 - 30.0 min)
temp.	: 40 °C
n vol.	: 50 μL

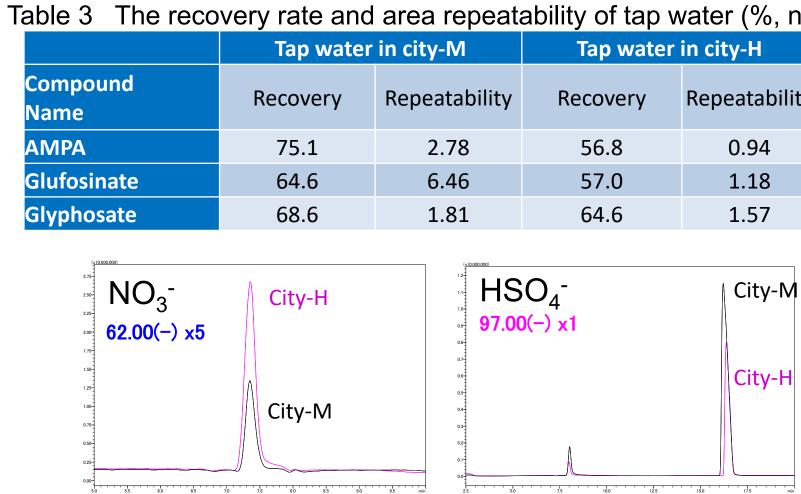
MS conditions (LCMS-8060)

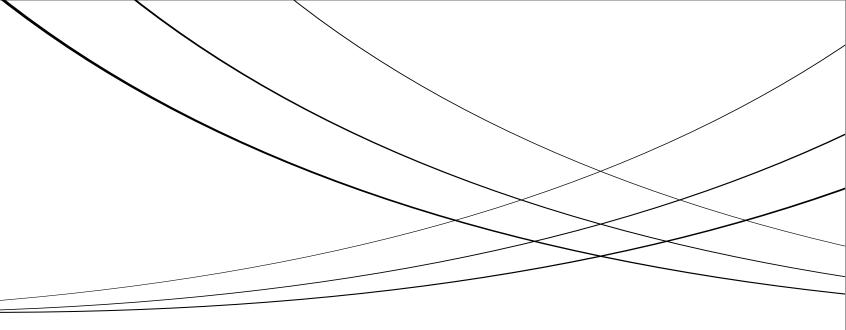
DL temp.	: 250 °C
Interface temp.	: 350 °C
Heat block temp.	: 400 °C
Nebulizer gas	: 2 L /min
Heating gas	: 20 L/min
Drying gas	: 20 L/min
CID gas press.	: 325 Kpa

The recovery rate of tap water from two cities (M and H) was compared (spiked at 20 μ g/L). The recovery rate and area repeatability of tap water was shown in table 3. The recovery rate of AMPA and glufosinate of the city-H was less than the city-M. It was considered that the factor affecting the recovery rate of AMPA and glufosinate was $NO_{3^{-}}$. The peaks of the NO₃⁻ and HSO₄⁻ of city-M and city-H were shown in Figure 5. NO₃⁻ of city-H was more than city-M. And it was considered that HSO_4^- was the factor for glyphosate. HSO_4^- were affecting the same degree to city-M and H. We have continued to evaluate the affect by quantitatively adding the anions concentration.

Tap water of city-M was used for the matrix matched calibration solution, the recovery rate of AMPA, glufosinate and glyphosate increased to 108, 104, 112%. So the standard addition method and the internal standard method were applicable for some tap water containing a variety of anions.

The quantitative lower limit of this method is 0.2 μ g/L. The accuracy and area repeatability (%RSD) values of 0.2 and 20 µg/L standard mixture solutions listed in Table 4.




Table 4 The accuracy

	0.2 µ	ıg/L	20 μg/L		
Compound Name	Accuracy	Repeatability	Accuracy	Repeatability	
AMPA	101.3	5.73	99.3	1.17	
Glufosinate	104.9	3.40	101.6	0.92	
Glyphosate	119.1	8.72	100.9	0.55	

4. Conclusions

Reference

27th Symposium on Environmental Chemistry (Okinawa, 2018) P-110 Japan Society for Environmental Chemistry

CO	covery rate and area repeatability of tap water (%, n=3)								
	Tap water	in city-M	Tap water in city-H						
	Recovery	Repeatability	Recovery	Repeatability					

,	1 7	1	1 7
75.1	2.78	56.8	0.94
64.6	6.46	57.0	1.18
68.6	1.81	64.6	1.57

Figure 5 NO_3^- and HSO_4^- peak in tap water

and area	repeatability	of standard	mixture	solution	(%. n=3)
	ropodiability	orotariaara		ooration	(70, 11 0	/

 \checkmark The direct analysis conditions of AMPA, glufosinate and glyphosate was established by Hilic column and optimized MS parameter.

 \checkmark The AMPA, glufosinate and glyphosate in seven kinds of beverages were detected at a high recovery rate (72.9 \sim 104.9 %).

✓ Directly analyze of AMPA, glufosinate and glyphosate in tap water has been investigated. The recovery rate obtained were 56.8 \sim 75.1% at this moment.