Thermo. Titr. Application Note No. H-046

Title:	Standardization of copper back-titrant by
	EDTA

Scope:	Standardization	of	copper	back-titrant	using	standard
	tetrasodium EDT	A ti	trant in th	ne determinat	tion of r	metals.

Principles:	Tetrasodium EDTA (Na ₄ EDTA) is the preferred reagent for the thermometric complexometric titration of metals, due to its much higher solubility than the normally used dibasic salt Na ₂ H ₂ EDTA.
	Some metals such as nickel and cobalt react too slowly with EDTA to be suitable candidates for determination by direct thermometric titration. In these cases, a known excess of standard EDTA is added to an aliquot of the sample, sufficent time allowed to permit complete complexation, and the excess EDTA back-titrated with a standard solution of a metal (such as copper) with fast complexation kinetics.
	The thermometric titration of copper with EDTA is carried out in an ammonia/ammonium chloride buffer (~pH 10) environment. The endpoint is marked by a slight upswing in temperature, caused by the formation of the Cu ammine complex, which is slightly more exothermic than that of the Cu-EDTA complex.
_	
Reagents:	Litrant. 1 mol/L tetrasodium EDTA – Dosino #1
	Buffer: NH ₃ /NH ₄ Cl solution, pH 10. Dissolve 70g NH ₄ Cl in 688mL conc. NH ₃ soln. and make to 1000mL with D.I.

water - Dosino #2

Copper back-titrant. Prepare an approximately 1 mol/L solution from A.R. $CuSO_{4.}5H_{2}O - Dosino #3$

Method:	Basic Experimental Parameters:	
	Titrant delivery rate (mL/min.)	2
	No. of endpoints	1
	Data smoothing factor	50
	Stirring speed (802 stirrer)	6
	Delay before start (secs.)	15
	Buffer pre-dose (from Dosino #2), mL	5
	Copper sollution pre-doses (from	
	Dosino #3), mL	1, 2, 3, 4, 5, 6
	Measure 20mL D.I. water into titration titration program to titrate aliquots ranging from $1 - 6$ mL.	vessels and use the of CuSO ₄ solution

Results (example):						
Titrant: 0.9990 mol/L Na₄EDTA	Cu ²⁺ aliquot, mL	Titre Na₄EDTA, mL				
	1	5.977				
	2	4.991, 4.989				
	3	4.000				
	4	2.996				
	5	2.005				
	6	1.011				

