

A Semi Quantitative Method for the Analysis of Tryptic Peptides in Human Serum: A Rapid, Targeted UPLC-MS/MS Approach Using Biognosys Plasma Dive Kit

Billy Joe Molloy Waters Corporation, Wilmslow, UK

APPLICATION BENEFITS

- Targeted, semi-quantitative UPLC-MS/MS analysis of 100 tryptic peptides
- High throughput analysis means larger sample sets can be analyzed
- Use of a generic LC-MS configuration yields versatility for switching from one compound class to another

INTRODUCTION

Proteins are important molecules that are involved in almost all biological processes. They are large, high molecular weight molecules, and therefore are analyzed using marker peptides that are produced using proteolytic enzymes like trypsin. Historically these types of analyses have been performed using high-resolution mass spectrometry coupled with micro/nano flow chromatographic systems. These methodologies however are low throughput, and are not suitable for large cohorts of samples. Here we demonstrate a high-throughput UPLC-MS/MS research method for the semi-quantitative analysis of various tryptic peptides in non-depleted, tryptically digested human serum samples. This application note is part of a Targeted Omics Method Package.

WATERS SOLUTIONS

Targeted Omics <u>CORTECS[™] UPLC[™] Columns</u> <u>ACQUITY[™] UPLC I-Class System</u> <u>Xevo[™] TQ-S micro Mass Spectrometer</u> <u>MassLynx Software</u> <u>TargetLynx Software</u> <u>Quanpedia</u>

KEYWORDS

Targeted, tryptic peptides, proteins, UPLC, tandem quadrupole, Xevo TQ-S micro, Multiple Reaction Monitoring (MRM), human serum, proteomics

EXPERIMENTAL

Human serum sample preparation

Human serum samples were prepared using the Biognosys PlasmaDive Kit (Biognosys, Schlieren, Switzerland). Briefly, 10 µL of sample was denatured, reduced, and alkylated before being diluted and typtically digested using 5 µL of 0.4 µg/µL typsin. Following acidification, centrifugation, and the addition of a fixed amount of the stable labeled forms of all 100 marker peptides, 6 µL of the spiked supernatant was then injected onto the UPLC-MS/MS system.

LC conditions

UPLC separation was performed with an ACQUITY UPLC I-Class System (fixed loop), equipped with a CORTECS T3 2.7 μ m (2.1 × 30 mm) analytical column. A sample of 6 μ L was injected at a flow rate of 0.15 mL/min. Mobile phase A was 0.01% formic acid _(aq) containing 0.2 mM Ammonium Formate and mobile phase B was 50% isopropanol in acetonitrile containing 0.01% formic acid and 0.2 mM Ammonium Formate. After an initial 2.5-minute hold at 1% Mobile phase B, the tryptic peptides were eluted from the column and separated with a gradient of 1–45% Mobile phase B over 2.9 minutes, followed by a 2.5-minute column wash at 85% Mobile phase B. The column was then re-equilibrated to initial conditions. The analytical column temperature was maintained at 60 °C.

MS conditions

Multiple Reaction Monitoring (MRM) analyses were performed using a Xevo TQ-S micro tandem quadrupole Mass Spectrometer. All experiments were performed in positive electrospray ionization (ESI+) mode. The ion source temperature and capillary voltage were kept constant and set to 150 °C and 2.0 kV respectively. The cone gas flow rate was 50 L/hr and desolvation temperature was 650 °C. Cone voltages and collision energies used were those calculated by the Skyline software (MacCoss Lab, University of Washington).

Informatics

Method information was imported onto the LC-MS system using the Quanpedia functionality within MassLynx. This extendable and searchable database produces LC and MS methods as well as processing methods for use in TargetLynx for compound quantification. Skyline was used for the production of MS methods and data visualization.

RESULTS

Table 1 details the 100 marker peptides analyzed, the proteins they represent, and the b and y product ions monitored. Tryptic peptides were detected using a series of MRM transitions. The product ions monitored are detailed in Table 1. These were all singly charged ions, with the exception of the y8 ion for P06276, where both singly and doubly charged ions were monitored. The precursor ions used were the doubly charged ions for all marker peptides, with the exception of P08603 and Q9PD5, where the triply charged precursors were used.

