Qualitative and Quantitative Analysis of Pesticides in Horse Feed Matrix Using Orbitrap MS

Olaf Scheibner and Maciej Bromirski, Thermo Fisher Scientific, Bremen, Germany

Key Words

Exactive Plus, UHPLC, high resolution, accurate mass, high throughput, Orbitrap, Data-Dependent All-Ion Fragmentation, ExactFinder

Goal

To test the ability of a high-resolution, accurate-mass benchtop Orbitrap[™] mass spectrometer to achieve high sensitivity and selectivity when analyzing modern, very-short-gradient UPHLC separations of complex samples.

Introduction

Productivity of a liquid chromatograph-mass spectrometer (LC-MS) system is measured in samples per day. To achieve higher productivity, modern ultra-high-performance LC-MS (UHPLC-MS) methods use very short gradients. Chromatographic peak widths are often below 5 seconds at the base. A high-resolution, accurate-mass (HR/AM) mass spectrometer operating in full-scan mode must be able to provide a sufficient number of scans (\geq 10) across the chromatographic peak without compromising sensitivity and selectivity. As reported earlier, a resolving power in excess of 50,000 (FWHM at *m*/z 200) combined with a mass extraction window of 5 ppm is necessary to ensure selectivity comparable to established MS/MS techniques.¹

The Thermo Scientific[™] Exactive[™] Plus Orbitrap mass spectrometer (Figure 1) is the second generation of the Exactive product family. It features two major changes over the first generation instrument. First, in the ion optics the tube-lens / skimmer assembly has been replaced by an S-Lens (Figure 2) that provides significantly higher ion transmission, increasing the instrument's sensitivity. Second, the Orbitrap mass analyzer and related electronics have been improved,² resulting in higher scan speed and resolution, as well as improved polarity switching. As a result, the range of resolving power is from 17,500 to 140,000 at *m/z* 200, with a maximum scan rate of 12 Hz.

In this research, the Exactive Plus instrument was used to analyze extracts of horse feed spiked with common pesticides.

Figure 1. Exactive Plus mass spectrometer with Accela 1250 UHPLC

Figure 2. Exactive Plus ion optics and mass analyzer components

Experimental

Sample Preparation

QuEChERS extracts of horse feed were spiked with 85 common pesticides (Table 1) at levels of 10 and 100 ppb, and diluted 1:1 with acetonitrile. Six calibration standards with the 85 pesticides in acetonitrile were mixed 1:1 with horse feed matrix that, through previous analysis, was proven to be free of pesticides. The final calibration levels were 5, 10, 25, 50, 100, and 150 ppb (5–150 µg/kg).

