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ABSTRACT
A benefi t of using a mass spectral based chemical sensor 
is its fast analysis time. The successful use of this type 
of instrument requires training the sensor with standard 
samples. The mass spectra from the standards are used to 
create chemometric models and classifi cation of unknown 
samples is obtained by projecting their mass spectra into 
these models. Predictions are very dependent on the quality 
of the model and reliable models are created with numerous 
replicas. Construction of these calibration models requires 
considerable amount of laboratory time and is therefore 
costly. If the sensor is disturbed (e. g., fi lament is changed 
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or maintenance is required) recalibration of the instru-
ment is necessary to compensate for the new instrument 
conditions. An alternative to recalibration is the use of 
calibration transfer algorithms. 

A series of food samples and individual compounds 
were used to monitor the reliability of the calibration 
transfer algorithms for a period of 10 weeks. The in-
strument was disrupted in 3 ways, (a) fi laments were 
replaced; (b) tuning algorithms were changed and (c) 
preventive maintenance was applied. Instrument drift 
over the 10-week period was also investigated in a se-
parate system and different types of calibration transfer 
algorithms were examined.

Preliminary results indicate that the successful 
use of calibration transfer is highly dependent on the 
type and number of transfer samples and model type. 
Overall KNN models appear to be more robust than 
SIMCA ones. The best accuracy was obtained using 
KNN models and SIMCA models with calibration 
transfer. 

INTRODUCTION
Mass spectrometry is an analytical technique widely 
used for qualitative and some quantitative analysis. A 
mass selective detector (MSD) can be directly coupled 
to a headspace sampler with excellent time savings 
benefi ts. This type of hyphenated instrumentation is 
the basis of mass spectrometry based chemical sen-
sors. These sensors introduce the entire headspace of 
samples into the MSD without chromatographic se-
paration and classifi cation of samples is performed 
with multivariate analysis. Because the data analysis 
is based on the mass spectral fi ngerprints, a robust 
fi ngerprint is desired. This study presents prelimi-
nary results of a time study in which mass spectral 
fi ngerprints of different compounds were monitored 
over time. We will investigate the effects of tuning, 
fi lament change and ion source maintenance on the 
mass spectral profi les. 

The effects of tuning on mass spectral fi ngerprints 
will be investigated by changing tuning algorithms. 
The goal of tuning an MSD is to optimize sensitivity, 
mass assignment and relative ion abundance. It is 
therefore possible that mass spectral fi ngerprints could 

change slightly after each tuning. The parameters that 
can be adjusted during tuning are: lenses, quadrupole 
fi lter, electron multiplier, mass axis, and peak width 
calibration. Tuning requires several iterations since 
optimizing one parameter affects the optimal setting 
of another. For this study a GERSTEL Headspace 
ChemSensor (Figure 1) that includes a 5973 N (Agi-
lent Technologies) detector was used. This MSD uses 
PFTBA (perfl uorotributylamine) as the tuning com-
pound for the MS tunings. PFTBA has ions at 31, 50, 
69, 100, 131, 219, 264, 414, 464, 502, 576, and 614 
amu. Depending on what m/z needs to be optimized, 
different tuning algorithms are provided with the in-
strument control software.

Figure 1. Gerstel Headspace ChemSensor.
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A vital part of the MSD that is not optimized with 
tuning is the electron source or fi lament. An emission 
current heats the fi lament and causes them to emit 
electrons. The electrons emitted by the fi lament are 
responsible for the ionization of the sample molecules. 
If a fi lament is exchanged small differences in the mass 
spectral profi les could be obtained. 

Another crucial part that determines the MSD per-
formance is the ion source; a dirty ion source can cause 
poor sensitivity. The rate at which the ion source will 
require preventive maintenance will depend on three 
parameters [1]: 

- The quantity of samples analyzed, usually the more 
 samples analyzed the quicker the ion source will 
 need cleaning. 

- The nature of samples and sample matrix, usually 
 highly concentrated samples in complex matrices 
 dirty the ion source more quickly than trace samples 
 in clean matrices. 