[APPLICATION NOTE]

UniProt ID	Description	Peptide sequence	b/y ions monitored
P02763	Alpha-1-acid glycoprotein 1 (Orosomucoid-1)	SDVVYTDWK	y5, y6, and y7
P19652	Alpha-1-acid glycoprotein 2 (Orosomucoid-2)	EHVAHLI ELB	v6 v7 and v8
P01000		SVI GOLGITK	y4 y7 and y8
F01009	Alpha-t-antitutypsin		y4, y7, and y8
P04217	Alpha-IB-glycoprotein	LLELIGPK	y4, y6, and y7
P08697	Alpha-2-antiplasmin (Serpin F2)	LFGPDLK	Y3, y4, and y5
P02750	Leucine-rich alpha-2-glycoprotein (LRG)	VAAGAFQGLR	y5, y7, and y8
P01023	Alpha-2-macroglobulin (Alpha-2-M)	AIGYLNTGYOR	v6. v7. and v9
P01011	Alpha-1-antichymotrynsin (ACT)	EIGELVI PK	v3 v5 and v7
D42652	Afomin (Alpha albumin)		y9, y9, and y1
P43032		AESPEVCFNEESPK	yo, y9, and yn
P02768	Serum albumin	YLYEIAR	y4, y5, and y6
P35858	Insulin-like growth factor-binding protein complex acid labile subunit	LEYLLLSR	y5, y6, and y7
P02760	Protein AMBP	TVAACNLPIVR	y6, y7, and y9
P01019	Angiotensinggen (Serpin A8)	ALODOLVLVAAK	v6, v9, and v10
P01008	Antithrombin-III (Serpin C1)	EVPLNTIEMGB	y5 y6 and y8
D00647			y3, y0, and y0
P02047	Apolipopiolein A-1	VSFLSALEETIK	y7, y8, and y9
P02652	Apolipoprotein A-II	EQLIPLIK	y4, y5, and y6
P06727	Apolipoprotein A-IV	LAPLAEDVR	y4, y5, and y7
P04114	Apolipoprotein B-100	FSVPAGIVIPSFQALTAR	y9, y10, and y11
P02654	Apolipoprotein C-I	EFGNTLEDK	v4, v5, and v7
P02655	Apolipoprotein C-II	ΤΑ ΑΟΝΙ ΥΕΚ	v5 v6 and v7
T 02033	Apolipoprotein C-III		y5, y0, and y/
P02050	Apolipoprotein C-III	GWVIDGFSSLK	yo, y7, and y9
P05090	Apolipoprotein D	NILISNNIDVK	y7, y8, and y9
P02649	Apolipoprotein E	AATVGSLAGQPLQER	y5, y7, and y11
P02749	Apolipoprotein H	VCPFAGILENGAVR	y7, y10, and y12
O14791	Apolipoprotein I 1	VTEPISAESGEOVER	v7. v8. and v10
095445	Apolipoprotein M	FLIVNR	y3 y4 and y5
D40051			y3, y4, and y3
P43251	Biotinidase	SHLIIAQVAK	y6, y7, and y8
P02745	Complement C1q subcomponent subunit A	SLGFCDTTNK	y5, y6, and y8
P02746	Complement C1q subcomponent subunit B	GNLCVNLMR	y5, y6, and y7
P02747	Complement C1g subcomponent subunit C	FQSVFTVTR	y5, y6, and y7
P00736	Complement C1r subcomponent	GI TI HI K	v3. v4. and v5
P00871	Complement C1s subcomponent		y5 y7 and y8
F 0 307 1			y5, y7, and y8
P04003	C₄b-binding protein alpha chain	GYILVGQAK	y4, y5, and y6
P08185	Corticosteroid-binding globulin (Serpin A6)	GTWTQPFDLASTR	y4, y5, and y8
O43866	CD5 antigen-like (CT-2) (SP-alpha)	IWLDNVR	y4, y5, and y6
P00450	Ceruloplasmin (Ferroxidase)	DIASGLIGPLIICK	y6, y7, and y8
P00751	Complement factor B	YGI VTYATYPK	v6 v7 and v8
D09602	Complement factor H (H factor 1)		ya ya and ya
P08603		IDVALVPDR	y3, y4, and y5
P05156	Complement factor I	IVIEYVDR	y4, y6, and y7
P06276	Cholinesterase (EC 3.1.1.8)	IFFPGVSEFGK	y5 and y8(#)
P10909	Clusterin (Aging-associated gene 4 protein) (Apolipoprotein J)	ASSIIDELFQDR	y4, y7, and y8
P06681	Complement C2	AVISPGFDVFAK	v7, v8, and v9
P01024	Complement C3	GVTOOLAER	y3 y5 and y7
	Complement C A		b4 v10 and v11
PUCUL4		PVAFSVVPTAAAAVSLK	b4, y10, and y11
P01031	Complement C5	IDAPDLPEENQAR	y7, y8, and y10
P07357	Complement component C ₈ alpha chain	HTSLGPLEAK	y6, y8, and y9
P02748	Complement component C9	LSPIYNLVPVK	y3, y7, and y9
P02775	Platelet basic protein (C-X-C motif chemokine 7)	NIOSI EVIGK	v4. v7. and v8
P00/88	Coagulation factor XIII A chain		y3 y7 and y8
F 00488			y3, y7, and y8
P05160	Coaguiation factor XIII B Chain	IAQYYYIFK	y4, y6, and y8
P00742	Coagulation factor X	ACIPTGPYPCGK	y6, y7, and y9
P00740	Coagulation factor IX	SALVLQYLR	y5, y6, and y7
P23142	Fibulin-1	TGYYFDGISR	y4, y6, and y7
P02765	Alpha-2-HS-alvcoprotein	FSVVYAK	y4, y5, and y6
O9UGM5	Eetuin-B		v4 v5 and v6
03001013			y4, y5, and y6
P02671	Fibrinogen alpha chain	GSESGIFINIK	y5, y7, and y8
P02679	Fibrinogen gamma chain	DNCCILDER	y4, y5, and y6
P02751	Fibronectin (FN)	SYTITGLQPGTDYK	y6, y9, and y10
P06396	Gelsolin (Actin-depolymerizing factor)	AGALNSNDAFVLK	y7, y8, and y9
P22352	Glutathione peroxidase 3	FLVGPDGIPIMB	v4. v8. and v9
D60071	Homoglobin subunit beta		y7 y9 and y10
D000/1			yr, yo, anu yru
P02042	Hemoglobin subunit deita (Delta-globin)	LLGNVLVCVLAR	y5, y6, and y7
P02790	Hemopexin (Beta-1B-glycoprotein)	NFPSPVDAAFR	y5, y7, and y8
P05546	Heparin cofactor 2	TLEAQLTPR	y5, y6, and y7
P00738	Haptoglobin	VTSIQDWVOK	y5, v6, and v8
P00739	Hantoglobin-related protein	VGYVSGWGOSDNEK	v7. v9. and v10
D0/100			
P04196	HISUUINE-FICH GIVCOPTOTEIN	GGEGIGYFVDFSVR	yo, yo, and y/
P05155	Plasma protease C1 inhibitor	LLDSLPSDTR	y5, y7, and y8
P01876	Ig alpha-1 chain C region	TPLTATLSK	y5, y6, and y7
P01877	Ig alpha-2 chain C region	DASGATFTWTPSSGK	y5, y6, and y8
P01857	lg gamma-1 chain C region	GPSVEPI APSSK	v4 and v7
P01859	la gamma-2 chain C region	GLPAPIEK	v4 v5 and v6

