Thermo. Titr. Application Note No. H-104

Title:	Determination of Free Acid in Hydrometallurgical Leach Liquors

Scope:	Determination of the ,free acid" content of hydrometallurgical leach liquors

Principle:	A measured amount of acidic hydrometallurgical leach liquor is treated with potassium oxalate solution to mask potential interference from Fe(III) and other metal ions, and then titrated with standard $1 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$ solution

Reagents:	Titrant: standard sodium hydroxide solution, $\mathrm{c}(\mathrm{NaOH})$ =1mol/L. Prepare from A.R. NaOH and standardize against A.R. potassium hydrogen phthalate, freshly dried at $110^{\circ} \mathrm{C}$ for 2 hours.
	Masking solution: 30% w/v potassium oxalate solution

Method:	Basic Experimental Parameters:	
	Titrant delivery rate (mL/min.)	4
	No. of exothermic endpoints	1
	Data smoothing factor (DSF)	50
	Stirring speed (802 stirrer)	8
	Delay before start of titration (secs.)	10
	A 10 mL aliquot of acidic process liquor is pipetted by volumetric glass pipette into a PP titration tube, and 10 mL $30 \% \mathrm{w} / \mathrm{w} \mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ solution plus 10 mL DI water added. The sample solution is swirled to mix prior to being placed in the sample rack.	

Example:	Acidic hydrometallurgical leach liquor, containing Fe(II), $\mathrm{Fe}(I I I)), M g, ~ A l, M n, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Co}$ and Ca.
	$15.7 \pm 0.06 \mathrm{~g} / \mathrm{L}(\mathrm{n}=5)$, expressed as $\mathrm{H}_{2} \mathrm{SO}_{4}$ equivalent

Calculations:

Free acid, g/L = ((EP vol., mL- Blank, mL$\left.) \times \mathrm{c}(\mathrm{NaOH}) \mathrm{mol} / \mathrm{L} \times \mathrm{FW} \mathrm{H}_{2} \mathrm{SO}_{4}\right)$ (Sample vol., mL x 2)

Titration Plot:

Legend:
Blue curve = solution temperature Black curve $=$ second derivative $(E R C)$

