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OVERVIEW METHODS PRELIMINARY RESULTS ANALYSIS

Theoretical analysis was done on the motion of ions in a The setup Figure 2(a) shows the general setup of the problem.
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cylindrical ion guide, propelled by a confining travelling-wave Monochromatic travellina-wave electric field _ _ _ _ _ -
electric field. The results were then verified by comparing ’ _ g _ Key characteristics of trajectories: » Mean drift speed (monochromatic waves) « lons entering the “depletion’ region eventually hit guide walls. . Mean drift speed increases with radial
them against numerical simulations. It was found that: « No radio-frequency (RF) standing wave Helical’7Spiral’ motion - . Need for RF focusing waves to confine ions. position regardless of wave-form
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« lon motion separates into two regimes: a slowly . . . De-focusing behaviour o(r)=c|1—14/1— akVi To(kr) It walls are permeable, ions would approach an asymptote in the pIay Stz ! W |
L oS T o - Theoretical analysis ve To(kro) wave frame. position
propagating ‘helical’ motion and a de-focusing ‘depletion . Noise-dominated near centre ] _
region. Radial extent of spirals (monochromatic waves) - These are geometrical effects unseen in
dx . ‘Defocusing’ beyond certain radial position—'surfing’ limit 2a V- I (k one-dimensional analyses [2].
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. lons in the ‘helicalmotion regime travel at a radial position Y a1 gE(ﬂ% Yy, kz WtZ"‘\ 2kBT’Y€(tZ We seek to explain these properties. where ions ‘surf’ at wave-speed and ‘depletion’ region, where Ar = 1 q_( 70 1 ((k )) - ‘Depletion’ region generally exist, limiting

_ . . . ~/ -~/ . . . —_— /l] fr‘ C /"" .

de[]z_epdent mean drift speed, which is slower than the M electrostatic force Browning noise ions directed towards guide walls 8 0 0 transport efficiency.

contining wave. rag lorce . Drift and ‘spiral’ effects small near centre of guide—noise . ‘ .

dominates. . Contributes towards the ‘depletion’ region.

. lons in the ‘depletion’ region will be directed towards the

quide edge. « Axial and radial components of Newton’s 2nd law

CONCLUSIONS

« Overdamped analysis of ion motion in

« Axial—mean drift speed Wave

direction

. Radial—perturbative motion

« Inertia small—neglected (a) cylindrical confining travelling wave predicts key
(c) Direction of — characteristics observed in noisy motion—
ion travel Frame travelling ’helical’ and ‘depletion’ regimes.

WHY TRAVELLING WAVES? Numerical solution

. Euler's method (MATLAB)

. Drift Tube IMS '
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at wave speed

« Mean drift speed of ions in the ‘helical’ regime
are dependent on radial positions—slower near
the centre of the guide and faster further away.

. lons will be lost once they enter the 'depletion’

Cylinder walls De-focusing Outside guide region, resulting in reduced transport efficiency.
‘Helical’/spiral motion behaviour | Inside guide . Radial extent of the ‘helical’ motion is also
Parameter Symbol | Value Units position-dependent, which is smaller at the
| centre of the guide and larger near the edges.
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~ . Theoretical predictions of the mean drift speed
mass m 454 Da : : —_— O . . :
. Removing noise < — and the radial extent of the ‘helical’ motion
) ! agree well with numerical simulations.
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() Traveling Wave IMS pressure » 500 Pa e ‘//“ “““““““““““ \ approximation to the particulate problem.
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[1]. Figure 2. (a) Preliminary simulation showing general ion behaviour with noise; (b) removing noise shows ’spiral’ and de-focusing behaviour varying with radial positions; (c) motion of ions in the de-focusing regime/’depletion’ region; (d) agreement

between theory and simulations for radial extent of ‘spirals’ varying with radial position
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