UniProt ID	Description	Peptide sequence	b/y ions monitored
P01860	Ig gamma-3 chain C region (HDC)	WYVDGVEVHNAK	y9, y10, and y11
P01871	Ig mu chain C region	YAATSQVLLPSK	y3, y4, and y10
P05154	Plasma serine protease inhibitor	TLYLADTFPTNFR	y5, y8, and y9
P19827	Inter-alpha-trypsin inhibitor heavy chain H1	AAISGENAGLVR	y6, y8, and y9
P19823	Inter-alpha-trypsin inhibitor heavy chain H2	FYNQVSTPLLR	y4, y6, and y7
Q14624	Inter-alpha-trypsin inhibitor heavy chain H4	ILDDLSPR	y5, y6, and y7
P29622	Kallistatin (Kallikrein inhibitor)	LGFTDLFSK	y6, y7, and y8
P03952	Plasma kallikrein	IAYGTQGSSGYSLR	y7, y9, and y11
P01042	Kininogen-1	YFIDFVAR	y4, y5, and y6
P36955	Pigment epithelium-derived factor (PEDF)	ELLDTVTAPQK	y5, y7, and y8
Q96PD5	N-acetylmuramoyl-L-alanine amidase	AGLLRPDYALLGHR	y3, y4, and y5
P02776	Platelet factor 4 (Oncostatin-A)	ICLDLQAPLYK	y5, y8, and y9
P00747	Plasminogen	HSIFTPETNPR	y6, y8, and y9
P27169	Serum paraoxonase	LLIGTVFHK	y5, y6, and y7
Q92954	Proteoglycan 4	GLPNVVTSAISLPNIR	y4, y6, and y10
P02753	Retinol-binding protein 4	FSGTWYAMAK	y4, y8, and y9
P35542	Serum amyloid A-4 protein	EALQGVGDMGR	y5, y7, and y8
P49908	Selenoprotein P	LPTDSELAPR	y6, y7, and y8
P04278	Sex hormone-binding globulin	IALGGLLFPASNLR	y6, y7, and y8
P05452	Tetranectin	LDTLAQEVALLK	b3, y7, and y8
P05543	Thyroxine-binding globulin (Serpin A7)	NALALFVLPK	y6, y7, and y8
P00734	Prothrombin	TATSEYQTFFNPR	y5, y7, and y8
P02787	Serotransferrin	EGYYGYTGAFR	y5, y6, and y8
P02766	Transthyretin	AADDTWEPFASGK	y6, y7, and y8
P02774	Vitamin D-binding protein	HLSLLTTLSNR	y6, y7, and y9
P04004	Vitronectin	FEDGVLDPDYPR	y5, y6, and y7
P04275	von Willebrand factor	ILAGPAGDSNVVK	y9, y10, and y11
P25311	Zinc-alpha-2-glycoprotein	AYLEEECPATLR	y5, y6, and y8

