

Continuing the Legacy of HPLC Column Performance

Waters™

Solving Problems That Matter

Waters™ reputation is based on chromatography, but we do not create chromatography — you do. Innovative thinking within your laboratory creates the chromatographic methods and assays that sustain your business. Your success is determined by the methods and results that you produce, and the HPLC column that you choose today needs to support your success for the future. Waters full line of state-of-the-art, HPLC columns are chosen by scientists who understand that quality and reliability are linked and their success depends on them.

BEH Technology™

MaxPeak Premier™

CORTECS™

XBridge™

XSelect™

Atlantis™

SunFire™

Symmetry™

XTerra™

Waters Spherisorb™

Nova-Pak™

Resolve™

Delta-Pak™

μBondaPak™

BondaPak™

μPorasil™/Porasil™

VanGuard™

Waters Analytical™
Standards and
Reagents

What can MaxPeak Premier Columns do for your small molecule analysis?

ENSURE MAXPEAK PREMIER PERFORMANCE FOR ALL SEPARATIONS

MaxPeak Premier Columns utilize MaxPeak High Performance Surfaces Technology that are designed to increase analyte recovery, sensitivity, and reproducibility by minimizing analyte/surface interactions that can lead to sample losses.

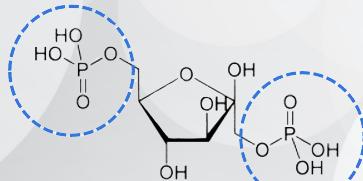
Available in
the VanGuard™
FIT Column
Format

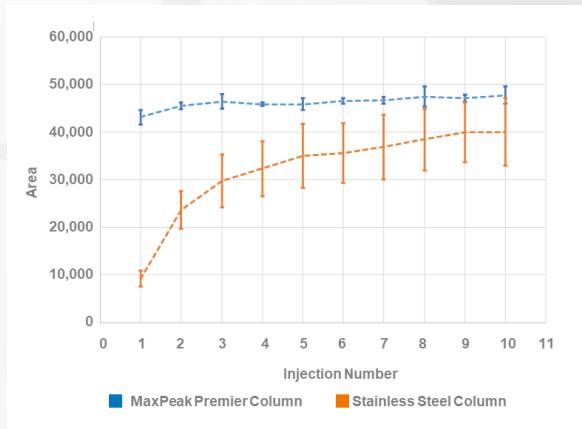
Precision
chemistry for
particles and
surfaces

Progressive,
integrated
technologies

Protection
from RISK

Performance
without
sacrifice for
ALL analytes


Corrosion
resistance to
prevent
column and
MS fouling
leachates


Hybrid
inorganic/
organic LC
surfaces to
protect metal-
sensitive
analytes

Consistent Chromatography for Fructose 1,6-bisphosphate from the First to Tenth Injection

- Atlantis BEH™ C₁₈ AX 1.7 µm Particles
- Fructose 1,6-bisphosphate, 0.2 µm injected

- Conditions
 - 10 mM ammonium formate pH 2.00 (aq)
 - Column Temp.: 30 °C
 - ESI - detection

	n=6 Columns	MaxPeak HPS	Stainless Steel
Ave injection %RSD	3.6%	3.6%	29.6%
% Change in Area inj. 1 - inj. 10	10.8%	10.8%	341.8%

THE ULTIMATE SOLUTION FOR YOUR CHROMATOGRAPHIC SEPARATIONS

Eliminate doubt with consistent performance and reliable results right from the start

Trusted Particle Technology

- Flexible options for ALL applications
- Growing number of chemistries available

Acquity™ PREMIER

Atlantis™ PREMIER Columns

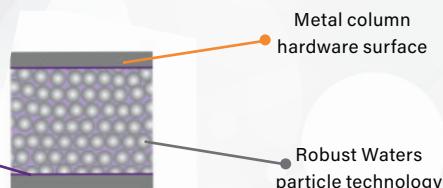
XBridge™ PREMIER Columns

CORTecs™ PREMIER Columns

XSELECT™ PREMIER Columns

High Performance Surfaces

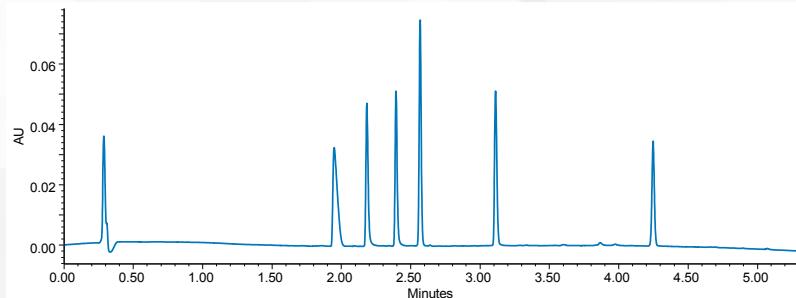
- See everything in your sample
- Reduce variability risks
- Confidence in your results


Integrated Column Protection

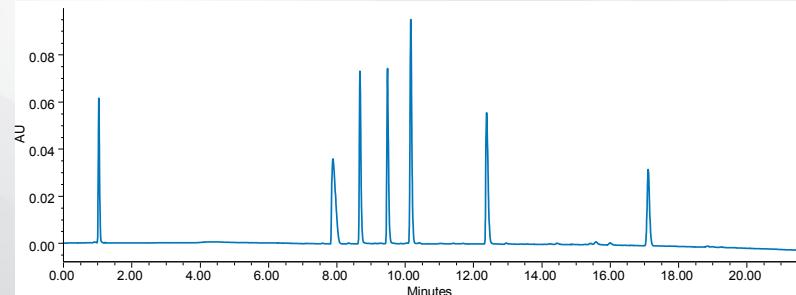
- Protection for your investment
- Increase your column lifetime
- Maintain separation efficiency

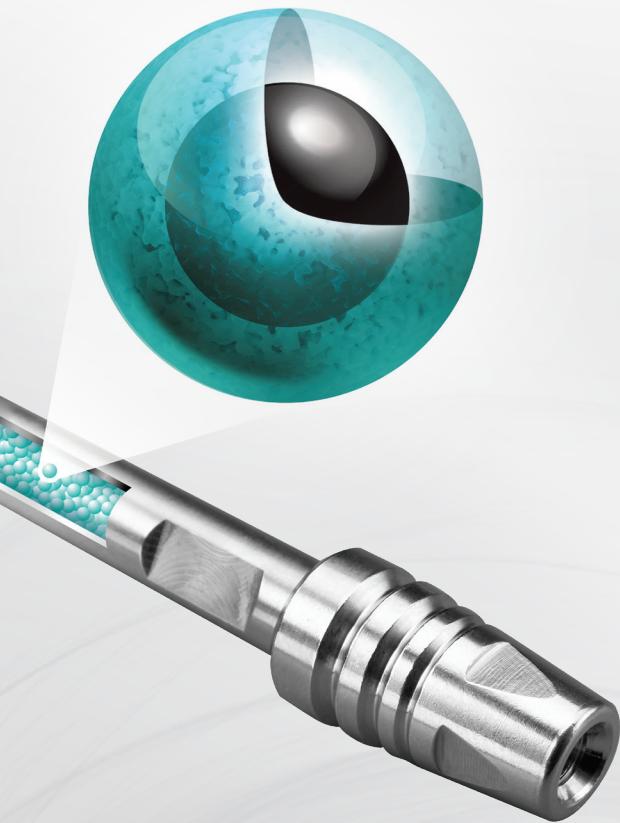
VANGUARD™
COLUMN PROTECTION

Hybrid organic/inorganic surface technology



WHY SCALABILITY MATTERS


Fully scalable column chemistries and column hardware technology allows for seamless migration of methods from UPLC™ to HPLC and beyond.


MaxPeak Premier Columns help you create and transfer methods, from development to QC, using any LC system. Eliminate doubt with the total solution you can trust.

ACQUITY™ Premier BEH C₁₈, 1.7 µm, 2.1 x 50 mm Column, H-Class UPLC System

XBridge Premier BEH C₁₈, 3.5 µm, 4.6 x 100 mm Column, Arc HPLC System

Solid-core particle packing materials combine a fully-porous surface layer that has been bonded to a solid-core substrate. This combination creates a highly efficient particle that maintains chromatographic resolution while offering the advantage of lower column backpressures.

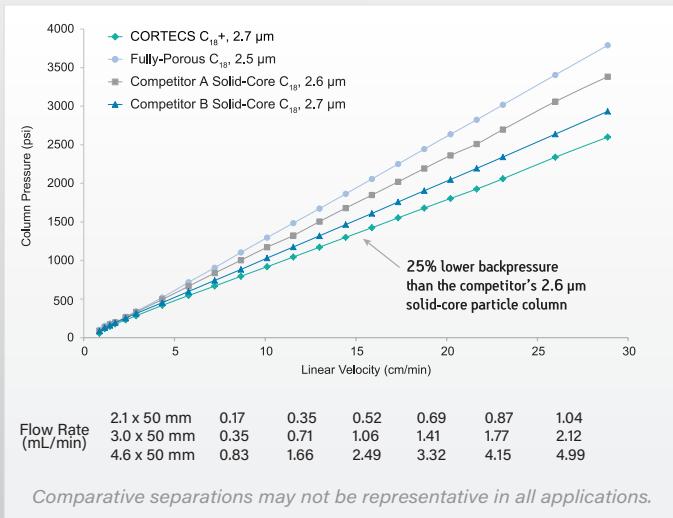
CORTECS 5 μ m and 2.7 μ m Solid-Core Particle Columns maximize resolution and peak capacity for all LC separations and are optimized to increase the efficiency performance of your HPLC instrumentation. The innovative solid-core technology and bonding chemistry used in CORTECS Columns help you by:

- **Reducing Operational Backpressure:** Lower backpressure without sacrificing efficiency
- **Increasing Resolution:** Higher column efficiency for your most challenging separations
- **Simplifying Method Transfers:** Compatible with a wide range of chromatographic systems

The selection of CORTECS 5 μ m and 2.7 μ m Columns in both reversed-phase and HILIC phases give you the flexibility to rapidly separate a wide range of compound classes. The improved efficiency of CORTECS Solid-Core Columns produces sharper, narrower peaks compared to columns using fully-porous substrates and is also available with MaxPeak High Performance Surfaces (HPS) Technology for your most challenging separations.