Table 1. Pesticides spiked into QuEChERS extracts

Pesticide	Chemical Formula	Pesticide	Chemical Formula				
Acephate	C ₄ H ₁₀ NO ₃ PS	Indoxacarb	C ₂₂ H ₁₇ CIF ₃ N ₃ O ₇				
Acetamiprid	C ₁₀ H ₁₁ CIN ₄	Iprovalicarb	C ₁₈ H ₂₈ N ₂ O ₃				
Aldicarb	C ₇ H ₁₄ N ₂ O ₂ S	Isofenphos-methyl	C ₁₄ H ₂₂ NO ₄ PS				
Aldicarb-sulfone	C ₇ H ₁₄ N ₂ O ₄ S	Isofenphos-oxon	C ₁₅ H ₂₄ NO ₅ P				
Azinphos-ethyl	C ₁₂ H ₁₆ N ₃ O ₃ PS ₂	Isoprothiolane	C ₁₂ H ₁₈ O ₄ S ₂				
Azinphos-methyl	C ₁₀ H ₁₂ N ₃ O ₃ PS ₂	Isoproturon	C ₁₂ H ₁₈ N ₂ O				
Azoxystrobin	C ₂₂ H ₁₇ N ₃ O ₅	Linuron	C ₉ H ₁₀ Cl ₂ N ₂ O ₂				
Bromacil	C ₉ H ₁₃ BrN ₂ O ₂	Mepanipyrim	C ₁₄ H ₁₃ N ₃				
Bromuconazole	C ₁₃ H ₁₂ BrCl ₂ N ₃ O	Metconazole	C ₁₇ H ₂₂ CIN ₃ O				
Carbaryl	C ₁₂ H ₁₁ NO ₂	Methiocarb	C ₁₁ H ₁₅ NO ₂ S				
Carbendazim	C ₉ H ₉ N ₃ O ₂	Methiocarb-sulfone	C ₁₁ H ₁₅ NO ₄ S				
Carbofuran	C ₁₂ H ₁₅ NO ₃	Methoxyfenozide	C ₂₂ H ₂₈ N ₂ O ₃				
Carbofuran-3-hydroxy	C ₁₂ H ₁₅ NO ₄	Metobromuron	C ₉ H ₁₁ BrN ₂ O ₂				
Chlorfluazuron	C ₂₀ H ₉ Cl ₃ F ₅ N ₃ O ₃	Monocrotophos	C ₇ H ₁₄ NO ₅ P				
Clofentezine	C ₁₄ H ₈ Cl ₂ N ₄	Napropamide	C ₁₇ H ₂₁ NO ₂				
Cymiazole	C ₁₂ H ₁₄ N ₂ S	Nitenpyram	C ₁₁ H ₁₅ CIN ₄ O ₂				
Cymoxanil	C ₇ H ₁₀ N ₄ O ₃	Omethoate	C ₅ H ₁₂ NO ₄ PS				
Cyproconazole	C ₁₅ H ₁₈ CIN ₃ O	Oxamyl	C ₇ H ₁₃ N ₃ O ₃ S				
Cyromazine	C ₆ H ₁₀ N ₆	Pencycuron	C ₁₉ H ₂₁ CIN ₂ O				
Demeton-S-methyl-sulfone	C ₆ H ₁₅ O ₅ PS ₂	Phenmedipham	C ₁₆ H ₁₆ N ₂ O ₄				
Dichlorvos	C ₄ H ₇ Cl ₂ O ₄ P	Pirimicarb	C ₁₁ H ₁₈ N ₄ O ₂				
Diethofencarb	C ₁₄ H ₂₁ NO ₄	Prochloraz	C ₁₅ H ₁₆ Cl ₃ N ₃ O ₂				
Difenoconazole	C ₁₉ H ₁₇ Cl ₂ N ₃ O ₃	Propamocarb	C ₉ H ₂₀ N ₂ O ₂				
Diflubenzuron	C14H9CIF2N202	Propoxur	C ₁₁ H ₁₅ NO ₃				
Dimethoate	C ₅ H ₁₂ NO ₃ PS ₂	Prosulfocarb	C ₁₄ H ₂₁ NOS				
Disulfoton	C ₈ H ₁₉ O ₂ PS ₃	Prosulfuron	C ₁₅ H ₁₆ F ₃ N ₅ O ₄ S				
Disulfoton-sulfone	C ₈ H ₁₉ O ₄ PS ₃	Pymetrozine	C ₁₀ H ₁₁ N ₅ O				
Diuron	C ₉ H ₁ 0Cl ₂ N ₂ O	Pyraclostrobin	C ₁₉ H ₁₈ CIN ₃ O ₄				
Ethiofencarb	C ₁₁ H ₁₅ NO ₂ S	Pyridaphenthion	C ₁₄ H ₁₇ N ₂ O ₄ PS				
Fenamiphos	C ₁₃ H ₂₂ NO ₃ PS	Spinosyn-A	C ₄₁ H ₆₅ NO ₁₀				
Fenazaquin	C ₂₀ H ₂₂ N ₂ O	Spinosyn-D	C ₄₂ H ₆₇ NO ₁₀				
Fenhexamid	C ₁₄ H ₁₇ Cl ₂ NO ₂	Spiroxamine	C ₁₈ H ₃₅ NO ₂				
Fenobucarb	C ₁₂ H ₁₇ NO ₂	Tebufenozide	C ₂₂ H ₂₈ N ₂ O ₂				
Fenoxycarb	C ₁ 7H ₁₉ NO ₄	Tebufenpyrad	C ₁₈ H ₂₄ CIN ₃ O				
Fenthion	C ₁₀ H ₁₅ O ₃ PS ₂	Teflubenzuron	C ₁₄ H ₆ Cl ₂ F ₄ N ₂ O ₂				
Flucycloxuron	C ₂₅ H ₂₀ CIF ₂ N ₃ O ₃	Tetraconazole	C ₁₃ H ₁₁ Cl ₂ F ₄ N ₃ O				
Flufenoxuron	$C_{21}H_{11}CIF_6N_2O_3$	Thiabendazole	$C_{10}H_7N_3S$				
Formetanate	C ₁₁ H ₁₅ N ₃ O ₂	Thiacloprid	$C_{10}H_9CIN_4S$				
Furathiocarb	C ₁₈ H ₂₆ N ₂ O ₅ S	Thiodicarb	C ₁₀ H ₁₈ N ₄ O ₄ S ₃				
Hexaflumuron	$C_{16}H_8CI_2F_6N_2O_3$	Trichlorfon	C ₄ H ₈ Cl ₃ O ₄ P				
Hexythiazox	C ₁₇ H ₂₁ CIN ₂ O ₂ S	Trifloxystrobin	$C_{20}H_{19}F_{3}N_{2}O_{4}$				
Imazalil	C ₁₄ H ₁₄ Cl ₂ N ₂ O	Triflumuron	C ₁₅ H ₁₀ CIF ₃ N ₂ O ₃				
Imidacloprid	C₀H₁₀CIN₅O₀						

