

Waters Column Selection Guide for Polar Compounds

Waters HILIC and reversed-phase LC columns specifically developed to tackle polar analyte separations.

Bonding Unbonded, high-purity, solid-core silica particles.

BEH HILIC

Particle Size \bigcirc 2.5 µm 3.5 µm 1.7 µm

Performance Benefits Excellent for retention of very polar, basic, water-soluble analytes. Improved high-pH stability vs unbonded silica; recommended for use from pH 1–9.

Bonding Unbonded Ethylene Bridged Hybrid (BEH) particles.

Particle Size

Performance Benefits Excellent for retention of very polar, basic, water soluble analytes. pH stability from 1–5.

Bonding Unbonded high purity Atlantis silica particles.

BEH Technology[™]

- Stable across a wide pH range
- Seamless scalability from UPLC to HPLC
- Superior chemical stability

Excellent low- and high-pH stability 2-10

Bonding Zwitterionic sulfobetaine groups attached to highly retentive 95 Å Ethylene Bridged Hybrid (BEH) particles.

MAXPEAK **BEH Amide** PREMIER **Particle Size** \bigcirc 1.7 µm 2.5 µm 3.5 µm

Performance Benefits

Rugged HILIC stationary phase designed to separate a wide range of polar compounds. Especially useful for separating carbohydrates (saccharides) using high concentrations of organic modifier, elevated temperature, and high pH. Compatible with all modern detectors including MS, ELSD, UV, and fluorescence. pH stability from 2-11.

Bonding

Amide groups attached to Ethylene Bridged Hybrid (BEH) particles.

Particle Technologies

HSS Technology

High retentive UPLC/UHPLC/HPLC silica particle

High strength silica for mechanical stability at elevated operating pressures

Solid-Core Technology

Maximum separation efficiency

- Sharper peaks for increased sensitivity
- Seamless scalability from UPLC to UHPLC to HPLC

Excellent low- and high-pH stability, low MS bleed, and compatible with 100% aqueous mobile phases. pH stability from 2-10.

Bonding Mixed-mode C₁₈/anion-exchange bonding, fully endcapped, bonded to highly retentive 95 Å Ethylene Bridged Hybrid (BEH) particles.

Bonding

Intermediate coverage trifunctional C₁₀ bonding, fully endcapped, bonded to silica solid-core particles.

Performance Benefits Aqueous mobile-phase compatible column designed for exceptional polar compound retention. pH stability from 2-8.

Bonding

Intermediate coverage trifunctional C₁₈ bonding, fully endcapped, bonded to High Strength Silica (HSS) particles.

Performance Benefits

Designed for enhanced polar compound retention, offering superior stability under low pH conditions and is compatible with 100% aqueous mobile phases. Directly scalable to preparative scale. pH stability from 2-8.

Bonding

Intermediate coverage trifunctional C₁₈ bonding, fully endcapped, bonded to high purity Atlantis silica particles.

- High retentive HPLC silica particle
- Seamless scalability to preparative LC

Common LC Buffers

Mobile-Phase Chemical	рК _а	Buffer Range	Formula	Volume or Mass Required for 10 mM Mobile-Phase Concentration (per 1 L)	pH Adjustment Acid/Base	MS Compatible?	HILIC Compatible?
Acetic Acid (glacial)	4.8	_	CH₃COOH	0.571 mL	_	\checkmark	\checkmark
Ammonium Acetate pK _a 1	4.8	3.8-5.8	CH ₃ COONH ₄	0.770 g	CH ₃ COOH or NH₄OH	\checkmark	\checkmark
Ammonium Acetate pK _a 2	9.2	8.2-10.2	CH ₃ COONH ₄	0.770 g	CH ₃ COOH or NH ₄ OH	\checkmark	\checkmark
Ammonium Bicarbonate	9.2, 10.3	8.2–11.3	NH ₄ HCO ₃	0.790 g	HCOOH or NH ₄ OH	\checkmark	\checkmark
Ammonium Formate pK _a 1	3.8	2.8-4.8	HCOONH ₄	0.640 g	HCOOH or NH ₄ OH	\checkmark	\checkmark
Ammonium Formate pK _a 2	9.2	8.2-10.2	HCOONH ₄	0.640 g	HCOOH or NH ₄ OH	\checkmark	\checkmark
Ammonium Hydroxide (28%)	9.2	_	NH₄OH	0.675 mL	_	\checkmark	\checkmark
Ammonium Phosphate, Dibasic	7.2, 9.2	6.2–10.2	$(NH_4)_2HPO_4$	1.32 g	H ₃ PO ₄ or NH ₄ OH	×	\checkmark
Formic Acid	3.8	_	НСООН	0.420 mL	_	\checkmark	\checkmark
N-Methylpyrrolidine	10.3	_	$C_5H_{11}N$	1.04 mL	_	\checkmark	\checkmark
Phosphoric Acid	2.1	_	H ₃ PO ₄	0.580 mL	_	×	\checkmark
Potassium Phosphate, Monobasic	2.1	1.1–3.1	KH ₂ PO ₄	1.36 g	H ₃ PO ₄ or KOH	×	×
Potassium Phosphate, Dibasic	7.2	6.2-8.2	K ₂ HPO ₄	1.74 g	H ₃ PO ₄ or KOH	×	×
Potassium Phosphate, Tribasic	12.7	11.7–13.7	K ₃ PO ₄	2.12 g	H ₃ PO ₄ or KOH	×	×
Pyrrolidine	11.3	_	C ₄ H ₉ N	0.833 mL	_	\checkmark	\checkmark
Sodium Borate	9.1, 12.7, 13.8	8.2–14	$Na_2B_4O_7$	2.01 g	H_3BO_4 or NaOH	×	×
Sodium Citrate, Tribasic	3.1, 4.8, 6.4	2.1–7.4	HOC(COONa)(CH ₂ COONa) ₂	2.58 g	Citric Acid or NaOH	×	×
Triethylamine (TEA)	11.01	_	$(CH_3CH_2)_3N$	1.39 mL	_	\checkmark	\checkmark
Triethylammonium Acetate (TEAA) pK _a 1	4.76	3.8-5.8	(CH ₃ CH ₂) ₃ NH:CH ₃ COO	0.695 mL TEA/0.571 mL Acetic Acid	TEA or CH ₃ COOH	\checkmark	\checkmark
Triethylammonium Acetate (TEAA) pK _a 2	11.01	10.0–12.0	(CH ₃ CH ₂) ₃ NH:CH ₃ COO	1.39 mL TEA/0.285 mL Acetic Acid	TEA or HCOOH	\checkmark	\checkmark
Triethylammonium Formate (TEAF) pK _a 1	3.75	2.8-4.8	(CH ₃ CH ₂) ₃ NH:HCOO	0.695 mL TEA/0.420 mL Formic Acid	TEA or HCOOH	\checkmark	\checkmark
Triethylammonium Formate (TEAF) pK _a 2	11.01	10.0–12.0	(CH ₃ CH ₂) ₃ NH:HCOO	1.39 mL TEA/0.210 mL Formic Acid	TEA or HCOOH	\checkmark	\checkmark
Trifluoroacetic Acid (TFA)	0.3	_	CF₃COOH	0.743 mL	_	\checkmark	\checkmark

Select column configurations that show the MaxPeak Premier symbol are available in the MaxPeak Premier Column format.

The MaxPeak Premier Columns utilize MaxPeak High Performance Surfaces (HPS) Technology which increases reproducibility,

improves peak shape, and enables more accurate recovery by minimizing unwanted analyte/surface interactions.

THE SCIENCE OF WHAT'S POSSIBLE.™