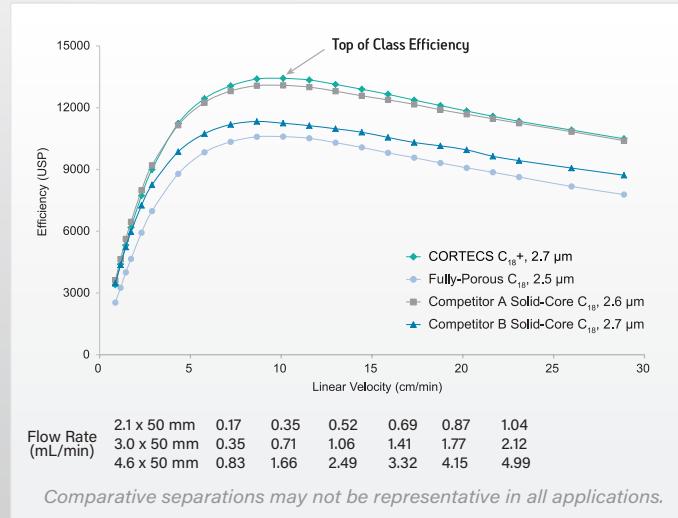
CORTECS	C ₁₈ +	C ₁₈	T3	Shield RP18	C ₈	Phenyl	HILIC
Ligand Type	Trifunctional C ₁₈	Trifunctional C ₁₈	Trifunctional C ₁₈	Monofunctional Embedded Polar	Trifunctional C ₈	Trifunctional C ₆ Phenyl	None
Ligand Density*	2.4 μ mol/m ²	2.7 μ mol/m ²	1.6 μ mol/m ²	3.2 μ mol/m ²	3.4 μ mol/m ²	3.2 μ mol/m ²	N/A
Carbon Load*	5.7%	6.6%	4.7%	6.4%	4.5%	5.9%	Unbonded
End-capped	Proprietary	Proprietary	Proprietary	Proprietary	Proprietary	Proprietary	No
pH Range	2–8	2–8	2–8	2–8	2–8	2–8	1–5
Temp. Limit	60 °C	60 °C	60 °C	60 °C	60 °C	60 °C	60 °C
Pore Diameter	90 Å	90 Å	120 Å	90 Å	90 Å	90 Å	90 Å
Surface Charge Modification	+	None	None	None	None	None	None
USP Classification	L1	L1	L1	L1	L7	L11	L3

All CORTECS Columns are available in UPLC particle sizes.


Chemistries with a MaxPeak Premier Logo are available in both standard and MaxPeak Premier column hardware.

* Expected or approximate values.

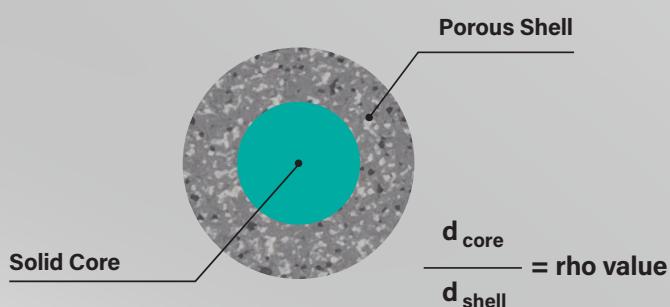
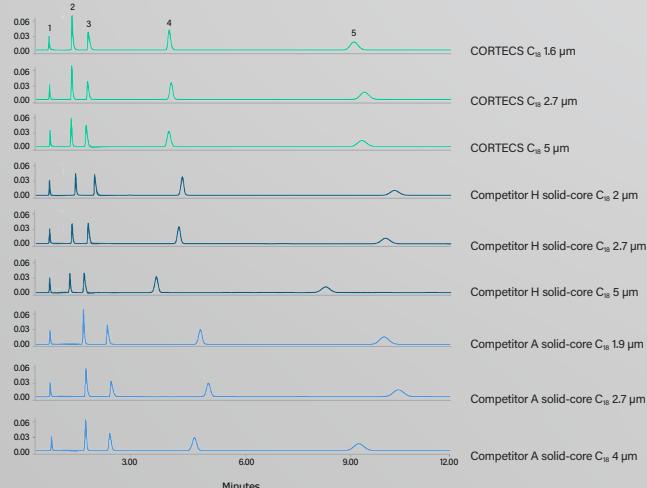
INCREASED EFFICIENCY


CORTECS Columns reduce operational backpressure, allowing you to run methods using conventional HPLC instrumentation with increased efficiency, allowing for improved resolution of co-eluting peaks in complex sample mixtures.

Backpressure Advantages of CORTECS 2.7 μm Columns

CORTECS 2.7 μm Columns offer a 25% reduction in operating backpressure – without sacrificing efficiency. Data conditions – Columns: 2.1 x 50 mm; Mobile phase: water/acetonitrile (25/75, v/v); Column temperature: 30 °C.

Efficiency Advantages of CORTECS 2.7 μm Columns

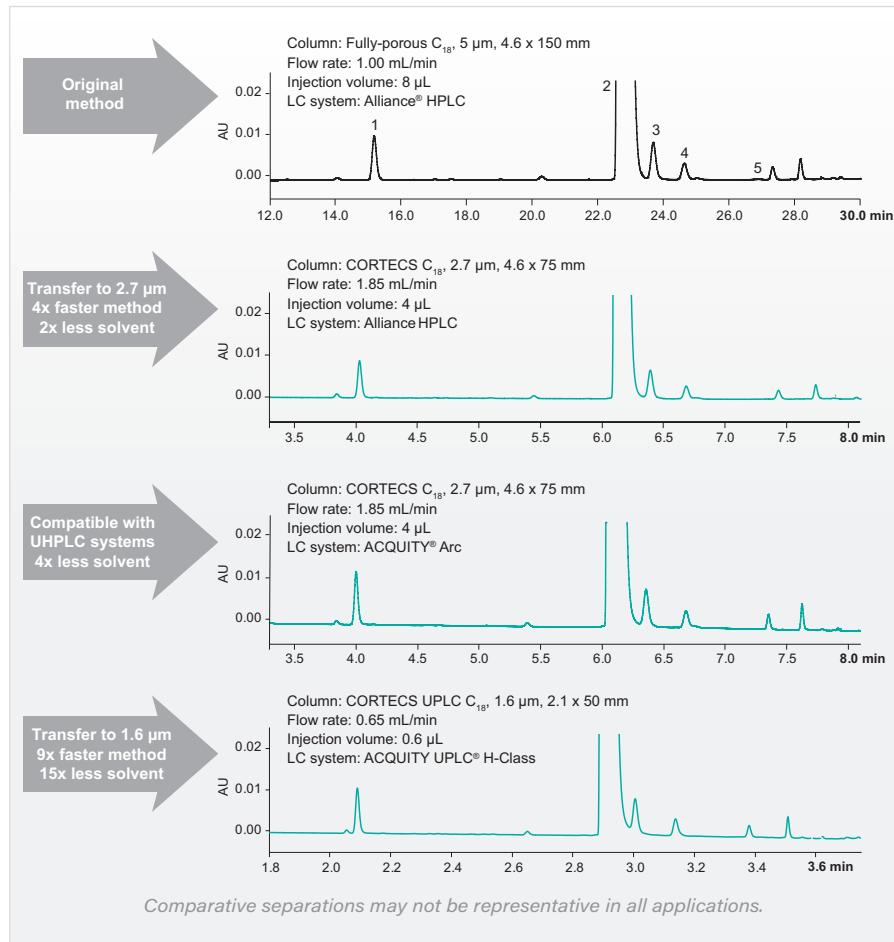



CORTECS 2.7 μm Columns exhibit excellent efficiency compared to similarly-sized, fully-porous and solid-core particle columns. Data conditions – Columns: 2.1 x 50 mm; Mobile phase: water/acetonitrile (25/75, v/v); Column temperature: 30 °C; Compounds: acenaphthene (200 $\mu\text{g/mL}$), octanophenone (100 $\mu\text{g/mL}$).

SEAMLESS SCALABILITY

CORTECS Premier Columns are available in 1.6 μm , 2.7 μm and 5 μm Particle Sizes for Seamless Scalability and Simple Method Transfer.

The ratio of the solid-core diameter compared to the porous shell diameter (rho value) can have a significant effect on analyte retention times. Waters maintains a consistent rho value across all three of our CORTECS particle sizes, because it is critical to producing consistent and scalable chromatography.