Liquid Chromatography

A Thermo Scientific Accela[™] UHPLC system consisting of an Accela open autosampler in combination with an Accela 1250 UHPLC pump was used. A 2 minute chromatographic gradient of water and methanol, both spiked with 0.1% formic acid, was applied resulting in a total chromatographic cycle time of 5 minutes (Figure 3). Ten microliters of each sample were injected onto a Thermo Scientific Hypersil[™] GOLD PFP column (50 x 2.1 mm, 1.9 µm particle size) with a flow rate of 800 µL/min. This resulted in peak widths of 3–6 seconds for the analytes of interest.

Figure 3. Chromatographic gradient

Mass Spectrometry

Given that resolution in excess of 50,000 was needed for this application, the Exactive Plus system was set to a resolving power of 70,000 at m/z 200, resulting in a scan rate of 3.7 Hz. As shown in Figure 4, this provided 13 scans across a 3.2 second peak.

Figure 4. Scans achieved across a narrow chromatographic peak

For improved component identification, it would have been useful to have fragmentation scans on the analytes of interest. However, continual switching between full-scan and all-ion fragmentation scan modes (FS/AIF) would have required resolution to be reduced to maintain the number of scans. As an optimal solution, data-dependent AIF scans (dd-AIF) were introduced into the full scans (FS/dd-AIF) by means of a mass inclusion list containing the masses of the spiked components. One AIF scan was triggered for each target compound as soon as the abundance of the target compound crossed a given intensity threshold in a full scan. This significantly reduced the number of fragmentation scans and kept the overall data rate close to what could have been achieved in full-scanonly mode. Method details are shown in Figure 5.

Figure 5. Exactive Plus instrument method setup

Data Analysis

The same data set was used for quantitative and qualitative data processing. Thermo Scientific ExactFinder[™] software version 2.0 was used to process the data. Qualitative processing included targeted screening in combination with general unknown screening. The 85 common pesticides were selected using built-in databases from ExactFinder software. These selection could be exported directly into the mass inclusion list used by the Exactive Plus instrument method to trigger the dd-AIF scans. No further optimization of the LC-MS system was needed.

Results and Discussion

Quantitative Analysis

The six calibration standards, with spike levels ranging from 5 to 150 µg/kg, were analyzed to establish calibration curves for each of the target pesticides. The majority of pesticides eluted at between 1.3 and 3.0 minutes, so a number of target components and matrix components coeluted (Figure 6). However, the extracted ion chromatograms of most target components were free from additional peaks, demonstrating that the 5 ppm extraction window combined with the resolving power of the mass spectrometer provided very high selectivity. Linear calibration curves were achieved for nearly all target pesticides (example shown in Figure 7), confirming that the compounds could be clearly distinguished from the matrix.

