Application Note: 535

A Rapid Solution for Screening and Quantitating Targeted and Non-Targeted Pesticides in Water using the Exactive Orbitrap LC/MS

Olaf Scheibner¹, Maciej Bromirski¹, Nick Duczak², Tina Hemenway² ¹Thermo Fisher Scientific, Bremen, Germany; ²Thermo Fisher Scientific, San Jose, CA, USA

Introduction

Key Words

- EQuan MAX
- Exactive
- ExactFinder
- Pesticide screening
- Water analysis

Within the field of environmental analysis, the demand for quick and simple techniques to analyze large numbers of samples is growing each year. While the limits of quantitation (LOQs) required by governmental authorities are lowered almost yearly, the number of analytes of interest is growing exponentially. By using high-resolution, accurate mass (HRAM) liquid chromatography-mass spectrometry (LC-MS) (at least 50,000 resolution) and full-scan experiments, compound identification, screening and quantitation for an unlimited number of compounds in a targeted or non-targeted screening approach can be accomplished with only one chromatographic run.

A very simple, easy-to-reproduce screening and quantitation method to identify pesticides in surface water, ground water, and drinking water is presented here. All samples were analyzed by using online solid phase extraction (SPE) coupled to a Thermo Scientific Exactive high performance benchtop mass spectrometer. The acquired HRAM data was processed by using Thermo Scientific ExactFinder software for unified qualitative and quantitative data processing. All targeted pesticides in the entire mixture were identified, and a number of non-targeted pesticides were found and confirmed by elemental composition. In the same workflow, all samples underwent quantitative analysis.

Goal

To demonstrate a screening and quantitation method for pesticides in water developed for the Thermo Scientific EQuan MAX system utilizing ExactFinder[™] software to process the HRAM data.

Experimental

Sample Preparation

A variety of water samples, including surface water, ground water, and drinking water, were spiked with 20 pesticides (Table 1) at different levels. The pesticide mixture consisted of very nonpolar analytes together with very polar metabolites, representing the full range of polarity characteristics, apart from ionic compounds, normally found in environmental analyses. A dilution series of the same pesticide mixture was provided in ultrapure water at six different levels for calculation of a calibration curve.

HPLC

All samples were injected onto the EQuan MAX automated high throughput LC-MS system without further treatment (Figure 1). The EQuan MAX system offers online-SPE for preconcentration of samples up to 20 mL. By using the EQuan MAX system, the analysis of compounds in the ng/L or even lower concentrations are possible, saving time and capital by automation of the extraction and preconcentration process. To achieve a reliable extraction of all nonpolar analytes and polar metabolites in one run, two extraction columns with different polarity characteristics were coupled. A nonpolar column with C18 selectivity (Thermo Scientific Hypersil GOLD 20 x 2.1 mm, 12 µm particle size) was placed upstream of a very polar column (Thermo Scientific Hypercarb 10 x 2.1 mm, 5 µm particle size). Elution of the trapped analytes and the transfer to the analytical column (Hypersil[™] GOLD PFP 100 x 2.1 mm, 1.9 µm particle size) were carried out in backflush mode to prevent retention of the nonpolar compounds trapped on the C18 column through contact with the Hypercarb[™] material. The injection volume for all samples was 1000 µL.

Table 1. Pesticides and their metabolites spiked into water samples

Compound Name	Elemental Composition							
Alachlor	C ₁₄ H ₂₀ NO ₂ CI							
Atrazine	$C_8H_{14}N_5CI$							
Atrazine Desethyl-	$C_6H_{10}N_5CI$							
Atrazine Desisopropyl-	$C_5H_8N_5CI$							
Carbamazepine	C ₁₅ H ₁₂ N ₂ O							
Chloridazon	C ₁₀ H ₈ N ₃ OCI							
Chloridazon Desphenyl-	C ₄ H ₄ N ₃ OCI							
Chloridazon Methyl-desphenyl-	C ₅ H ₆ N ₃ OCI							
Chlortoluron	C ₁₀ H ₁₃ N ₂ OCI							
Diuron	$C_9H_{10}N_2OCI_2$							
Isoproturon	C ₁₂ H ₁₈ N ₂ O							
Lenacil	C ₁₃ H ₁₈ N ₂ O ₂							
Metalaxyl	$C1_5H_{21}NO_4$							
Metamitron	$C_{10}H_{10}N_4O$							
Metazachlor	C ₁₄ H ₁₆ N ₃ OCI							
Metolachlor	C ₁₅ H ₂₂ NO ₂ CI							
Metribuzin	$C_8H_{14}N_4OS$							
Quinoxyfen	C1 ₅ H ₈ NOCl ₂ F							
Simazine	C ₇ H ₁₂ N ₅ CI							
Terbuthylazine	$C_9H_{16}N_5CI$							

Figure 1. EQuan MAX system equipped with the Exactive mass spectrometer and ExactFinder software

Mass Spectrometry

All experiments were performed on an Exactive[™] benchtop LC-MS powered by Thermo Scientific Orbitrap technology using a heated electrospray ionization source (HESI-II). The mass spectrometer was operated in positive/negative switching mode with a full-scan setting.