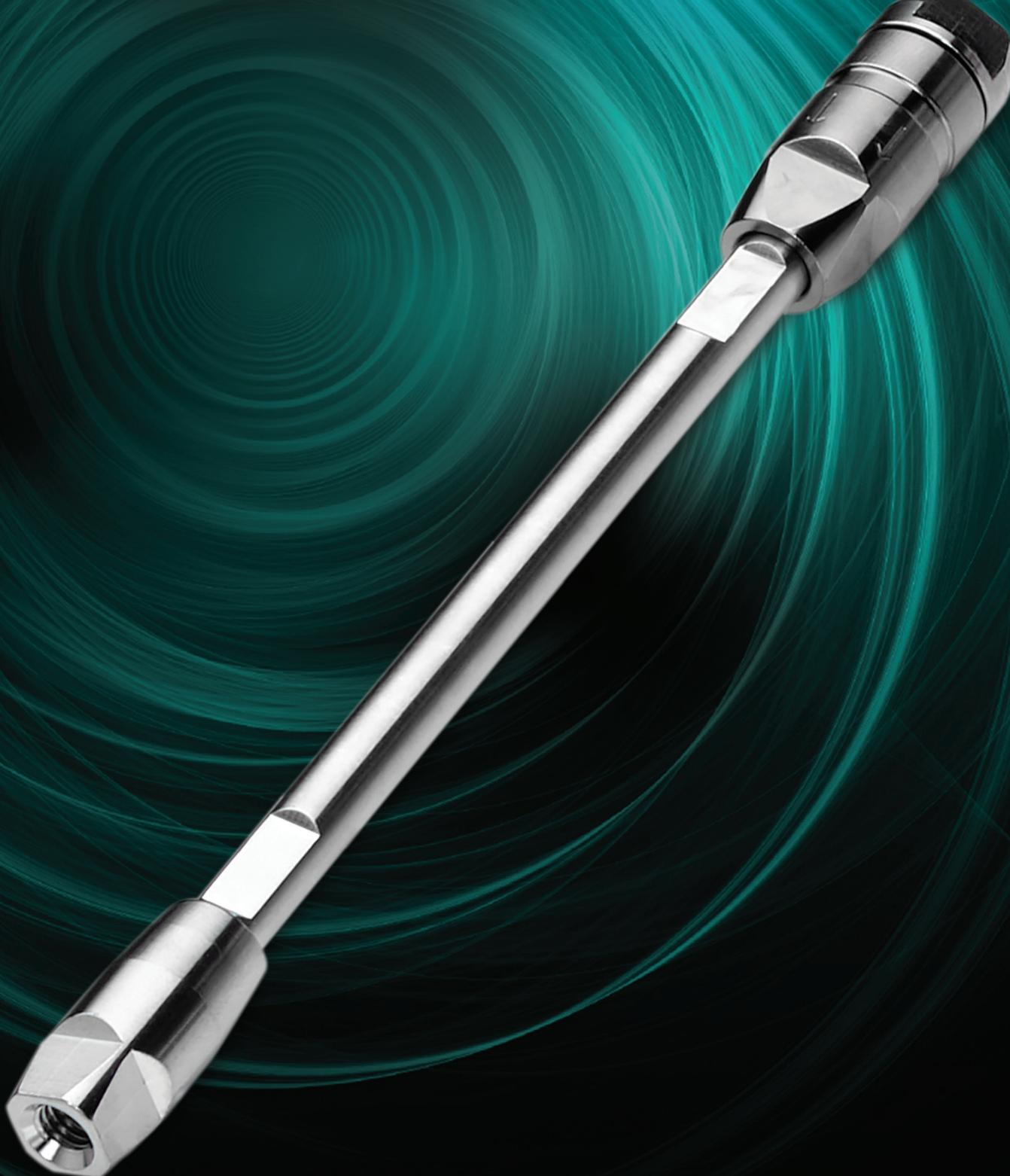


THE CORTECS FAMILY

A dedicated selection of 7 phases can be used to separate a wide array of compound classes. CORTECS C₁₈ Column provides a balanced retention profile for acidic, basic, and neutral compounds. CORTECS C₁₈₊ Column gives the best peak shape and increased sensitivity of basic analytes when using low ionic strength mobile phases such as formic acid. CORTECS T3 Column is an excellent phase to use when separating compounds of various polarity. The lower C₁₈ ligand density provides balance retention for both polar and nonpolar compounds and the 120 Å pore diameter allows for the use of 100% aqueous mobile phase. CORTECS C₈ Column, being less hydrophobic than a typical C₁₈ bonded phase, is an excellent choice for the separation of strongly hydrophobic compounds. CORTECS Phenyl Column offers alternative selectivity to C₈ and C₁₈ due to analyte interactions with the benzyl ring; selectivity differences for this phase are particularly noticed for aromatic compounds especially when using methanol as the organic modifier. The CORTECS Shield RP18 Column also provides alternative selectivity over typical C₈ and C₁₈ bonded phases due to the embedded polar group, and is a great choice for method development, especially for phenolic and basic compounds.

The orthogonal unbonded CORTECS HILIC Column phase provides superior peak shape and retention of polar analytes. With particle sizes that are compatible with HPLC, UPLC, and UHPLC platforms, any method that you develop can be simply and seamlessly transferred without limitation to particle size, column configuration, or instrument manufacturer.

USP Method Transfer of Abacavir with Time and Solvent


LC Conditions

Mobile phase A:	0.1% trifluoroacetic acid in water
Mobile phase B:	85% methanol in water
Column A:	Fully-Porous C ₁₈ , 5 μm, 4.6 x 150 mm
Column B:	CORTECS C ₁₈ , 2.7 μm, 4.6 x 75 mm
Column C:	CORTECS C ₁₈ , 2.7 μm, 3.0 x 75 mm
Column D:	CORTECS C ₁₈ , 1.6 μm, 2.1 x 50 mm
Geometrically-scaled gradients (i.e., same column volumes per gradient step):	
Column A:	5 to 30% B in 23.6 min and 30 to 90% B in 14.8 min
Column B:	5 to 30% B in 6.4 min and 30 to 90% B in 4.0 min
Column C:	5 to 30% B in 6.4 min and 30 to 90% B in 4.0 min
Column D:	5 to 30% B in 2.5 min and 30 to 90% B in 1.6 min

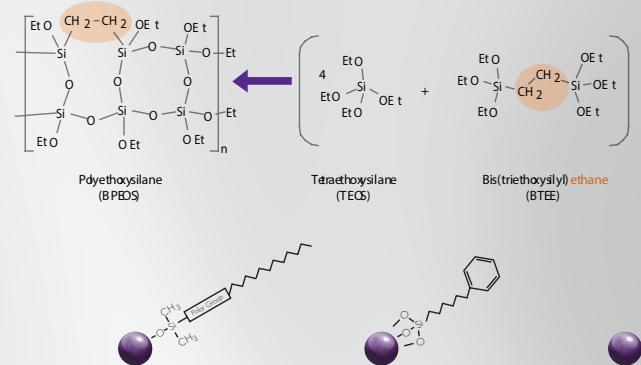
Compounds

1. Dicyclopropyl Abacavir
2. Abacavir
3. 1R,4R trans-Abacavir
4. o-(4-Chloro-2,5-diaminopyrimidinyl)-abacavir
5. o-t-Butyl-abacavir

Methods developed on 5 μm fully-porous columns can be scaled and transferred to shorter 2.7 μm columns. For further efficiency gains and productivity improvements, sub-2-μm UPLC columns can be used, enabling greater flexibility in method consistency when transitioning between laboratories within an organization or to contract partners.

XBridge™ Columns are the benchmark for LC method ruggedness and longevity. They were designed to have superior pH stability over the widest pH range (1-12), high efficiencies, and symmetrical peak shape. XBridge Columns are designed to help you by:

- **Improving pH Stability:** Increased column lifetime
- **Improving Column Reliability:** Assay ruggedness
- **Maximizing Particle Efficiency:** Unmatched peak shape and peak capacity


With more than of 10 general purpose and application specific sorbents in the widest range of particle sizes available, no other HPLC column family gives you the tools you need for the most demanding chromatographic challenges.

Whether you require robust HPLC methods, seamless UPLC transferability, or preparative scaling for product isolation, you can count on the versatility of an XBridge Column.

BASED ON BEH TECHNOLOGY

Ethylene Bridged Hybrid (BEH) Technology synthesis creates particles that exceptional extreme column performance and long column lifetimes under harsh operating conditions.

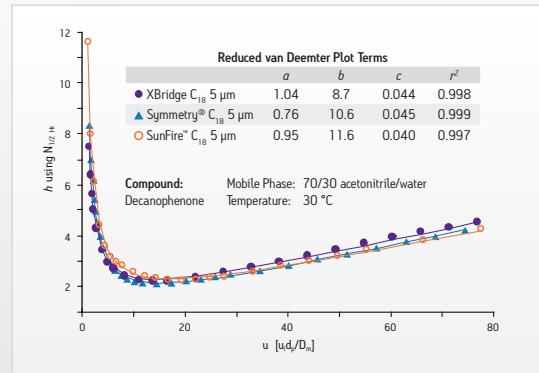
The particle is prepared from two high purity monomers: tetraethoxysilane (TEOS) and bis(triethoxysilyl)ethane (BTTEE), which results in a highly stable, pH resistant, and mechanically strong particle.

XBridge	C ₁₈ MAXPEAK®	C ₈ MAXPEAK®	Shield RP18	Phenyl MAXPEAK®	HILIC
Ligand Type	Trifunctional C ₁₈	Trifunctional C ₈	Monofunctional Embedded Polar	Trifunctional Phenyl-Hexyl	Unbonded BEH Particle
Ligand Density*	3.1 µmol/m ²	3.2 µmol/m ²	3.3 µmol/m ²	3.0 µmol/m ²	N/A
Carbon Load*	18%	13%	17%	15%	Unbonded
End-capped	Proprietary	Proprietary	TMS	Proprietary	No
USP Classification	L1	L7	L1	L11	L3
pH Range	1-12	1-12	2-11	1-12	1-9
Temp. Limit	80 °C	60 °C	50 °C	80 °C	60 °C
Pore Diameter*	130 Å	130 Å	130 Å	130 Å	130 Å
Surface Area*	185 m ² /g	185 m ² /g	185 m ² /g	185 m ² /g	185 m ² /g
Particle Size	2.5, 3.5, 5, 10 µm	2.5, 3.5, 5, 10 µm	2.5, 3.5, 5, 10 µm	2.5, 3.5, 5 µm	2.5, 3.5, 5 µm

Chemistries with a MaxPeak Premier Logo are available in both standard and MaxPeak Premier column hardware.