Figure 6. Extracted chromatograms demonstrate coelution of target and matrix compounds (only 20 traces compound shown)

	tation data.	If you mu	ake any change	s, save the batch	before leav	ing this view													
pounds	* Q.	antitatic	on Results			-													
spanide	1 41																		
iynam ioate			na nana ta	Sarger (sare to			And a second sec	G D NH		BID Spectrospector		and a second	GROW G	Store C	4130 4			tone of	La ser
nyd	100		Dise 1000		1-			-											N 235120 237230
dipham			Biank001			0	Area		NU/A	ALC:	- N/	- NO	A 51/2	hills.	N/A	N/C			V - 335136, 337334
b			E-B-SV28			1 340 400	ives		Page A		1		n nov	2.62	11/14	no.	A		1
NZ sy and			N81			1,318,400	Area		N/A	- New	NU NU	A 5000	0 4,0000	-7.67	N/A	- NO	Californi 2		V = 225129+23/329
r			5.812			2,001,257	4/68		PQ/A	149	ne ne	. 10.000	0 10.3490	3.49	ny A	TU-	Cal Lever-2		1 = 223129=23/329
carb			Nata Nata			6,379,300	Area		N/A	New	N/	A 25000	0 25.9310	3.72	N/A	76/4	Cal Level-3		1 = 20129+23/329
zine			Nate Volt			12,000,971	Area		N/A	Per Auto	N/	A 501000	0 02.64723	2.94	N/A	Pice hice	Californi 6		1 = 225129+25/329
nidor			Nar2			23,447,250	A768		nu a		ne ne		0 97.8477	-2.13	10/4	- nov	Cal Level-3		1 1 223129+23/329
enthion			Rev 1942			101 301	Area		1000						- NUM	100	Car Deverso		1 - 227229*237329
-D	80 H		Electron 2			191,391	Aure		N/C	- Part					- NUR	107			× - 208120 - 207220
sine			Execute 202			0	Area		N/A	- Nor	n ne	a 160	A 51/2	ALC:	NUR.	They be			Y = 225125+25/525
izide	11 A B	-	Campietova			4 813 000	Aves		Par A	147	- NY	- 167	10,0500	100	NUCE.	Page 1			1 - 227225*257527
enzuron	10.0		Exected Od			4 191 150	Area		81/8	ALT		8 N/2	4 175190		hire	A./.			V - 225120-227230
azole			Samela 205			105 050	Area		N/A		- NJ	a 167	1 11457	M/R	N/A	NUE NUE			V - 225120-227220
acore id	10.1					100.000									11/1	1.10			
rb	+ 1 la	_	_	_	_			_	_										
atogram						* Spectru													
d Chromatogram						Calibration	Curve MS												
Tetraconazole	NL: 2.81E6	m/z: 372	2.0270 - 372.030	07 Score: 0.842								Tetr	aconazole						
p cor Par no [10	R	T. 2.50									Y =	225129+23732	9"X R*2 = 0.9	893 W: 1/X					
	<u>^</u>	A: 451109	9.47																-
		1. 2000/14	13.90			35000	1000 g											-	_
		6				30000	E000												
		- 1				25000	E 000								-				
		- R				20207	Enner							-					

Figure 7. Example of quantitative results from one target compound (tetraconazole)

Qualitative Analysis

Qualitative analysis was carried out as a combination of targeted analysis and general unknown screening. In a first step, targeted analysis was carried out. In a second step, all peaks not identified in the targeted search were automatically forwarded for general unknown screening.

The same list of analytes used for quantitative analysis (Table 1) was applied for the targeted search. Retention time, isotopic pattern match, fragment search, and library search were used as confirmation criteria for targeted search. The fragment information for the analytes of interest and the fragmentation spectra for the library search were taken from databases included with the ExactFinder software. Even at the lower end of the concentration range, most components quantified could be easily confirmed on all four stages of confirmation (see Figure 8). With its built-in reporting capabilities, the ExactFinder software version 2.0 provided a quick, easy overview of the screening results.

