# Determination of Meat Authenticity Using a Comprehensive Targeted Proteomic Strategy and High-Resolution Mass Spectrometry

Complete method: Alberto Ruiz Orduna, Erik Husby, Charles T. Yang, Dipankar Ghosh & Francis Beaudry (2015): Assessment of meat authenticity using bioinformatics, targeted peptide biomarkers and high-resolution mass spectrometry, Food Additives & Contaminants: Part A, DOI: 10.1080/19440049.2015.1064173

## **Highlights**

- Sensitive and robust HRAM LC-MS method using a Thermo Scientific<sup>™</sup> Q Exactive<sup>™</sup> mass spectrometer for the identification and detection of marker proteins in raw meat samples
- Four proteotypic peptides were used to perform accurate meat speciation and authenticity
- Myoglobin tryptic peptides from each species were detected with an observed *m/z* below 1.3 ppm
- Targeted method allowed for the detection of undesired meat species down to 1% (w/w) of the entire sample
- Data-independent acquisition (DIA) method can be used to detect all four proteotypic peptides

#### Introduction

Due to the internationalization of food production and distribution, there has been a significant increase of food fraud in recent years. Food fraud can have serious health implications and occurs when food manufacturers implement unethical practices, such as making false label claims as well as using additives and fillers within their products to increase profitability. This has been a serious concern, and in 2013, horse and pig DNAs were detected in beef products sold by several retailers (DG Health and Consumers, European Commission). In an effort to control this within the food industry, certification of meat authenticity must be delineated for all regulatory agencies.

The application of proteomics in the meat science field is focused on improving meat quality while increasing meat production and revenue. To ensure that food safety regulations are being met, food-testing laboratories require more advanced analytical strategies to test for adulteration and to expose many of these unethical, albeit profit-generating, tactics. Since mass spectrometry (MS) is considered a gold standard in protein research, it is also used as a method for detecting marker proteins that support animal tissue identification. In this application, meat adulteration was tested using a welldefined proteogenomic annotation and carefully selected surrogate tryptic peptides. This novel method is a new technique for determining meat authenticity and composition using a state-of-the-art high-resolution Orbitrap<sup>™</sup> MS.



# Experimental Sample Preparation

In order to verify assay sensitivity and specificity, raw pork meat was mixed at several weight percentage ratios (1, 2, 10, 25, 50, and 100) with a mixture of equal weight (1:1:1) raw beef:horse:lamb meat. All mixtures were performed to yield a total weight of 100 g. From these mixtures, 1 g was combined with 5 mL of distilled water, homogenized, and used for analysis.

Proteins were extracted and then digested with 2 µg of proteomic-grade trypsin at 40 °C for 24 h. Protein digestion was terminated by adding 500 µL of a 1% TFA solution. Afterwards, the samples were centrifuged at 12,000 g for 10 min, and 200 µL of the supernatants were transferred to injection vials for LC-MS analysis. Protein identification was performed using Thermo Scientific<sup>™</sup> Proteome Discoverer<sup>™</sup> software.



| MS Conditions             |                                                                                |  |  |  |
|---------------------------|--------------------------------------------------------------------------------|--|--|--|
| MS:                       | Thermo Scientific Q Exactive benchtop<br>quadrupole-Orbitrap mass spectrometer |  |  |  |
| Scan Type:                | Full scan MS                                                                   |  |  |  |
| Resolving Power:          | 140,000 (FWHM)                                                                 |  |  |  |
| AGC:                      | 3.0 × 10 <sup>6</sup>                                                          |  |  |  |
| Maximum IT:               | 200 ms                                                                         |  |  |  |
| Scan Range:               | <i>m/z</i> 500–2000                                                            |  |  |  |
| njection Volume:          | 2 µL                                                                           |  |  |  |
| Spray Voltage:            | 4 kV                                                                           |  |  |  |
| Capillary Temperature:    | 300 °C                                                                         |  |  |  |
| Sheath Gas Flow Rate:     | 10 Arb                                                                         |  |  |  |
| Auxilliary Gas Flow Rate: | 5 Arb                                                                          |  |  |  |
| Produc                    | ct lon Spectra Obtained with:                                                  |  |  |  |
| Resolving Power:          | 17,500 (FWHM)                                                                  |  |  |  |
| Collision Energy:         | 25                                                                             |  |  |  |
| AGC:                      | 1.0 × 10 <sup>-6</sup>                                                         |  |  |  |
| Maximum IT:               | 100 ms                                                                         |  |  |  |
| Isolation Window:         | 1.5 Da                                                                         |  |  |  |
|                           |                                                                                |  |  |  |