* Expected or approximate value.

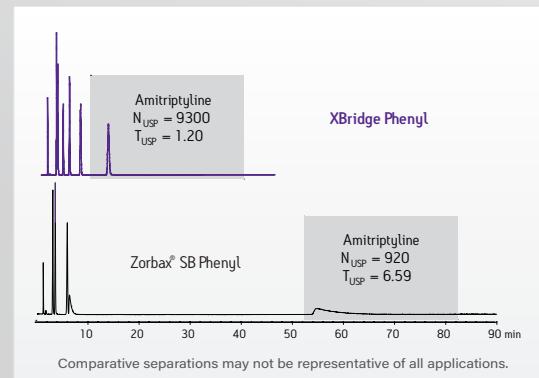
MAXIMIZING COLUMN EFFICIENCY AND COLUMN LIFETIME


One of the most important parameters in designing the BEH particle was to significantly improve the chromatographic performance of the base particle. The origins of band spreading, which decreases separation efficiency, are described by the van Deemter equation. The c-term in the van Deemter equation describes the mass transfer characteristics of an analyte as it interacts with the internal surface of the stationary phase.

State-of-the-art silica-based phases have excellent mass transfer; however, they are limited to a narrow range of chromatographic conditions. A comparison of silica to the BEH particle reveals that hybrid materials maintain the efficiency while extending the range of usable chromatographic conditions.

CONTROLLED BONDING TO IMPROVE PEAK SHAPE

The ethylene bridge used during the BEH particle synthesis plays a critical role in providing improved chromatographic peak shape. The ethylene bridge links adjoining silanols. This not only increases particle strength, it reduces free silanol sites to minimize the adverse interactions with the injected sample. Traditional methods such as excessive end capping are limited to the steric hindrance of the end capping agent and bonded ligand to the active site. As a result, free silanol sites may be exposed creating broad and tailing chromatographic peaks. The ethylene bridge reduces the number of free silanols to provide a sterically favorable ratio for bonding and end capping the ligand. Controlling this process is one of the ways that XBridge Columns can provide unsurpassed peak shape performance.

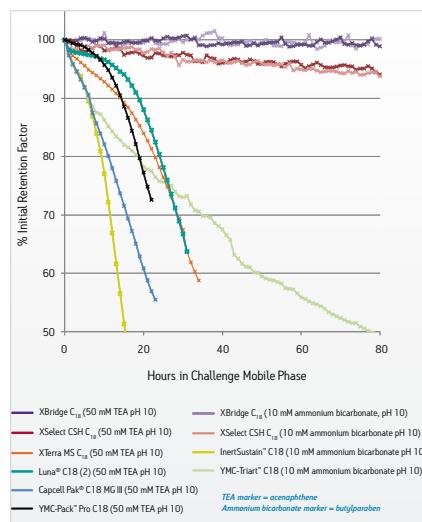

van Deemter Curve Comparison

The reduced plate height, h , is a function of the reduced linear velocity, v , (both normalized for particle size) and a , b , and c summarize the contributions of eddy diffusion, longitudinal diffusion, and the sum of stationary- and mobile-phase mass transfer terms, respectively.

$$h = a + b/u + cu$$

Excellent Peak Shape

XBridge Phenyl Columns combine trifunctional bonding of the phenyl-hexyl ligand with proprietary end capping to produce industry-leading stability and exceptional peak shape.

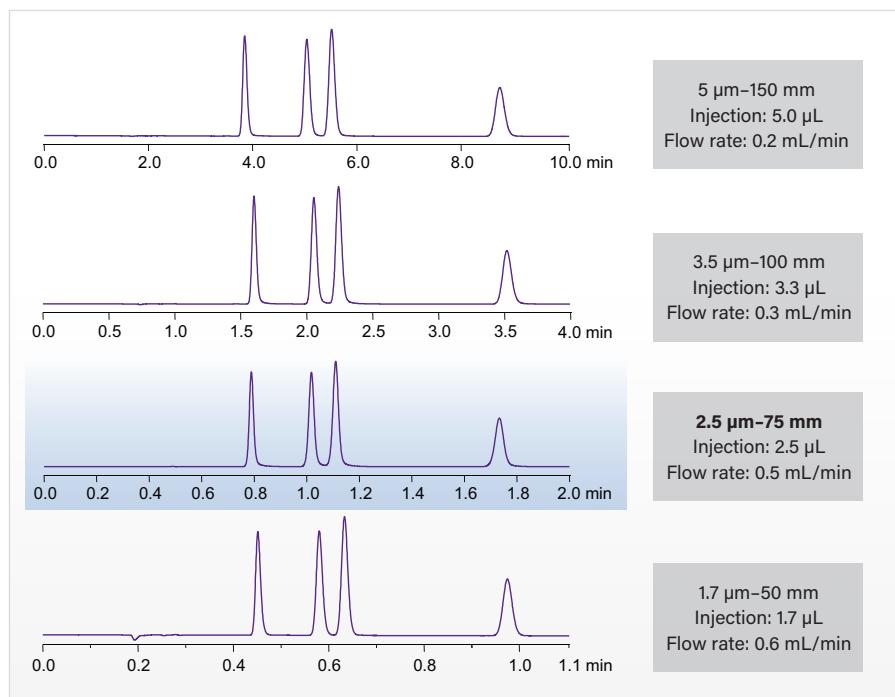

Amide	MAXPEAK	Peptide BEH C ₁₈ , 130 Å	Peptide BEH C ₁₈ , 300 Å	Protein BEH C ₄ , 300 Å	Oligo BEH C ₁₈	SEC
Amide	Trifunctional C ₁₈	Trifunctional C ₁₈	Trifunctional C ₁₈	Monofunctional C ₄	Trifunctional C ₁₈	SEC
7.5 μ mol/m ²	3.1 μ mol/m ²	3.1 μ mol/m ²	2.4 μ mol/m ²	3.1 μ mol/m ²		N/A
12%	18%	12%	8%	18%		12%
No	Proprietary	Proprietary	No	Proprietary		No
N/A	L1	L1	L26	L1		L33
2-1	1-12	1-12	1-10	1-12		1-8
90 °C	80 °C	80 °C	80 °C	80 °C		45 °C
130 Å	130 Å	300 Å	300 Å	130 Å		125, 200, 450 Å
185 m ² /g	185 m ² /g	90 m ² /g	90 m ² /g	185 m ² /g		220 m ² /g
2.5, 3.5, 5 μ m	3.5, 5, 10 μ m	3.5, 5, 10 μ m	3.5 μ m	2.5 μ m		3.5 μ m

PH STABILITY

XBridge BEH Columns have been specifically designed to contain the most chemically-stable chromatographic sorbent available, allowing you to explore the full benefits of a wide pH (1-12) mobile-phase range.

Chemical stability, especially for the extremes of pH, is built into the particle during the synthesis process and it cannot be duplicated using a conventional silica-based bonding process. No other column can match the chemical stability of an XBridge Column.

Accelerated High pH Stability Test of Competitive Columns



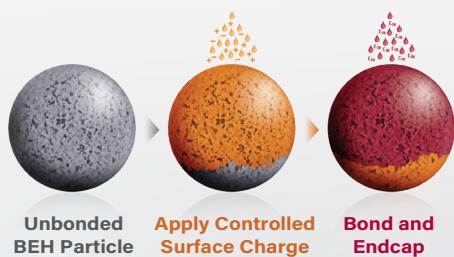
XBridge Columns resist base particle dissolution and ligand hydrolysis when used with high-pH mobile phases. No other column family has the extended lifetime of an XBridge HPLC column at elevated pH.


METHOD TRANSFER USING XP 2.5 μ m COLUMNS

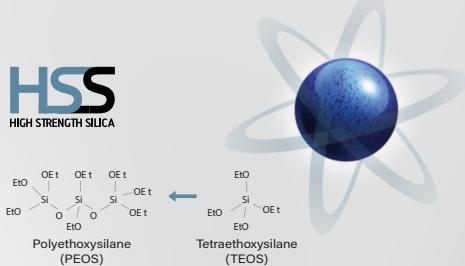
All XBridge and XSelect HPLC Columns are offered in eXtended Performance [XP] 2.5 μ m UHPLC Column formats to help you transfer methods from HPLC to UPLC instrumentation. The XP 2.5 μ m Columns improve the performance of your current HPLC and UHPLC instrumentation and provide you with a pathway to gain maximum separation efficiency using sub-2- μ m ACQUITY UPLC Technology.

Scalable Separations

Columns of different lengths and particle sizes were used to successfully reduce run times and maintain resolution.