rennio Exectrasper																				000
ermo e	xad	tFin	der	Horse Feed UHPLC dd/	UF 003 Union	own Screen_20-0	1-12												i oscheibner i t	og Out I Help
Workflow > §	Me	thod Dev	elopment 1	Review >																
12 2 1 2						_													_	Fie 7
iew resulting s	reenin	g data. M	you make a	ny changes, save the ba	itch before lea	wing this view.														
des	• Scre	ening Re	nults																	
d UHPLC ddf	Target 1	Screening	Repults U	sknown Screening Resul	its .															
4001		tep. 3		- Compound Name 3	1 mps. 4	. Nervice .		erent #			Measured	e bee		Northon 44	18 Match Name #	Ubrary Score (%) 40	fragment 1		fragment 2 4	i Ingine
			4 -	A		4				-	-			A		-	-			
	1	100		Mepanipyrim	2	38 C14H13N3		224.1181	- 4	.75 0.79	1.4808807	Street Street	100	3 of 4	Diexacarb	3	7	106.0651	209.0	151
		1		Methiocarb	2	31 C11H15NO25		226.0895	- 4	61 0.77	4,2631606		100	3 of 3	Terbutaline	3		121.0645	169.0	179
202		12		Methiocarb-sulfone	11	88 C11H15NO45		258.0796		44 0.74	1.2520606		95	2 of 3	Tolmetin	3		201.0582	122.0	26
103		1		Naproparride	2	54 C17H21NO2		272.1643	- 4	74 0.79	4 1.4286607		100	3 of 3	Napropamide	4	4	171.0802	129.1	46
4003		1		Pencycuron	2!	59 C19H21CIN20)	329.1414	-0	47 0.79	6.4331106		100	4 of 5	Pencycuron	3		125.0150	261.0	189
4e004		121		Pirimicarb	11	97 C11H18N4O2		239.1502	- 4	.01 0.44	1.3541607		100	4 of 4	Pirimicarb	2		182.1291	72.0	142
1e005		12		Prochloraz	2)	68 C15H16CI3N3	02	376.0378	-4	85 0.76	5.3533606		84	5 of 7	Oxaziclomefone	2	9	308.0000	265.9	36
		120		Proposur	11	92 C11H15NO3		210.1125	0	28 0.69	2 7.2468806		100	2 of 3	Proposur	3		111.0439	168.0	156
		121		Proposur	21	04 C11H15NO3		210.1125	0	36 0.30	1.2764E06		100	2 of 2	Dimethinimol	2	5	111.0439	168.0	56
		10		Prosulfocarb	2/	60 C14H21NOS		252.1415	-4	.77 0.79	2 7.3126606		100	3 of 4	Furmecyclox	3	3	91.0538	128.0	168
		×	۲	Pyraclostrobin	2/	62 C19H18CIN30	04	388.1055	-4	.88 0.82	8.6967206		100	4 of 4	Pyraclostrobin	6	4	163.0626	133.0	120
		1	۲	Pyridaphenthion	2	45 C14H17N2O4	PS	341.0717	-4	67 0.74	\$ 5.5942606		100	4 of 4	Indenoten	6		189.0555	205.0	127
	+	_			- 10			18												
atooram				* 5000																
atogram					rum															
				MS MS	52															
p ESI Full me	(150.00	0-600.001	WZ. 329.139	Show Show	Isotopic Patter	n														
	RT. 2.	59		Sample00 F: FTMS	13 #: 441 - 450 + o ESI Full me	3 RT: 2.57 - 2.64 s [150.00-800.00]	AVC 10													
	AH: 2	620963.73	i.	100-					33	9.1415										NL.
		I		1003					C19H	21CIN2O+H										C19
		6																		
		£.		50-							110.1461	331.1383								
		8		18 3							1		33	2.1423 31	3 1451					
		16		2 0-L						-	130 2615	_				0.000000				
				\$ 100 g												335,2189				Pan
				100				33	8.2481 32	9.1018		4 4 7 7 1			33.2033	2950	337.0	1963 3	38.2382	
		1		50-3	324,2896 %	25.2369 3	26.2682	328 113	al	1 222 44	0.1002 30	1.13/2	332.14	0.	224 1677	110.0	507	337 2347		
		1 6		1	/ 325.05	19 326.23	25 327.2	527	-	328.14	-	331.267	۹ (۱	32.2793	111 1117		336.2226		338.2685	
		1		n ol	(marthe		Transferret		1 329.004	ílli		- dil.		à la gana	In and the start		-u-			-1-
	-	100		10 M																