MS parameter settings:

Spray voltage:	4100 V in positive mode and 3100 V in negative mode
Sheath gas pressure (N_2) :	30 (arbitrary units)
Auxiliary gas pressure (N ₂):	5 (arbitrary units)
Capillary temperature:	250 °C
Heater temperature (HESI-II):	300 °C
Resolution:	50,000 (FWHM at <i>m/z</i> 200)
Acquisition time:	20.00 min
Polarity switching:	One full cycle in less than 1 sec

The analysis was run using conditions described earlier^{1,2} without doing any application-specific tuning of the instrument. Quantitative and qualitative data were collected in the same run and data file.

Results and Discussion

Data processing was carried out with ExactFinder software for qualitative and quantitative workflows. All analytes gave very good linear response in the calibration range (0.02 to $0.60 \mu g/L$) and did not show any interference with other analytes or matrix components (Figure 2). The quantitation data showed good reproducibility and good recovery rates, as determined by the addition of internal standard to every sample. The specificity of analysis was achieved by applying a mass window of 5 ppm to the theoretical mass of the analytes.

In addition, both targeted and non-targeted screening processes were applied to all samples. Exact mass and retention time were used as identification criteria in the targeted screen (Figure 3). Confirmation of identity was achieved by automated matching of the given elemental composition with the isotopic pattern of the determined signal. An example of isotopic pattern matching is given in Figure 4. ExactFinder software can also provide compound identification through the following criteria: occurrence of up to five fragment ions, library spectra match, and internet database search via ChemSpider[®].

The remaining peaks were also screened against a larger compound list. For all signals, elemental compositions were calculated based on the isotopic distribution of a pre-defined list of elements.

The non-targeted screening yielded additional compounds present in the samples. For example, in addition to the targeted compounds, we found the presence of carbendazim in some of the samples and thiometoxam in one. For most of the signals, elemental compositions were determined. All 20 analytes of interest were easily quantified and assigned as knowns in the automated screen. The non-targeted screening yielded additional identifications of analytes without additional analytical effort. To ensure maximum detection of all possible ions from the samples analyzed, the Exactive mass spectrometer was operated in positive/negative switching mode. This did not affect the mass accuracy or sensitivity of the system at any time. The same results were achieved by performing the analysis in separate runs with the mass spectrometer operating in positive mode for one run and in negative mode for the other.

ermo ExactFi	nder	Water Samples	Quan_27-04-11_1	52122													osch	eibner Log Out Hel
INTIFIC																		्
/orkflow > 🗹 Method D	evelopment	> 🗹 Revie	ew >															
ata 🔰 🦳 Reports 🔉		_																File
eview resulting quantitation da	ta. If you mak	e any changes,	save the batch befo	ore leaving this view.														
pounds	 Quantitatio 																	
loridazon Desphenyl- loridazon Methyl-desphenyl-	R. 40		Sample Name 🛱										% Diff 44					
razin Desisopropyl- razin Desethyl-	ñ, <u>A</u> ≥ ▼	<u>A</u> a ▼	<u>A</u> a 🔹	- •	<u>A</u> a ▼	=	•	- ·	=	•	- •	= •	- •	= •	= •	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a
etamitron	2	STD001	0.02	501,700	Area		N/A	N/4	L .	N/A	0.020	0.0211	5.57	2.75	3.1	1 Cal Level-1	µg/L	Y = -64355.4+2.68
loridazon nazin	2	STD002	0.02	487,387	Area		N/A	N/4		N/A	0.020	0.0206	2.90	2.75	3.1	1 Cal Level-1	µg/L	Y = -64355.4+2.6
tribuzin	2	STD003	0.02	518,570	Area		N/A	N/4		N/A	0.020	0.0217	8.71	2.75	3.1	1 Cal Level-1	µg/L	Y = -64355.4+2.6
acil	•	STD004	0.04	1,013,649	Area		N/A	N/A		N/A	0.0400	0.0402	0.52	1.30	1.3	8 Cal Level-2	µg/L	Y = -64355.4+2.6
butylazine Desethyl- bamazepin		STD005	0.04	1,041,662	Area		N/A	N/A		N/A	0.040	0.0413	3.14	1.30	1.3	8 Cal Level-2	µg/L	Y = -64355.4+2.6
azin	,	STD006	0.04	1.023.952	Area		N/A	N/A		N/A	0.040	0.0406	1.48	1.30	1.3	8 Cal Level-2	µg/L	Y = -64355.4+2.6
proluron	,	STD007	0.06	1,549,276	Area		N/A	N/4		N/A	0.060	0.0602	0.31	3.15	3.2	8 Cal Level-3	µg/L	Y = -64355.4+2.6
talaxyl		STD008	0.06	1,648,703			N/A	N/A		N/A	0.060	0.0639	6.49			8 Cal Level-3	ug/L	Y = -64355.4+2.6
ron azachlor		STD009	0.06	1,571,976			N/A	N/A		N/A	0.060					8 Cal Level-3	µg/L	Y = -64355.4+2.6
outylazine		STD010	0.08	1,960,035			N/A	N/4		N/A			-5.61			2 Cal Level-4	µg/L	Y = -64355.4+2.6
chlor colachlor		STD010	0.08	1,828,160			N/A	N/A		N/A	0.080		-11.76			2 Cal Level-4	µg/L	Y = -64355.4+2.6
noxyfen		STD011 STD012	0.08	1,992,790			N/A	N/#		N/A	0.080		-11.76			2 Cal Level-4 2 Cal Level-4		Y = -64355.4+2.6
· · · · · · · · · · · · · · · · · · ·							N/A										µg/L	
	* •	STD013	0.2	5.054.124			N/A	N/4	-	N/A	0.200	0.1909	-4.54	2.96	2.9	9 Cal Level-5	ua/L	Y = -64355.4+2.6
natogram								▼ Spectrum										
und Chromatogram								Calibration		MS								
Carbamazepin NL: 2.27	E5 m/z= 23	37.1009 - 237.1	032										Carb	amazepin				
IS + c ESI Full ms [100,00-200	00,00]											Y = -64355.4	+2.68099e	+07*X R^2	= 0.9968	W: 1/X		
			RT: 9.02 AA: 1013648.65							4								•
1			AH: 224467.11					1500	0000-									-
			Λ													_		
1								m 1000	0000-	1					_			
4								8000 We		1								
1										-								
-								500	-0000	1								
-										1								
-									0-									