XSelect HPLC Columns are designed for the method development scientist who demands the most diverse selection of sorbents to easily separate the most difficult analyte co-elutions. XSelect Columns are tools that are:


- **Designed for Selectivity:** Improve your ability to separate closely eluting peaks
- **Made for Transferability:** Identical α 's across particle sizes.
- **Ideal for Rapid Method Development:** Reduce the time and cost spent developing methods

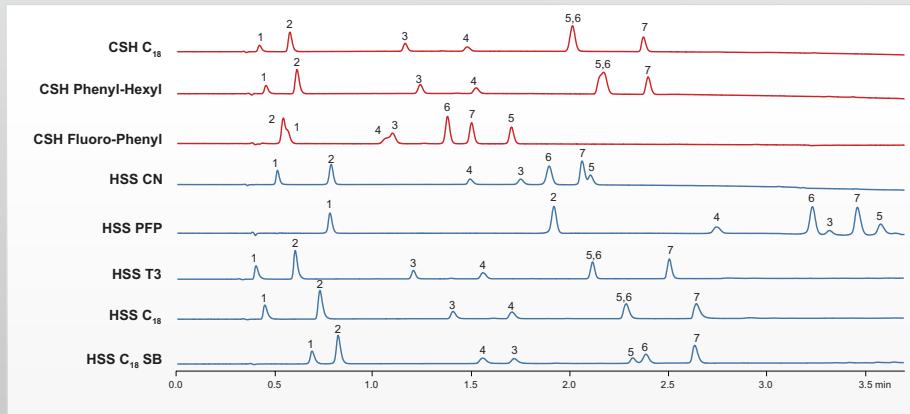
The XSelect HPLC Column family features two base particles with a unique blend of optimized ligands to provide highly selective chromatographic phases while maintaining the reproducibility expected from modern high performance LC columns. With more than 8 selectivity-optimized bonded phases and 3 scalable particles sizes, XSelect Columns are your first choice for method development.

The Charged-Surface Particle

Charged Surface Hybrid (CSH) particles incorporate a low level surface charge that improves sample loading and peak symmetry when using low ionic strength mobile phases. The CSH particle is the next evolution of hybrid particle technology that maintains the mechanical and chemical stability inherent in BEH particle technology.

Many silica-based particles do not have the mechanical stability to withstand the high operational pressures used with modern LC instrumentation. High Strength Silica (HSS) is the first and only 100% silica-based particle substrate that has been designed and tested for mechanical stability up to 18,000 psi (1240 bar).

XSelect	MAXPEAK CSH C ₁₈	CSH Phenyl-Hexyl	CSH Fluoro-Phenyl	HSS T3 MAXPEAK	HSS C ₁₈	HSS C ₁₈ SB	HSS PFP	HSS CN
Ligand Type	Trifunctional C ₁₈	Trifunctional C ₆ Phenyl	Trifunctional Propylfluorophenyl	Trifunctional C ₁₈	Trifunctional C ₁₈	Trifunctional C ₁₈	Trifunctional Pentafluorophenyl	Monofunctional Cyano-propyl
Ligand Density*	2.3 $\mu\text{mol}/\text{m}^2$	2.3 $\mu\text{mol}/\text{m}^2$	2.3 $\mu\text{mol}/\text{m}^2$	1.6 $\mu\text{mol}/\text{m}^2$	3.2 $\mu\text{mol}/\text{m}^2$	1.6 $\mu\text{mol}/\text{m}^2$	3.2 $\mu\text{mol}/\text{m}^2$	2.0 $\mu\text{mol}/\text{m}^2$
Carbon Load*	15%	14%	10%	11%	15%	8%	7%	5%
End-capped	Proprietary	Proprietary	No	Proprietary	Proprietary	No	No	No
USP Classification	L1	L11	L43	L1	L1	L1	L43	L10
pH Range	1–11	1–11	1–8	2–8	1–8	2–8	2–8	2–8
Temp. Limit	80 °C	80 °C	60 °C	60 °C	60 °C	60 °C	60 °C	60 °C
Pore Diameter*	130 Å	130 Å	130 Å	100 Å	100 Å	100 Å	100 Å	100 Å
Surface Area*	185 m^2/g	185 m^2/g	185 m^2/g	230 m^2/g	230 m^2/g	230 m^2/g	230 m^2/g	230 m^2/g
Particle Size	2.5, 3.5, 5, 10 μm	2.5, 3.5, 5 μm	2.5, 3.5, 5 μm	2.5, 3.5, 5 μm	2.5, 3.5, 5 μm	2.5, 3.5, 5 μm	2.5, 3.5, 5 μm	2.5, 3.5, 5 μm


Chemistries with a MaxPeak Premier Logo are available in both standard and MaxPeak Premier column hardware.

* Expected or approximate value.

ENHANCED SELECTIVITY

Selectivity and retentivity are the most powerful tools a method developer has to influence chromatographic behavior. The XSelect family offers a diverse range of reversed-phase C₁₈ columns (e.g., CSH C₁₈, HSS C₁₈, HSS C₁₈ SB) for general purpose separations; as well as columns that offer improved polar retention (T3) and greater selectivity options (phenyl-hexyl, fluoro-phenyl, and cyano) for method development.

XSelect Columns Provide Diverse Analyte Selectivity

Observed selectivity differences for a mixture of basic analytes. Compounds: [1] aminopyrazine, [2] pindolol, [3] quinine, [4] labetalol, [5] verapamil, [6] diltiazem, [7] amitriptyline.

LC Conditions

LC system:	ACQUITY UPLC with ACQUITY UPLC PDA Detector		
Columns:	2.1 x 50 mm		
Mobile phase A:	10 mM ammonium formate, pH 3.0		
Mobile phase B:	Methanol		
Flow rate:	0.4 mL/min		
Injection volume:	1 μ L		
Sample diluent:	Water		
Column temp.:	30 °C		
Gradient:	Time (min)	%A	%B
	0.00	70	30
	3.00	15	85
	3.50	15	85
	3.51	70	30
	4.50	70	30
Detection:	260 nm		

METHOD DEVELOPMENT AND TRANSFER

When developing methods, skilled chromatographers realize that any method developed using uniquely selective columns must be easily transferable across laboratories, independent of the LC system platform used. XSelect Columns are engineered for method development and are fully compatible with all modern detection modes.

Many chromatographic laboratories are now part of multi-national/multi-site organizations that utilize LC systems from different vendors with varying LC platform configurations and detection modes. From a global business perspective, it is vital to be able to quickly and easily develop robust methods that are not only compatible with all modern chromatographic detection modes, but are also transferable to laboratories and sites that may operate different LC system platforms. XSelect Columns were strategically created for the 21st-century global chromatographic marketplace.

Reproducible and Scalable Separations

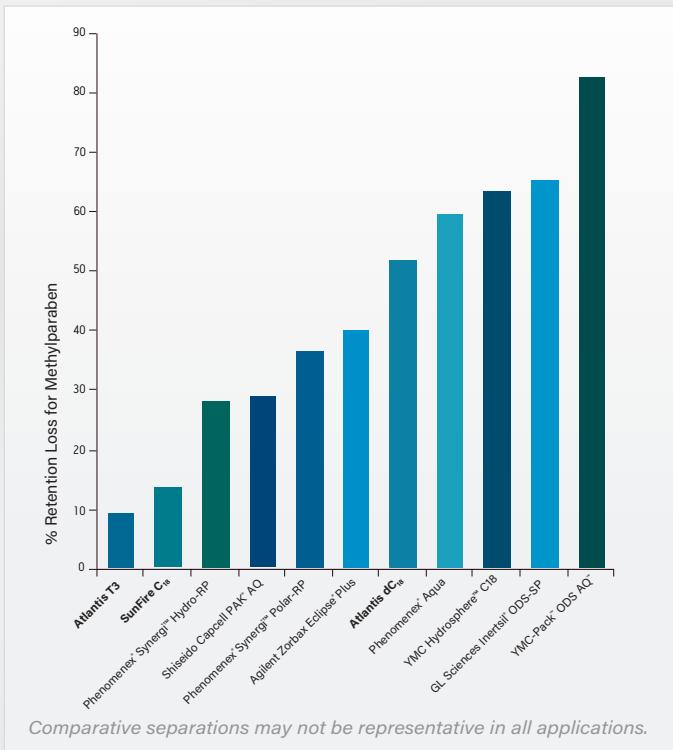
LC Conditions

LC system: ACQUITY UPLC with ACQUITY UPLC PDA Detector
Columns: 2.1 x 50 mm
Flow rate: 0.5 mL/min
Mobile phase A: 15.4 mM ammonium formate, pH 3.0
Mobile phase B: Acetonitrile
Gradient: 5 to 90% B linear in 5 minutes
Injection volume: 5 μ L
Column temp.: 30 °C
Detection: 254 nm

Compounds

1. Thiourea
2. Resorcinol
3. Metoprolol
4. 3-Nitrophenol
5. 2-Chlorobenzoic acid
6. Amitriptyline
7. Diethylphthalate
8. Fenoprofen
9. Dipropylphthalate
10. Pyrenesulfonic acid

Atlantis™ HPLC Columns provide exceptional performance, versatility, and retention for polar compounds, while also affording balanced retention for broad analyte mixtures.


COMPATIBILITY WITH 100% AQUEOUS MOBILE PHASES

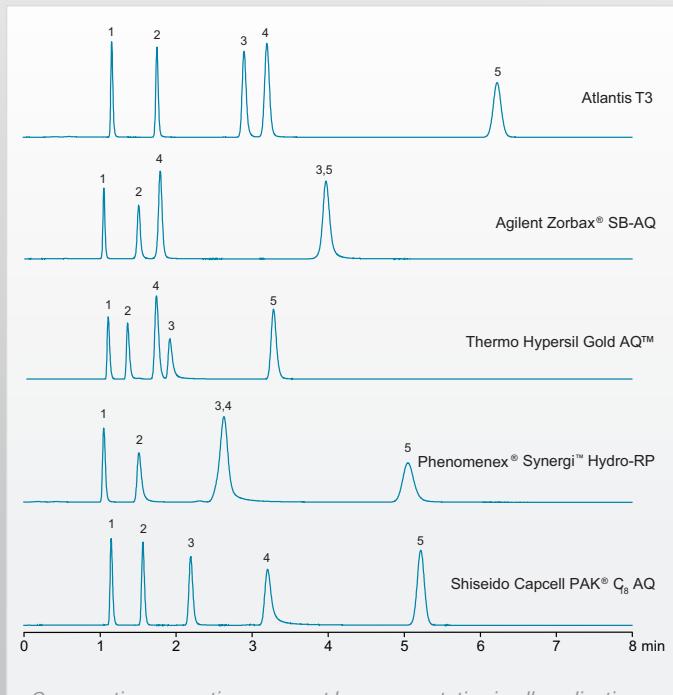
To maximize polar compound retention in reversed-phase methods, it is possible to use Atlantis Reversed-phase HPLC Columns with highly aqueous mobile phases and buffers without the risk of pore dewetting and hydrophobic collapse of the stationary phase.