| HPLC Conditions |                                                                                              |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------|--|--|--|--|
| System:         | Thermo Scientific <sup>™</sup> Dionex <sup>™</sup> UltiMate <sup>™</sup> 3000<br>RSLC system |  |  |  |  |
| Column:         | Thermo Scientific <sup>TM</sup> BioBasic <sup>TM</sup> C8 (5 $\mu\text{m},100\times1$ mm)    |  |  |  |  |
| Mobile Phases:  | <ul><li>(A) water + 0.1% formic acid</li><li>(B) acetonitrile + 0.1% formic acid</li></ul>   |  |  |  |  |
| Inj. Volume:    | 2 μL                                                                                         |  |  |  |  |
| Flow Rate:      | 75 μL/min                                                                                    |  |  |  |  |

# Data

Table 1. Specific myoglobin proteotypic peptides for selected mammalian meat species.

| Species | Tryptic Peptide Sequence MB (120–134) | Theoretical Mass ( $z = 2$ ) | Observed Mass ( $z = 2$ ) | Mass Accuracy (ppm) |
|---------|---------------------------------------|------------------------------|---------------------------|---------------------|
| Beef    | HPSDFGADAQAAMSK                       | 766.8435                     | 766.8436                  | 0.13                |
| Horse   | HPGDFGADAQGAMTK                       | 751.8383                     | 751.8378                  | -0.67               |
| Pork    | HPGDFGADAQGAMSK                       | 744.8304                     | 744.8314                  | 1.34                |
| Lamb    | HPSDFGADAQGAMSK                       | 759.8357                     | 759.8363                  | 0.79                |

Table 2. MS/MS parameters used for the acquisition of myoglobin proteotypic peptides (MB 120-134).

| Species | Targeted Peptide | Precursor Ion Mass ( $z = 2$ ) | Isolation Width (Da) | Collision Energy | Product lon $m/z$ ( $z = 1$ )      |
|---------|------------------|--------------------------------|----------------------|------------------|------------------------------------|
| Beef    | HPSDFGADAQAAMSK  | 766.8                          | 1.5                  | 25               | 1298.5681 (y13)<br>1395.6209 (y14) |
| Horse   | HPGDFGADAQGAMTK  | 751.8                          | 1.5                  | 25               | 1268.5576 (y13)<br>1365.6103 (y14  |
| Pork    | HPGDFGADAQGAMSK  | 744.8                          | 1.5                  | 25               | 1254.5419 (y13)<br>1351.5957 (y14) |
| Lamb    | HPSDFGADAQGAMSK  | 759.8                          | 1.5                  | 25               | 1285.5525 (y13)<br>1381.6053 (y14) |

Table 3. Other specific proteotypic peptides identified for selected mammalian meat species.