- Operating conditions (mainly ion source tempera-
 ture), higher ion source temperatures generally keep 
 the ion source cleaner longer.

The minor differences in mass spectral fi ngerprints 
obtained from changing the above parameters can 
signifi cantly reduce the reliability of chemometric 
models. To compensate for these minor differences 
in mass spectral profi les two alternatives exist. One 
option is to create a new model with new data, which 
can be time consuming, or a different alternative is to 
use a computational adjustment that compensates for 
instrument differences. The second approach is known 
as transfer of calibration (TOC).

The TOC algorithms available with the GERSTEL 
ChemSensor adjusts profi les obtained with the new set 
of instrument conditions to look like those collected 

before any parameters were changed. For this study we 
will apply the TOC known as direct standardization. 
Direct TOC relates all variables in the data collected 
with initial instrument settings to each corresponding 
variable measured after slightly different instrument 
conditions. Calibration transfer algorithms can be 
performed for either quantitative (e.g., PLS or PCR), 
or qualitative models (KNN or SIMCA). In this study 
we will investigate the effi ciency of the calibration 
transfer using SIMCA and PLS models.

EXPERIMENTAL
A. Tuning study Data set 1 - Camphor. Data collected 
using three different tunings in the SCAN mode. Two 
camphor solutions were prepared (10 and 100 ppm in 
1% Methanol). Ten replicas of each concentration were 
analyzed using 1 ml aliquots. The aliquots were placed 
in 10 mL vials which were crimped and equilibrated for 
20 minutes at 80 °C before headspace sampling. 

Three different tuning algorithms were tested: Au-
totune (atune), BFB Tune and Standard Spectra Tune 
(stune).
B. Filament replacement Data set 2 - Citrus oils. Data 
collected with two different fi laments in the SCAN 
mode. 6 replicas of three different citrus oils were tes-
ted. 7.5 μL aliquots were placed in 20 mL vials which 
were equilibrated for 5 min at 80 °C before headspace 
sampling. 
C. Ion source cleaning Data set 3 - Limonene. Data 
collected before and after cleaning the ion source in 
the SCAN mode. Three different solutions of Limo-
nene (1000, 5000 and 10000 ppm in Methanol) were 
prepared. 6 replicas of each level were analyzed using 
10 μL aliquots of the stock solutions. The samples 
were equilibrated for 15 min at 55 °C before headspace 
sampling.
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RESULTS AND DISCUSSION
A. Tuning study Data set 1 - Camphor. The mass spec-
tral fi ngerprint for the 100 ppm solution of Camphor 
acquired with three different tunings is shown in Figure 
2. Small differences in ion abundances are found th-
roughout this profi le, similar results were found for the 
10 ppm solution, not shown. BFB tuning is designed to 
provide higher intensities to low-mass ions; this can be 
seen in Figure 2A, in which the BFB profi le appears to 

have higher intensity than either atune or stune. Since 
the raw abundance of all ions appears to be higher we 
investigated the effect of normalization on this data set. 
After normalizing the dat set to 100% the samples are 
placed in the same scale. Figure 2B shows that after the 
vector length normalization, variation due to the tuning 
used was partially removed from the data set. 

Figure 2B. Normalized mass spectral fi ngerprints for 100 ppm Camphor solution acquired with three different 
tuning algorithms.
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Figure 2A. Mass spectral fi ngerprints for 100 ppm Camphor solution acquired with three different tuning 
algorithms.
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Figure 3. Mass spectral fi ngerprint projections into the space of the fi rst three principal components. SIMCA-
model created with data acquired with atune; A) original data, B) using two calibration transfer samples for 
each level and each tuning.  

In order to test if the normalization of the data set 
was suffi cient to provide reliable predictions, chemo-
metric models were created using only the data ac-
quired with a specifi c tuning. Three classifi cation 

models were tested, KNN, SIMCA and SIMCA with 
TOC. Table 1 lists the correct predictions obtained with 
each of the classifi cation models.
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Table 1.  Correct prediction of unknowns for the camphor data set.