LONG COLUMN LIFETIMES USING LOW-PH MOBILE PHASES

Atlantis Columns resist ligand hydrolysis when using strongly acidic mobile phases, thus maintaining method efficiency, compound retention, and critical analyte selectivity.

20 Hour Exposure to 0.5% TFA at 60 °C

During this accelerated test, the columns were exposed to low pH and high temperature conditions to determine the affect of ligand loss due to hydrolysis. The Atlantis T3 bonding resists ligand hydrolysis to maintain analyte retention using extremely harsh mobile-phase conditions.


Atlantis	T3	dC ₁₈	HILIC Silica	C ₁₈ AX <small>MAXPEAK</small>	Z-HILIC <small>MAXPEAK</small>
Ligand Density*	1.6 µmol/g	1.6 µmol/g	N/A	N/A	N/A
Carbon Load*	14%	12%	N/A	17%	17%
End-capped	Proprietary	Proprietary	No	Yes	No
USP Classification	L1	L1	L3	L78	L122
pH Range	2-8	3-7	1-5	10 pH Max	2-10 pH
Low pH Temp. Limit	45 °C	45 °C	45 °C	60 °C	60 °C
High pH Temp. Limit	45 °C	45 °C	45 °C	60 °C	60 °C
Pore Diameter*	100 Å	100 Å	100 Å	95 Å	95 Å
Surface Area*	330 m ² /g	330 m ² /g	330 m ² /g	270 m ² /g	270 m ² /g
Particle Size	3, 5, 10 µm	3, 5, 10 µm	3, 5, 10 µm	2.5, 5 µm	2.5, 5 µm

* Expected or approximate value.

POLAR COMPOUND RETENTION WITHOUT ION-PAIRING REAGENTS

Eliminating ion-pairing reagents improves detection limits, method reproducibility, and robustness, while reducing instrument maintenance due to harsh mobile-phase environments.

Polar Compound Retention

Comparative separations may not be representative in all applications.

Separating highly polar analytes on the Atlantis T3 Column compared to competitive brands. Scientists rely on the uncompromised peak shape and retention that only Atlantis Columns provide.

LC Conditions

LC system:	Alliance 2695 with 2487 Dual-Wavelength Absorbance Detector
Column:	4.6 x 150 mm
Mobile phase:	10 mM ammonium formate, pH 3.0
Flow rate:	1.3 mL/min for 3 μ m
Injection volume:	2.0 μ L
Column temp.:	30 °C
Detection:	254 nm

Compounds

1. Thiourea
2. 5-Fluorocystine
3. Adenine
4. Guanosine-5'-monophosphate
5. Thymine

SunFire Columns set the standard for state-of-the-art bonded C₁₈- and C₈- silica HPLC columns. Benefiting from years of research and product development, SunFire Columns represent the best in particle and bonding expertise and deliver industry-leading levels of chromatographic performance.

SunFire

	C ₈	C ₁₈	Silica*
Ligand Density*	3.5 $\mu\text{mol/g}$	3.5 $\mu\text{mol/g}$	N/A
Carbon Load*	12%	16%	N/A
End-capped	Proprietary	Proprietary	No
USP Classification	L7	L1	L3
pH Range	2–8	2–8	2–8
Low pH Temp. Limit	40 °C	50 °C	55 °C
High pH Temp. Limit	40 °C	40 °C	45 °C
Pore Diameter*	100 Å	100 Å	100 Å
Surface Area*	340 m^2/g	340 m^2/g	340 m^2/g
Particle Size	2.5, 3.5, 5, 10 μm	2.5, 3.5, 10 μm	5, 10 μm

* Expected or approximate value.

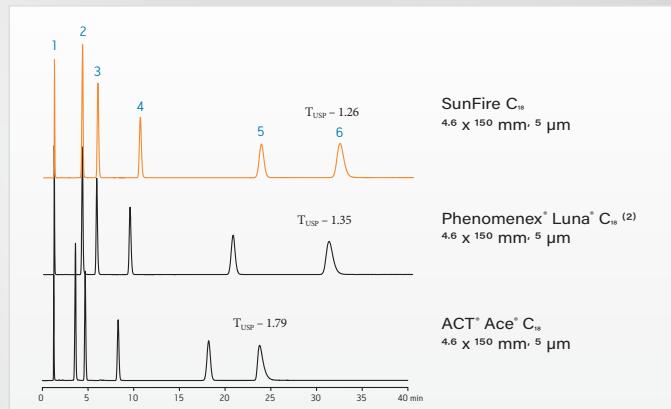
* Silica is available in Prep columns only.

EXCEPTIONAL LOADING CAPACITY

SunFire Columns were designed to have exceptional loading capacity for both analytical and preparative columns.

EXCELLENT LOW-PH STABILITY

Under low-pH mobile-phase conditions, SunFire Columns exhibit superior column lifetimes that exceed many silica-based HPLC column brands.


HIGH EFFICIENCY

A synergistic combination of particle synthesis, packing technology, and hardware engineering is required for high efficiency. SunFire Intelligent Speed™ (IS™) and Optimum Bed Density (OBD™) Columns were developed specifically from this knowledge.

SUPERIOR PEAK SHAPES

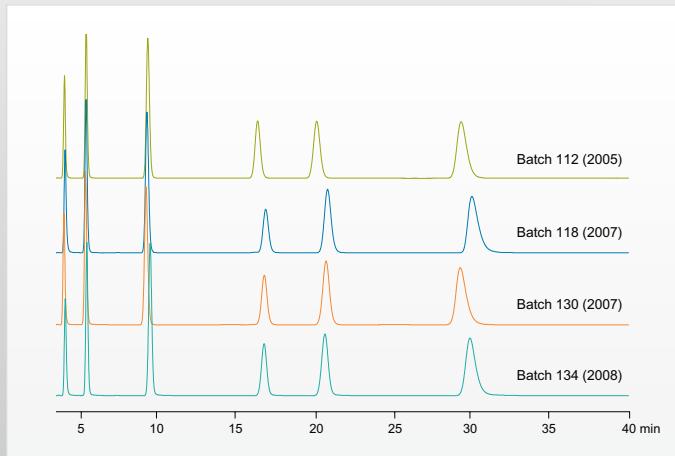
SunFire Columns provide symmetrical peaks for improved resolution of acidic, neutral and basic compounds at low and moderate pH ranges (2–8).

Peak Shape Comparison of SunFire Columns

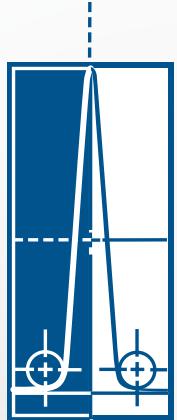
Comparative separations may not be representative in all applications.

Isocratic Separation

LC system: Alliance 2695 with 2487 Dual-Wavelength Absorbance Detector
 Mobile phase A: 35% 20 mM dipotassium phosphate/20 mM monopotassium phosphate pH 7.0
 Mobile phase B: 65% methanol
 Wavelength: 254 nm
 Flow rate: 1.0 mL/min
 Injection vol: 14 μL
 Column temp: 23 °C


Compounds

1. Uracil
2. Propranolol
3. Butylparaben
4. Naphthalene


BATCH-TO-BATCH REPRODUCIBILITY

Waters is dedicated to maintaining the tightest specifications in the HPLC industry. Controlled manufacturing processes and column packing procedures ensure that you receive the best, most reproducible HPLC column available.

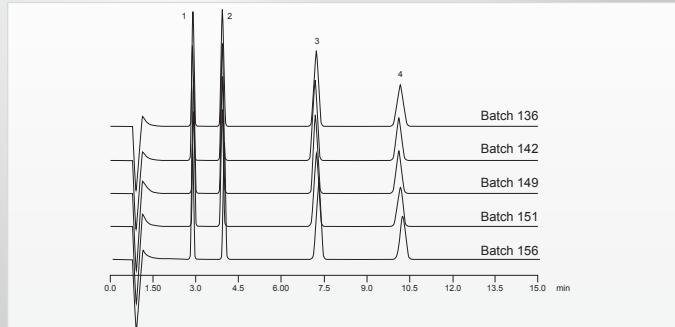
Batch-to-Batch Reproducibility of SunFire Columns


This excellent reproducibility is a result of our commitment to maintaining the tightest specifications in the HPLC column industry. SunFire Columns start with high purity raw materials, and are produced using controlled manufacturing processes and column packing procedures that provide today's scientists with the best, most reproducible HPLC columns available.