| Species | Protein       | Uniprot Accession<br>Number | Peptide Sequence      | AA<br>Position | Theoretical Mass<br>(z = 2) | Observed Mass<br>(z = 2) | Mass Accuracy<br>(ppm) | R <sub>t</sub><br>(min) |
|---------|---------------|-----------------------------|-----------------------|----------------|-----------------------------|--------------------------|------------------------|-------------------------|
| Beef    | Myosin-1      | Q9BE40                      | TLALLFSGPASGEAEGGPK   | 619–637        | 901.4702                    | 901.4694                 | -0.89                  | 16.8                    |
| Horse   | Myosin-1      | Q8MJV0 T                    | LALLFSGPASADAEAGGK    | 619–637        | 888.4623                    | 888.4620                 | -0.34                  | 17.0                    |
| Pork    | Myosin-1      | Q9TV61                      | TLAFLFTGAAGADAEAGGGK  | 619–638        | 912.9600                    | 912.9594                 | -0.66                  | 17.4                    |
| Lamb    | Myosin-1      | XM_004012706.1 (RefSeq)     | TLAFLFSGAASAEAEGGGAK  | 619–638        | 927.9652                    | 927.9650                 | -0.21                  | 17.6                    |
| Beef    | Myosin-2      | Q9BE41                      | TLAFLFSGTPTGDSEASGGTK | 619–639        | 1022.4971                   | 1022.4968                | -0.29                  | 16.4                    |
| Horse   | Myosin-2      | Q8MJV1                      | TLALLFSGAQTADAEAGGVK  | 617–636        | 960.5073                    | 960.5070                 | -0.31                  | 17.0                    |
| Pork    | Myosin-2      | Q9TV63                      | TLAFLFSGAQ TGEAEAGGTK | 619–638        | 978.4891                    | 978.4894                 | -0.31                  | 17.1                    |
| Lamb    | Myosin-2      | XM_004012707.1 (RefSeq      | TLALLFSGTPTAESEGSGTK  | 617–636        | 984.0020                    | 984.0022                 | 0.20                   | 16.5                    |
| Beef    | ß-Haemoglobin | P02070                      | FFESFGDLSTADAVMNNPK   | 40–58          | 1045.4804                   | 1045.4796                | -0.77                  | 16.9                    |
| Horse   | ß-Haemoglobin | P02062                      | FFDSFGDLSNPGAVMGNPK   | 42–60          | 1000.4646                   | 1000.4637                | -0.90                  | 17.2                    |
| Pork    | ß-Haemoglobin | P02067                      | FFESFGDLSNADAVMGNPK   | 2–60           | 1023.4673                   | 1023.4670                | -0.29                  | 16.8                    |
| Lamb    | ß-Haemoglobin | P02075                      | FFEHFGDLSNADAVMNNPK   | 40–58          | 1076.9915                   | 1076.9906                | -0.84                  | 15.3                    |

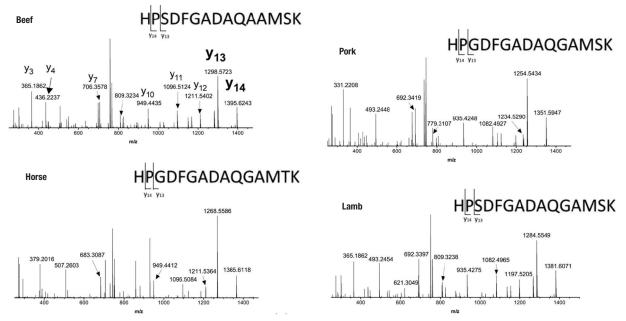



Figure 1. Product ion spectra of myoglobin proteotypic peptides (120–134). Fragment ion selectivity is preserved for y14 and y13 ions. These products can be used to produce specific product ion XICs for meat speciation.