Figure 2. Quantitation Results section of ExactFinder software

mo ExactFinder																
ermo EvactFi	nder .		es Screen_04-05-11_162920											oscheibner	Log Out	Help
TIFIC LACCIT	naci (Water Sampl	es Screen_04-05-11_162920													
kflow 🔉 🗹 Method D	evelopment 3	Rev	riew >													
a 🔉 🦲 Reports 🔉															File	?
ew resulting screening data.	If you make ar	ny changes, s	ave the batch before leaving this	view.												
s	▼ Sc	reening Resu	lts													
amples Screen_04-05-11_16	2920 <u>*</u> Targ	et Screening	Results													-
obe001 obe002		8	Compound Name +P	Match Result Name	• For	mula +⊐	Confirm 🖶	m/z (E)	opected) 🗁	m/z (Measured) 🛱	m/z (Delta (ppm)) 岇	RT (Expected) 🗲	RT (Measured)	🖶 RT (Delta) 🛱	E.#	
be003 be004		. A2 T	60 -	60 -	Aa	•	Åa →	=	•						-	
be005			Chloridazon	Chloridazon@RT 8		DH8N3OCI	-		222.0429	222.0425	1.8			8.00 0	.00 1.00	
e006									146.0116	146.0115	0.7					
e007 e008			Chloridazon Desphenyl-	Chloridazon Desphenyl-@RT 3,75		H4N3OCI	1 out of 1								.05 1.00	
e009		•	Chloridazon Methyl-desphenyl-	Chloridazon Methyl-desphenyl-@RT 4,	,53 C5	H6N3OCI	1 out of 1		160.0272	160.0270	1.2	0 4	.60	4.53 0	.07 1.00	10
e010			Chlortoluron	Chlortoluron@RT 9,45	C10	DH13N2OC	l 1 out of 1		213.0789	213.0787	1.1	4 9	.50	9.45 0	.05 1.00)0
e011 e012		•	Diuron	Diuron@RT 9,7	C9	H10N2OCI2	1 out of 1		233.0243	233.0238	2.1	1 9	.70	9.70 0	.00 1.00	00
e012 e013			Isoproturon	Isoproturon@RT 9,51	C1	2H18N2O	1 out of 1		207.1492	207.1488	1.7	2 9	50	9.51 -0	.01 1.00	30
e014			Lenacil	Lenacil@RT 8,95	C1	3H18N2O2	1 out of 1		235.1441	235.1436	1.9	5 8	.90	8.95 -0	.05 1.00	00
e015			Metalaxyl			5H21NO4	1 out of 1		280.1543	280.1539	1.6				.03 1.00	
e016 e017			,	Metalaxyl@RT 9,47												
be018		•	Metamitron	Metamitron@RT 7,76	C10	0H10N4O	1 out of 1		203.0927	203.0925	1.0	2 7	.80	7.76 0	.04 1.00	,0
be019			Metazachlor	Metazachlor@RT 9,68	C1/	4H16N3OC	l 1 out of 1		278.1055	278.1049	2.1	9 9	.70	9.68 0	.02 1.00)0
pe020			Matolachlor	Metolachlor@RT 10.25	<u></u>	5H22NO2O	1 out of 1		284 1412	284 1408	13	210	30 1	0.25 0	05 0.01	18
be021	-							_								÷
ogram							Spectrum									
Na						N	4S									
Diuron NL: 1.27E5 n s	n/z= 233.0226	- 233.0250	Score: 1.000				Isotope Pattern									
			RT: 9.70			P	obe001 # 599	RT: 9	.70							
			AA: 462356.27 AH: 45501.91			F:	FTMS + c ES			0.00]					NL	
			AH. 45501.91				100-	233.0				Simu	lated Isoto	nic Patter	n C9	SH.
			3					C9H10N	20012.0213			Jinu	1010010	piciation	+H	11
						4	≩ 50-			239.0251						
			- B			ator of the			237.	0184						
						1				240.0260					NL	
							100-	233.0	0238				Exporim	ental Data		
						1			235.0209				Lyberin		a	
							50-228.19	54			248.1272	250.1772				
			1				-		237	0179	245.2008	251.0941				
			9.93			-	229.19	85		240.2318	245.2000	251.0941	257.1927	26	4.2035	
8.8 9.0	9.2	9.4	9.6 9.8 10	0 10.2 10.4 1	10.6	· •	230		235	240	245	250	255	260	265	