Symmetry[®] Columns

Symmetry[™] Columns are manufactured using high purity silica and tightly controlled manufacturing processes to ensure that you receive a column that exceeds the standards for HPLC column performance. Symmetry Columns are one of the most cited analytical columns in scientific literature, which speaks to their long history of predictable performance. Symmetry Columns are available in column, cartridge, and guard formats:

- **Symmetry and SymmetryPrep[™] Columns:** Deliver maximum reproducibility
- **SymmetryShield[™] RP18 and RP8 Columns:** Provide superior peak shape
- **Symmetry300[™] C₁₈ and C₄ Columns:** Offer high recoveries of peptides and proteins



Symmetry	Symmetry and SymmetryPrep C ₁₈	Symmetry and SymmetryPrep C ₈	SymmetryShield RP18	SymmetryShield SymmetryPrep RP8	Symmetry300 C ₁₈	Symmetry300 C ₄
Particle Size	3.5, 5, 7 μm	3.5, 5, 7 μm	3.5, 5, 7 μm	3.5, 5, 7 μm	3.5, 5 μm	3.5, 5 μm
Particle Shape	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical
Pore Size	100 \AA	100 \AA	100 \AA	100 \AA	300 \AA	300 \AA
Carbon Load	19%	12%	17%	15%	8.5%	2.8%
End-capped	Proprietary	Proprietary	Proprietary	Proprietary	Proprietary	Proprietary

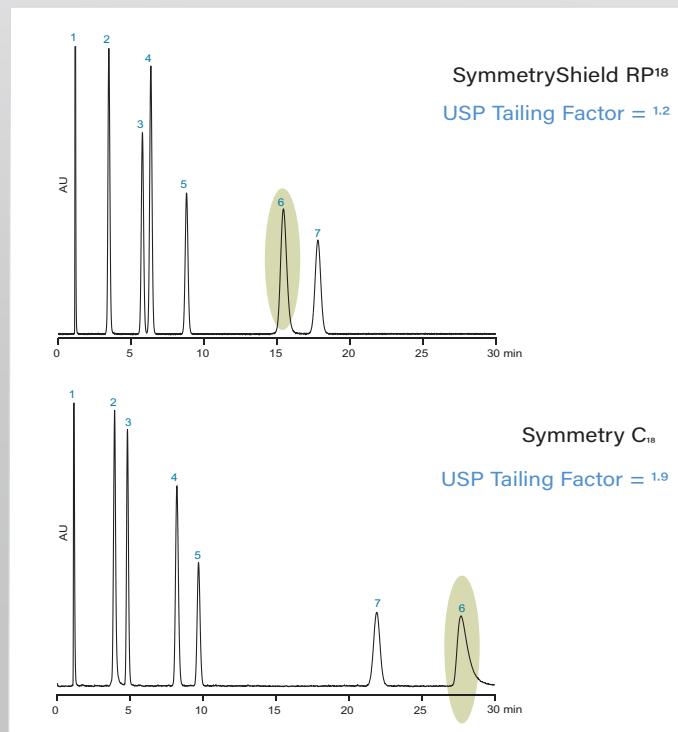
SYMMETRY COLUMNS FOR REPRODUCIBILITY

You can rely on a Symmetry HPLC Column for rugged and reproducible performance. Narrow column specification ranges minimize variation giving you the confidence that the methods you use today will produce the same results used in the future.

Batch-to-Batch Reproducibility of Symmetry Columns

Unmatched year-to-year reproducibility.

LC Conditions


Column: Symmetry C₁₈, 5 μm , 4.6 x 150 mm
Mobile phase A: Water
Mobile phase B: Acetonitrile
Mobile phase C: pH 3.75; 100 mM ammonium formate in water
Flow rate: 1.4 mL/min
Isocratic: 30% A; 60% B; 10% C

Injection vol.: 5.0 μL
Column temp.: 30 $^{\circ}\text{C}$
Detection: 233nm
RSD's for retention times
1. Terbinafine HCl 0.7%
2. Ibuprofen 0.8%
3. Lovastatin 0.6%
4. Simvastatin 0.7%

SYMMETRY COLUMNS FOR SUPERIOR PEAK SHAPE

SymmetryShield Columns feature an embedded polar group that shields the silica's residual silanols from highly basic analytes that improves overall peak shape. Additionally, by placing the embedded polar group close to the silica surface, the activity of the surface silanols is further reduced. This imparts selectivity and retention that is different compared to the Symmetry C₁₈ ligand.

SymmetryShield Columns Deliver Unique Selectivity

Embedded Polar Group Technology improves chromatographic peak shape and selectivity.

LC Conditions

Columns: SymmetryShield RP18, 5 μ m, 3.9 x 150 mm
Mobile phase: Symmetry C₁₈, 5 μ m, 3.9 x 150 mm
65% methanol; 35% 20 mM monopotassium phosphate/dipotassium phosphate at pH 7
Flow rate: 1.0 mL/min
Detection: 254 nm
Column temp: 23 °C

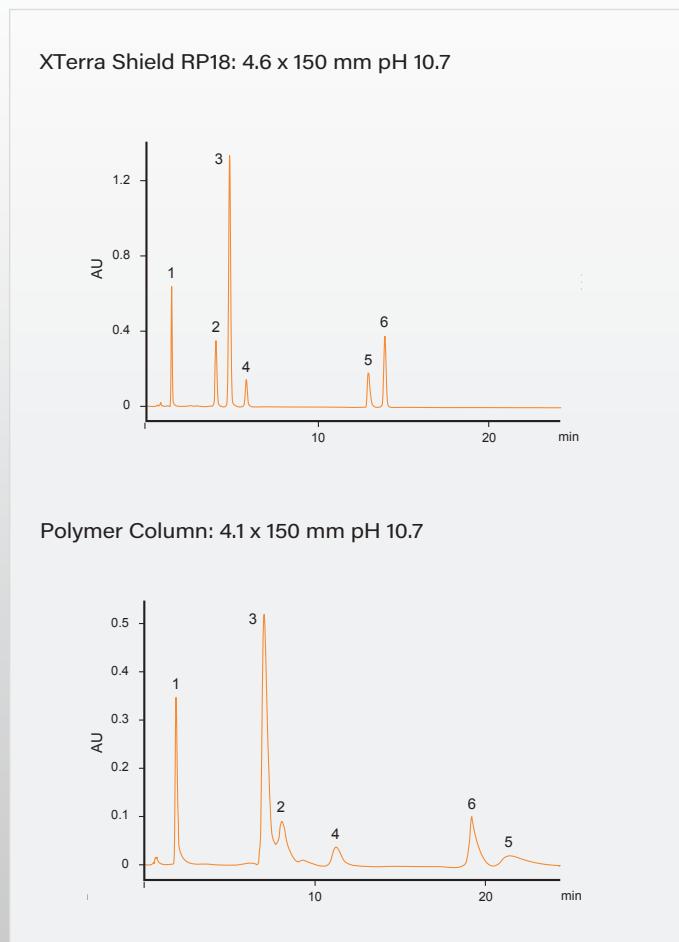
Compounds

1. Uracil
2. Propranolol
3. Butylparaben
4. Dipropyl phthalate
5. Naphthalene
6. Amitriptyline
7. Acenaphthene

Historically, limitations of the stationary phase material have imposed restrictions on speed, resolution, pH, temperature and loading capacity for scientists performing HPLC separations. Xterra™ HPLC Columns combine the best properties of silica and polymeric bonded phases with the first generation Hybrid Particle Technology that replaces one out of every three silanols with a methyl group during particle synthesis. This can only be achieved during the initial particle synthesis and the inclusion of this methyl group is an integral part of the base particle backbone. The result is a mechanically strong particle that can be used for high pH separations that will improve loading and peak shapes for basic compounds.

and unpredictable peak elution order when transferring methods from polymeric to silica based columns. Xterra columns were the first hybrid stationary phase that enabled the high efficiency separations of a silica particle, with the expanded pH range of a polymer particle. Xterra columns remain one of the most, and provides easy scale-up from analytical to preparative chromatography.

THE EFFICIENCY OF SILICA WITH STABILITY OF POLYMERS


One way that chromatographers have attempted to overcome the pH limitations of silica is by turning to polymer-based stationary phases, which come with their own set of limitations, such as poor efficiency, low mechanical strength,

Xterra	MS C ₁₈	Shield RP18	Shield RP8	Phenyl
Particle Size	2.5, 3.5, 5, 10 μm	3.5, 5, 10 μm	3.5, 5, 10 μm	3.5, 5 μm
Particle Shape	Spherical	Spherical	Spherical	Spherical
Pore Size	125 \AA	125 \AA	125 \AA	125 \AA
Carbon Load	15.5%	15.0%	13.5%	12.0%
End-capped	Proprietary	Proprietary	Proprietary	Proprietary

* Expected or approximate value.

Silica Separations at Polymer pH

LC Conditions

LC system: Alliance 2690 with 996 PDA Detector
Mobile phase A: 20 mM ammonium hydroxide, pH 10.7
Mobile phase B: Acetonitrile
Flow rate: 3 mL/min
Gradient:

Time (min)	Profile %A	Profile %B
0.0	70	30
25.0	40	60

Injection vol.: 5 μ L
Column temp.: Ambient
Detection: 220 nm

Compounds

1. Codeine
2. Yohimbine
3. Thebaine
4. Cocaine
5. Reserpine
6. Methadone

WATERS SPHERISORB COLUMNS

Waters Spherisorb™ Columns are one of the most widely referenced HPLC columns in the scientific literature.

There are over 2,000 analytical abstracts published using Waters Spherisorb Columns, providing a tremendous range of validated methods and applications to assist in your method development process.

Waters Spherisorb Columns are produced in a wide range of particle sizes (3-, 5-, and 10- μm) and bonded phases to meet your chromatographic needs, in addition, Waters Spherisorb Columns' high quality bonded phases give many different and unique separation selectivities. Waters Spherisorb Analytical Columns are supplied with industry-standard Parker-style column end fittings.