Tuning  atune BFBtune stune
 KNN SIMCA SIMCA* KNN SIMCA SIMCA* KNN SIMCA SIMCA*

Norm TOC Norm TOC Norm TOC
atune 27 of 27 19 of 27 25 of 27 27 of 27 0 of 27 26 of 27 27 of 27 0 of 27 27 of 27
BFB 28 of 28 0 of 28 26 of 28 28 of 28 28 of 28 27 of 28 28 of 28 6 of 28 28 of 28
stune 28 of 28 0 of 28 26 of 28 28 of 28 3 of 28 28 of 28 28 of 28 27 of 28 27 of 28
% total 100% 23% 93% 100% 37% 98% 100% 40% 99%

*Using direct transfer of calibration (2 transfer samples)

Using KNN with normalization all samples predicted 
accurately. Using SIMCA with normalization only few 
samples acquired with different tuning are classifi ed 
correctly. For example, a SIMCA model created only 
with the atune data is shown in Figure 3A. Projections 
of the samples acquired with BFB and stune project 
outside the boundaries in this fi gure. A SIMCA model 

with direct TOC was created in which 2 calibration 
transfer samples were used for each level. When TOC 
is used over 90% correct classifi cations are obtained 
regardless of the tuning used for data acquisition. This 
can also be observed in Figure 3B, in which BFB and 
stune samples are projected within the boundaries of 
the atune model when using TOC.
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Figure 4A. Mass spectral fi ngerprints for citrus oil #1 acquired using two different fi laments.

Figure 4B shows the normalized citrus oil #1. After normalization only smaller differences in the mass spectral 
fi ngerprints are observed.

Figure 4B. Normalized mass spectral fi ngerprints for citrus oil #1 acquired using two different fi laments.

B. Filament replacement Data set 2 - Citrus oils. Figure 
4A shows the mass spectral fi ngerprint for citrus oil #1 
acquired with two different fi laments. Slightly higher 
abundances were obtained with fi lament #1 (red trace) 
than with fi lament #2 (blue trace). Similar results were 

found with citrus oils #2 and #3, not shown. Since vi-
sual inspection of the oils fi ngerprints indicate that the 
overall intensity decrease throughout the spectrum, we 
decided to normalize the data set. 
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Figure 5A. SIMCA model created with original data.

Predictions using a KNN model with 5 neighbors 
were accurate regardless of which fi lament was used 
to acquire the fi ngerprint. 100% accuracy was obtained 

with the KNN model. SIMCA predictions improved 
with the use of TOC, as seen in Figure 5. 
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Figure 5B. SIMCA model created with original data (fi lament 1), using 2 samples per oil for calibration 
transfer (fi lament 2).



Figure 6. Mass spectral fi ngerprint for 100 μg of Limonene in Methanol.

C. Ion source cleaning Data set 3 - Limonene. Figure 6 
shows the mass spectral profi les for the 100 μg sample 

of Limonene in Methanol before source clean (BSC) 
and after source clean (ASC). 
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KNN SIMCA SIMCA* SIMCA**
oil 1-Film1 6 of 6 6 of 6 3 of 6 3 of 6
oil 1-Film2 6 of 6 6 of 6 4 of 6 4 of 6
oil 2-Film1 6 of 6 6 of 6 6 of 6 6 of 6
oil 2-Film2 6 of 6 0 of 6 4 of 6 3 of 6
oil 3-Film1 6 of 6 0 of 6 4 of 6 6 of 6
oil 3-Film2 6 of 6 0 of 6 6 of 6 6 of 6
Total 100% 50% 75% 78%

Prediction accuracy increased slightly when 3 transfer samples were used instead of two. Table 2 summarizes 
these fi ndings.

Table 2.  Correct prediction of unknowns for the citrus oils data set.