Figure 8. Qualitative results as displayed by the ExactFinder software

It quickly became clear that sufficient resolution was the key to successful full-scan quantitation and screening of complex samples like the ones analyzed in this work. As shown in Figure 9, most analyte signals were surrounded by numerous matrix signals. Only sufficient resolving power ensured proper separation of analyte and matrix signals. This applies to the monoisotopic signals used for analysis as well as for the isotopic signals used for confirmation. The peaks of interest showed a resolution of close to 60,000. It was apparent that significantly lower resolving power at these masses would have led to interference and merged signals, causing significant mass shifts. The mass shifts would have led to false negatives or would have required to widening of the extraction window. Widening the extraction window would have lowered the selectivity of the analysis and resulted in false positives.

The general unknown screening carried out on the remaining peaks offers several options for automatic identification of the found peaks: database search, elemental composition determination based on isotopic pattern matching, spectral library search, and internet search. For the samples, roughly 15,000 components were detected; all of them went through the identification process. Database and spectral library searches were carried out using built-in resources. Internet search was carried out using a selection of databases listed in the ChemSpider[®] online search portal. Numerous additional contaminants could be identified, especially pesticides and a selection of aflatoxins (results not shown).

Conclusion

HR/AM analysis is a versatile method for residue analysis. It offers full quantitation capabilities in combination with unrestricted target and unknown screening options. Ultra-high resolution delivered by the Orbitrap mass analyzer in the Exactive Plus mass spectrometer provides reliability and selectivity comparable to established MS/MS techniques. The Exactive Plus mass spectrometer is compatible with UHPLC without compromising resolution or mass accuracy.

References

- 1. Kaufmann, A., Butcher, P., Maden, K., Walker, S. & Widmer, M. Comprehensive comparison of liquid chromatography selectivity as provided by two types of liquid chromatography detectors (high resolution mass spectrometry and tandem mass spectrometry): "Where is the crossover point?". *Anal. Chim. Acta* 2010 Jul 12; 673(1), 60-72.
- Scheibner, O.; Damoc, E.; Denisov, E.; Hauschild, J.; Lange, O.; Czemper, F.; Kholomeev, A.; Makarov, A.; Wieghaus, A.; Bromirski, M. Improved analysis of biopharmaceutical samples using an MS-only Orbitrap mass spectrometer. Presented at the 60th ASMS Conference on Mass Spectrometry and Allied Topics, Vancouver, Canada, May 20–24, 2012, ThP28 #623.

Acknowledgements

We would like to thank Dr. Thorsten Bernsmann from CVUA-MEL, Muenster, Germany, for preparation of the samples used in this study.

www.thermofisher.com

©2016 Thermo Fisher Scientific Inc. All rights reserved. ChemSpider is a registered trademark of ChemZoo, Inc. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

Africa-Other +27 11 570 1840 Australia +61 3 9757 4300 Austria +43 1 333 50 34 0 Belgium +32 53 73 42 41 Canada +1 800 530 8447 China +86 10 8419 3588 Denmark +45 70 23 62 60

Europe-Other +43 1 333 50 34 0 Finland/Norway/Sweden +46 8 556 468 00 France +33 1 60 92 48 00 Germany +49 6103 408 1014 India +91 22 6742 9434

Italy +39 02 950 591

 $\begin{array}{r} \textbf{Japan} & +81 \ 45 \ 453 \ 9100 \\ \textbf{Latin America} & +1 \ 561 \ 688 \ 8700 \\ \textbf{Middle East} & +43 \ 1 \ 333 \ 50 \ 34 \ 0 \\ \textbf{Netherlands} & +31 \ 76 \ 579 \ 55 \ 55 \\ \textbf{New Zealand} & +64 \ 9 \ 980 \ 6700 \\ \textbf{Russia/CIS} & +43 \ 1 \ 333 \ 50 \ 34 \ 0 \\ \textbf{South Africa} & +27 \ 11 \ 570 \ 1840 \\ \end{array}$

Spain +34 914 845 965 **Switzerland** +41 61 716 77 00 **UK** +44 1442 233555 **USA** +1 800 532 4752

AN63644_E 09/162S