Spherisorb

Ligand Type	ODS2 (C ₁₈)	ODS1 (C ₁₈)	ODSB (C ₁₈)	C ₈	C ₆	C ₁	NH ₂ (Amino)
Particle Size	3, 5, 10 μm	3, 5, 10 μm	5 μm	3, 5, 10 μm	3, 5, 10 μm	3, 5, 10 μm	3, 5, 10 μm
Surface Area	220 m^2/g						
Particle Shape	Spherical						
Pore Size	80 \AA						
Carbon Load	11.5%	6.2%	11.5%	7.75%	4.7%	2.15%	1.9%
Ligand Coverage	2.98 $\mu\text{mol}/\text{m}^2$	1.49 $\mu\text{mol}/\text{m}^2$	2.98 $\mu\text{mol}/\text{m}^2$	3.12 $\mu\text{mol}/\text{m}^2$	3.36 $\mu\text{mol}/\text{m}^2$	2.97 $\mu\text{mol}/\text{m}^2$	2.64 $\mu\text{mol}/\text{m}^2$
End-capped	Proprietary	No	Proprietary	Proprietary	Proprietary	No	No

Ligand Type	Phenyl	CN (Nitrile)	OD/CN	W (Silica)	SCX	SAX
Particle Size	3, 5, 10 μm	3, 5, 10 μm	5 μm	3, 5, 10 μm	5, 10 μm	5, 10 μm
Surface Area	220 m^2/g	220 m^2/g	220 m^2/g	220 m^2/g	220 m^2/g	220 m^2/g
Particle Shape	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical
Pore Size	80 \AA	80 \AA	80 \AA	80 \AA	80 \AA	80 \AA
Carbon Load	2.5%	3.1%	5%	N/A	4%	4%
Ligand Coverage	2.72 $\mu\text{mol}/\text{m}^2$	3.29 $\mu\text{mol}/\text{m}^2$	1.15 $\mu\text{mol}/\text{m}^2$	N/A	N/A	N/A
End-capped	No	No	Proprietary	No	No	No

NOVA-PAK COLUMNS

Nova-Pak™ Columns are available in 4 μm and 6 μm particle sizes. Semi preparative Nova-Pak HR Columns offer faster separations using less solvent, with the added advantage of more concentrated fractions, all of which reduce preparative chromatography cost.

Nova-Pak

Chemistry	C ₁₈	C ₈	Phenyl	CN	Silica	Prep HR C ₁₈	Prep HR Silica
Particle Size	4 μm	6 μm	6 μm				
Particle Shape	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical	Spherical
Pore Size	60 \AA	60 \AA					
Carbon Load	7%	4%	5%	2%	N/A	7%	N/A
End-capped	Proprietary	Proprietary	Proprietary	Proprietary	No	Proprietary	No

RESOLVE COLUMNS

The non-endcapped Resolve packings are significantly different from Waters other packing materials in that they typically provide higher retention of polar compounds and complement those of Nova-Pak and μ Bondapak chemistries. Resolve C₁₈ and silica columns are available in 5 μ m and 10 μ m spherical packings for applications requiring higher resolution than what is achievable using irregularly shaped chromatographic particles.

Resolve

Ligand Type	Silica	C ₁₈	C ₈	CN
Particle Size	5, 10 μ m	5, 10 μ m	10 μ m	10 μ m
Particle Shape	Spherical	Spherical	Spherical	Spherical
Pore Size	90 \AA	90 \AA	90 \AA	90 \AA
Carbon Load	10 %	10%	5%	3%
End-capped	No	No	No	No

DELTA-PAK COLUMNS

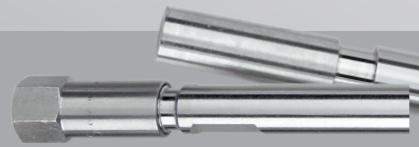
Delta-Pak™ Columns are ideal for separation and isolation of peptides, proteins, and natural products and are available in two different pore sizes that are optimized for large molecule separations. Delta-Pak Columns are known for consistent and predictable scaling between column formats, allowing purification scientists the ability to isolate target compounds from the milligram to gram quantities. The highly stable Delta-Pak bonded silica is available in 5 μ m and 15 μ m particle sizes.

Delta-Pak

Ligand Type	C ₁₈	C ₁₈	C ₄	C ₄
Particle Size	5, 15 μ m			
Particle Shape	Spherical	Spherical	Spherical	Spherical
Pore Size	100 \AA	300 \AA	100 \AA	300 \AA
Carbon Load	17%	7%	7%	3%
End-capped	Proprietary	Proprietary	Proprietary	Proprietary

IRREGULAR PARTICLE TECHNOLOGY

The first HPLC packing materials were comprised of non-spherical and irregularly shaped particles. Typically, these columns have reduced mechanical stability and lower efficiency compared to a column packed with spherical particles. However, even with these limitations, there are many methods that require the use of these sorbents. As a primary manufacturer of sorbents and bonded materials, Waters has demonstrated consistent and reliable column performance for over 50 years and we will continue to support these brands for the future.


μBONDAPAK/BONDAPAK COLUMNS

If your method calls for a μBondapak™ Column, there is only one column that contains μBondapak C₁₈ packing material.

Many companies claim “μBondapak-like” selectivity, but none have passed Waters stringent QC batch tests.

μBondapak or BondaPak™ packing materials have demonstrated reproducibility from year-to-year since 1973, allowing μBondapak Columns to be the one of the most widely referenced HPLC column brands.

μBondapak/ Bondapak

Ligand Type	C ₁₈	Phenyl	CN	NH ₂
Particle Size	10 μm	10 μm	10 μm	10 μm
Particle Shape	Irregular	Irregular	Irregular	Irregular
Pore Size	125 Å	125 Å	125 Å	125 Å
Carbon Load	10%	8%	6%	3.5%
End-capped	Proprietary	Proprietary	Proprietary	No

μPORASIL/PORASIL COLUMNS

μPorasil™ and Porasil™ particles were one of the first commercially available fully porous packing materials used for LC separations. In contrast to the reversed-phase separation ability of μBondapak C₁₈, the non-bonded, silica-based material in μPorasil Columns was produced to provide normal-phase separations for a wide array of sample types.

μPorasil/Porasil

Ligand Type	Silica
Particle Size	10, 15-20 μm
Particle Shape	Irregular
Pore Size	125 Å
Carbon Load	N/A
End-capped	No

HOW DO YOU KNOW YOUR CHROMATOGRAPHIC SYSTEM IS IN PROPER WORKING ORDER?

Quality Control Reference Materials (QCRMs) contain mixtures of standards specifically chosen to provide an easy and reliable way to monitor the performance of any chromatographic system. By using a QCRMs, you can be assured that your column and system are ready to analyze your samples. Regular use of QCRMs also provides an opportunity to benchmark your chromatographic systems and trend performance over time, making it easier to proactively identify problems and resolve them faster.

Since chromatographic analyses are complex and depend on many different variables, such as mobile-phase composition, column type, and detection method, Waters has formulated specific QCRM mixtures designed to test systems with these differences in mind.

To locate additional information for standards specific to calibration, qualification, and tuning of instruments and detectors, as well as a more comprehensive list of available standards and reagents, visit asr.waters.com

Column Performance Monitoring	Intended Use	Detector Performance Monitoring	Intended Use
Neutrals QCRM	Provides chromatographic performance information under isocratic conditions using 3 neutral probes.	QDa QCRM	Provides chromatographic and mass spectrometer information using an 8 component mixture in an optimized format for the ACQUITY QDa® Detector. This solution contains 1 critical pair to measure chromatographic performance.
Reversed-Phase QCRM	Provides reversed-phase chromatographic performance information under gradient conditions using 1 void marker, 3 neutral, 1 acidic, and 2 basic probes.	Quad LCMS QCRM	Provides chromatographic and mass spectrometer information using a 9 component mixture in a format optimized for quadrupole MS Systems. This solution contains 2 critical pairs to measure chromatographic performance.
HILIC QCRM	Provides chromatographic performance information inclusive of mobile-phase pH in HILIC mode using 1 void marker, 1 polar neutral, and 2 polar basic probes.	LCMS QCRM	Provides chromatographic and mass spectrometer information using a 9 component mixture in a format optimized for the highest resolution Tof/QTof MS Systems. This solution contains 2 critical pairs to measure chromatographic performance.

EXTEND COLUMN LIFETIME WITH VANGUARD COLUMN PROTECTION PRODUCTS

VanGuard™ Pre-columns and Cartridges are optimized to protect and prolong analytical column lifetimes without compromising chromatographic performance. They are available in a wide selection of particle sizes and stationary phases, making them ideally suited for the physical and chemical protection for all Waters analytical columns.

- Removes particulates and chemical contamination
- Maintains UPLC, UHPLC, and HPLC separation efficiency
- Provides cost effective protection for all Waters analytical columns

waters.com/qualityhplc

For your local sales
office, please visit
waters.com/contact

Waters™

Waters Corporation
34 Maple Street
Milford, MA 01757 U.S.A.
T: 508 478 2000
F: 508 872 1990
waters.com

Waters, MaxPeak Premier, CORTECS, UPLC, Alliance, ACQUITY UPLC, XBridge, XSelect, Atlantis, Symmetry, XTerra, Waters Spherisorb, Nova-Pak, BondaPak, μ BondaPak, QDa, SunFire, and ACQUITY are registered trademarks of Waters Corporation. BEH Technology, CSH, Intelligent Speed, IS, OBD, SymmetryShield, Symmetry300, μ Porasil, Porasil, Resolve, Delta-Pak, and SymmetryPrep are trademarks of Waters Technologies Corporation. All other trademarks are property of their respective owners.

©2024 Waters Corporation. Sept 24-13112 720003995EN Rev. D