Figure 3. Target Screening Results section of ExactFinder software

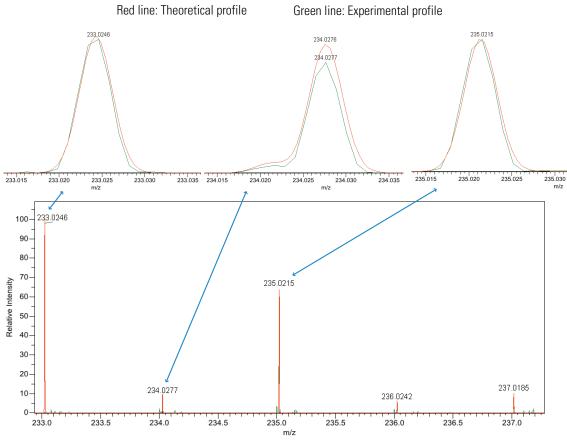


Figure 4. Isotopic pattern matching example

Conclusion

In this screening and quantitation method to indentify pesticides in water, the combination of two different extraction columns yielded easy access to a wide range of environmental compounds in one general approach. ExactFinder software provided a single streamlined workflow with high productivity and confidence required for targeted and non-targeted screening experiments. Full qualitative data was attained from the same data set in one workflow, and a wide range of confirmation tools for known analytes were available. An additional search led to the identification of a number of non-targeted analytes and yielded a large number of compounds, to which elemental compositions can be assigned in most cases. Lastly, acquiring the data at 50,000 resolution reduces the likelihood of coeluting isobaric interferences and thus diminishes the likelihood of false positives.

References

- Zhang, A., Chang, J., Gu, C., Sanders, M. Non-targeted Screening and Accurate Mass Confirmation of 510 Pesticides on the High Resolution Exactive Benchtop LC/MS Orbitrap Mass Spectrometer, Thermo Fisher Scientific Application Note 51878, 2010.
- Beck, J., Yang, C. LC-MS/MS Analysis of Herbicides in Drinking Water at Femtogram Levels Using 20 mL EQuan Direct Injection Techniques, Thermo Fisher Scientific Application Note 437, 2008.

www.thermoscientific.com

Legal Notices: ©2011 Thermo Fisher Scientific Inc. All rights reserved. ChemSpider is a registered trademark of ChemZoo, Inc. and is a service currently provided by the Royal Society of Chemistry. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. In addition to these offices, Thermo Fisher Scientific maintains a network of representative organizations throughout the world.

Africa-Other

Australia

Austria +43 1 333 50 34 0 Belgium Canada +1 800 530 8447 **China** +86 10 8419 3588 Denmark +45 70 23 62 60 Europe-Other +43 1 333 50 34 0 Finland/Norway/ Sweden +46 8 556 468 00 France +33 1 60 92 48 00 Germany +49 6103 408 1014 India <u>+91 22 6742 9434</u> **Italy** +39 02 950 591 **Japan** +81 45 453 9100

Latin America

+44 1442 233555 **USA** +1 800 532 4752

Thermo Fisher Scientific, San Jose, CA USA is ISO Certified AN63413_E 06/11S