*Using direct transfer of calibration (2 transfer samples)
**Using direct transfer of calibration (3 transfer samples)



A slight difference in the raw abundance of the majority 
of ions is also present in this data set. Similar results 
were found with the 10 and 50 μg samples, not shown. 
Exploratory analysis using hierarchical cluster analysis 

AN/2003/03 - 9

50_ACS

50_ACS
50_ACS

50_ACS
50_ACS

50_ACS
50_BCS

50_BCS
50_BCS

50_BCS
50_BCS

50_BCS
10_ACS

10_ACS
10_ACS

10_ACS
10_ACS

10_ACS
10_BCS

10_BCS
10_BCS

10_BCS
10_BCS

10_BCS
100_ACS

100_ACS
100_ACS

100_ACS
100_ACS

100_ACS
100_BCS

100_BCS
100_BCS

100_BCS
100_BCS

100_BCS

0.00.20.40.60.81.0

Complete

CURSOR
Similarity: 0.707

NODE
Similarity: 0.000
Distance: 10054234.000
Descendants: 36

Complete

CURSOR
Similarity: 0.707

NODE

50 g

10 g

100 g

(HCA) indicates that even though the samples were 
measured with different ion source conditions they still 
cluster according to their level (Figure 7). 

Figure 7. HCA model for three Limonene solutions. HCA obtained using Euclidean distance and complete 
linkage.

Inspection of this fi gure also indicates that the expe-
rimental variation appears to be lower after the ion 
source has been cleaned. This is evident by the in-
spection of the two clusters within each level; samples 
acquired before ion source clean are more spread out 
in their clusters.

Four chemometric models were created with the 
samples acquired before the ion source clean; KNN 
and SIMCA-TOC and PLS with and without TOC. For 
the TOC predictions two calibration transfer samples 
were used per level. Using the KNN model all samples 
were predicted in the correct class, 10, 50 or 100 μg. 
SIMCA-TOC predicted 89% of the samples correct-
ly. 



Since we wanted to test the quantitative predictions 
using the PLS models, we only mean centered the data 
sets. As an overall measure of the accuracy of the mo-
dels we decided to use the standard error of prediction 
(SEP) [2]. SEP is related to the PRESS (Prediction 

Residual Error Sums of Squares) but SEP takes into 
account the number of samples and has the same units 
as the dependent variable. Table 3 contains the predic-
tions results using PLS and PLS-TOC. 
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BCS PLS PLS_TOC ACS PLS PLS_TOC
Amount Amount Amount Amount Amount Amount

[μg] [μg] @5 [μg] @5 [μg] [μg] @5 [μg] @5
10 10 9 100 104 100
50 50 47 50 50 50

100 100 108 100 105 101
10 10 10 50 49 49
50 50 50 10 8 12

100 100 100 100 103 101
10 10 11 50 49 49
50 49 50 10 8 11

100 101 108 10 8 11
10 11 11 100 99 100
50 50 50 10 8 11

100 101 101 100 101 99
10 11 11 100 102 98
50 50 52 50 49 48

100 100 106 10 8 11
10 9 12 10 8 11
50 49 51 50 48 47

100 100 106 50 47 49
SEP 38 37

PRESS 51877 49954

Table 3.  Prediction of unknowns for the limonene data set using a 5-factor PLS model.
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Overall, slight different predictions and lower SEP were obtained using the PLS model with TOC. Predictions 
using PLS-TOC are also shown in Figure 8.

CONCLUSIONS
Slight differences in mass spectral profi les were found 
depending on the tuning algorithm, fi lament used and 
ion source condition. In all the three data sets studied, 
KNN models provided good accurate predictions re-
gardless of slight changes in instrument conditions.
The use of direct TOC improved all the classifi cations 
using SIMCA models. In this study, two calibration 
transfer samples per class or level appear to greatly 
improve the correct classifi cations. Our goal is to 
continue monitoring the above samples over longer 
periods of time and test the ability of TOC algorithms 
to compensate for slight changes in the mass spectral 
fi ngerprints.
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Figure 8.  PLS predictions for Limonene solutions before source cleaning-samples on the right side of the fi gure 
and after source cleaning-left side samples. TOC was used with 2 calibration transfer samples per level.
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