- Both singly and doubly charged ions monitored for.

Table 1. Names, Uniprot ID's, and marker peptides used for the 100 proteins monitored using the Biognosys Plasma Dive kit. Column 4 details the b and y product ions monitored for the given marker peptide.

Figures 1 and 2 show example data acquired for six of the 100 proteins. Data for these 100 proteins was acquired over two analyses. Each 12-minute analysis was capable of analyzing 50 marker peptides, where three transitions were monitored for both the native and stable labeled forms. If fewer transitions per peptide were monitored, it would be possible to analyze more proteins in a single injection. However, monitoring three transitions per peptide increased the confidence in identification.

Figure 1. Example chromatograms acquired for three of the 100 proteins analyzed using the Biognosys PlasmaDive kit. (uniprot: P05543, P04003, and P02750). The upper chromatograms show the three transitions for the native peptide, and the lower chromatogram the stable labeled (heavy) reference peptide.

[APPLICATION NOTE]

Figure 2. Example chromatograms acquired for three of the 100 proteins analyzed using the Biognosys PlasmaDive kit. (uniprot: P29622, P02748, and P10909). The upper chromatograms shows the three transitions for the native peptide, and the lower chromatogram the stable labeled (heavy) reference peptide.

CONCLUSIONS

A rapid UPLC-MS/MS methodology has been developed for the research analysis of proteins. This method has been demonstrated to be suitable for the analysis of physiologically relevant levels of multiple proteins in human serum. This method utilizes a generic LC-MS platform that can be used for various compound classes (including metabolomics, lipidomics, and proteomics). Deployment of this method in conjunction with other complementary methods available on the <u>Waters MetaboQuan[™] website</u> can form the basis of a comprehensive suite of targeted multi-omic workflows.

For Research Use Only. Not for use in diagnostic procedures.

Waters, The Science of What's Possible, ACQUITY, CORTECS, UPLC, MassLynx, TargetLynx, Quanpedia, and Xevo are trademarks of Waters Corporation. All other trademarks are the property of their respective owners.

Waters Corporation

34 Maple Street Milford, MA 01757 U.S.A. T: 1 508 478 2000 F: 1 508 872 1990 www.waters.com