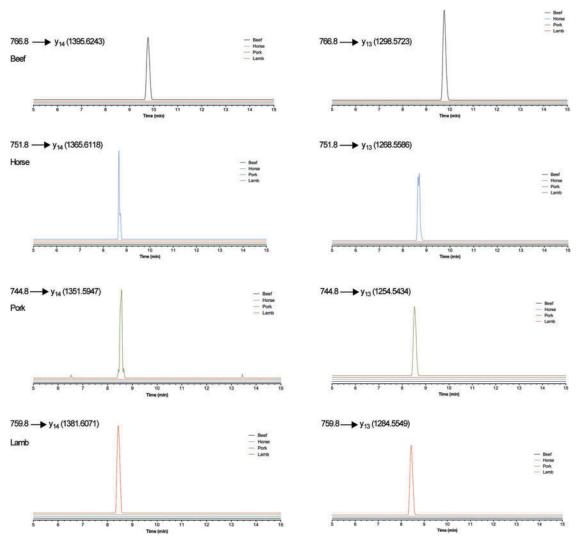
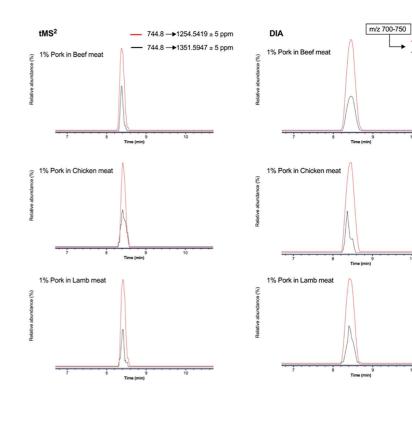
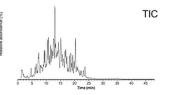





Figure 2. Extracted ion chromatograms for specific signature proteotypic peptide-fragment pairs. The data shows that each selected peptide-fragment pair was highly specific, which allowed it to perform accurate meat speciation. Additionally, very similar results were obtained using peptide precursor ion (z = 2)  $\pm 5$  ppm extracted ion chromatograms (data not shown).



1254.5419 ± 5 ppm - 1351.5947 ± 5 ppm chromatograms are in blue.)

Figure 3A. Extracted-ion chromatograms (XICs) for specific signature myoglobin proteotypic peptidefragment pairs. Chromatograms from meat samples spiked with 1% pork meat. (Extracted blank



XIC 751.8383 (± 5 ppm)

tMS<sup>2</sup> 751.8 -+ 1268.5576 ± 5 ppm 751.8 -> 1365.6103 ± 5 ppm

DIA

m/z 750-800

for specific signature myoglobin proteotypic peptide-fragment pairs. Chromatograms from beef samples spiked with 1% horse meat. (Extracted blank chromatograms are in blue.)

Figure 3B. Extracted-ion chromatograms (XICs)

## Conclusion

Muscular proteins from raw meat samples were methodically analyzed in silico to generate tryptic peptide mass lists and theoretical MS/MS spectra. Bottom-up proteomic analysis was utilized to detect and identify a proteotypic myoglobin tryptic peptide for each species with an observed m/z below 1.3 ppm. Proteotypic peptides were also identified from myosin-1, myosin-2, and ß-haemoglobin. This targeted method allowed for the detection of undesired meat species down to 1% (w/w) of the entire sample with a potential to go significantly lower using straightforward sample enrichment techniques.

#### www.thermofisher.com

©2016 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

1268.5576 ± 5 ppm 1365.6103 ± 5 ppm

Africa +43 1 333 50 34 0 Australia +61 3 9757 4300 Austria +43 810 282 206 Belgium +32 53 73 42 41 Canada +1 800 530 8447 China 800 810 5118 (free call domestic) 400 650 5118 AB64677-EN 0916S

Denmark +45 70 23 62 60 Europe-Other +43 1 333 50 34 0 Finland +358 10 3292 200 France +33 1 60 92 48 00 Germany +49 6103 408 1014 India +91 22 6742 9494 Italy +39 02 950 591

Japan +81 45 453 9100 Korea +82 2 3420 8600 Latin America +1 561 688 8700 Middle East +43 1 333 50 34 0 Netherlands +31 76 579 55 55 New Zealand +64 9 980 6700 Norway +46 8 556 468 00

Russia/CIS +43 1 333 50 34 0 Singapore +65 6289 1190 Spain +34 914 845 965 Sweden +46 8 556 468 00 Switzerland +41 61 716 77 00 UK +44 1442 233555 USA +1 800 532 4752

