

### Advantages of Ion Mobility QTOF for Characterization of BioPharma Molecules

Add a New Dimension to your Research Capability with Agilent's New Drift Ion Mobility QTOF System





# **IM-QTOF Instrument Overview**

- System sensitivity optimized using electrodynamic ion funnels to focus and transmit ions
- Ion Mobility resolution optimized while maintaining QTOF performance (mass resolution and accuracy)
- Ion Fragmentation can be selected using standard QTOF collision cell (CID)
- Bandwidth of QTOF data acquisition and processing channel was increased by 10 fold to match the ion mobility data rates



Agilent Technologies

# Ion Mobility System Design



**Ionization source**: Ion generation (ESI, AJS, Nano ESI, ChipCube, APCI etc.)

Front ion funnel: Efficient ion collection, desolvation and excess gas removal

Trap funnel: Ion accumulation and introducing ion packets into drift cell

**Drift cell**: Uniform low field ion mobility allows direct determination of accurate CCS ( $\Omega$ )

Rear funnel: Efficient ion refocusing and introduction into mass analyzer



# IM Q-TOF/MS operational modes

- Mobility Separated Precursor Ion Mode
- Mobility Separated All Ions Fragmentation Mode
- Mobility Separated Targeted Precursor Ion Mode
- Mobility Separated Targeted MS/MS Mode





## Basic Operational Principle of Ion Mobility For Conventional DC Uniform Field IMS





### Benefits of Adding Ion Mobility to LC/Q-TOF/MS

### **Adds Additional Separation Power**

• A new dimension of separation for increased mass spectral purity especially for complex mixture analysis

### **Improves Detection Limits**

- Helps to eliminate interference from other analytes and background in the sample mixture
- Efficient ion focusing and transfer through the ion optics maximizes sensitivity for the overall system

### **Enhances Compound Identification**

 Improves confidence in compound identification and ion structure correlation through accurate collision cross section measurements

### **Provides Native Molecule Structural Information**

• Differentiates various protein conformers (native vs. S-S mis-matched)





# It's All About Separation



The Measure of Confidence



Agilent Technologies

2015 ASMS IM-QTOF workshop 06/03/15

# Ion Mobility Provides Greater Specificity





# Resolving Structural Sugar Isomers C<sub>18</sub>H<sub>32</sub>O<sub>16</sub>



### Resolving two isomeric tri-saccharides



# Carbohydrates Analysis by IM-MS



(Profs. John McLean and Jody May, Vanderbilt Univ.)



## Carbohydrates -- Great complexity by linkage



Source: Blixt et al., PNAS, 2004

#### 4D (MS, DT, RT & TIC) Feature Finding or Library searches

The Measure of Confidence



# Detecting Miss-formed Disulfide Bonds: Siamycin II



<sup>(</sup>Profs. John McLean and Jody May, Vanderbilt Univ.)



### IM Analysis of Cytochrom C (+8): (Uniform Drift Tube)





#### IM Q-TOF/MS analysis of IgG-2 under the denatured and native conditions



All charge ions of IgG-2 under denatured condition (+45 to +70) posed the much smaller drift times than the charge ions (+20 to +35) of native IgG-2.



### IM Q-TOF Comparison of IgG-1 and IgG-2 under native condition



The Measure of Confidence



Agilent Technologies

### IM Q-TOF/MS analysis of IgG-1 and Herceptin under the native condition





### **Collision Cross Section (CCS) Comparison of IgG-1 and Herceptin**



IgG-1 posted slightly lower % of isoform B at its 22+ charge state. Overall, Herceptin has slightly larger CCS values than IgG-1 with the same charge states.



#### IM Q-TOF Comparison of Rituximab-1 (Innovator) and Rituximab-2 (Biosimilar):





# Collision Cross Section (CCS) Comparison of Rituximab-1 (Innovator) and Rituximab-2 (Biosimilar):



Rituximab-1 (Innovator)

#### x10 5 **Rituximab-1** 27 +1.7 Rituximab-2 1.6 charge state 1.5 1.4 1.3-1.2-1.1 45.61 0.9-0.8 0.7 .03 0.6 0.5 0.4 0.3 0.2-0.1 52.99 57.51 58 32 54 56 34 36 42 44 46 48 50 52 Counts vs. Drift Time (ms)

#### Rituximab-2 (Biosimilar)

| Charge State | Mass (m/z) | Drift Time (ms) | CCS (Å <sup>2</sup> ) | Charge State | Mass (m/z) | Drift Time (ms) | CCS (Å <sup>2</sup> ) |
|--------------|------------|-----------------|-----------------------|--------------|------------|-----------------|-----------------------|
| 22           | 6723       | 44.12           | 7583.31               | 22           | 6705       | 49.33           | 8481.46               |
| 23           | 6411       | 43.93           | 7893.76               | 23           | 6411       | 47.94           | 8616.47               |
| 24           | 6146       | 44.14           | 8276.46               | 24           | 6143       | 46.44           | 8709.00               |
| 25           | 5900       | 44.4            | 8672.25               | 25           | 5897       | 44.87           | 8764.32               |
| 26           | 5664       | 43.6            | 8856.15               | 26           | 5669       | 44.39           | 9017.10               |
| 27           | 5455       | 43.03           | 9076.18               | 27           | 5459       | 43.98           | 9277.17               |
| 28           | 5260       | 42.7            | 9339.93               | 28           | 5264       | 43.76           | 9572.50               |
| 29           | 5079       | 42.85           | 9707.59               | 29           | 5083       | 43.78           | 9918.92               |

The average size of glycans on the Rituximab-1 were slightly smaller than those on the Rituximab-2. The CCS of the 27+ molecule was larger for the Rituximab-2. Ion mobility can provide not only the size but also the molecule structural information in the Biosimilar study.



### **IM Q-TOF Comparison of Herceptin and ADC**





### Mass Spectrometric Comparison of Herceptin and ADC



The deconvoluted spectrum showed 8 major drug attachments and the calculated drug antibody ratio (DAR) was ~3.4



### Mass Spectrometric Analysis of Bovine Glutamate Dehydrogenase (GDH) Complex (Hexamer)



#### GDH is a hexamer of 500 residues with a molecular weight of ~56 kDa/each

The Measure of Confidence



### IM Q-TOF/MS analysis of Bovine Glutamate Dehydrogenase (GDH) Complex (Hexamer)





# Ion Mobility Q-TOF Comparison

LC Drift IMS MS and MS/MS High Resolution Accurate Mass

| Feature                                             | Drift Tube Ion Mobility (Agilent)                                                                        | Travelling Wave Ion Mobility                                                       | Drift Mobility<br>advantage                                |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| Mobility<br>Resolution                              | Highest (can be > 80)<br>80cm drift tube (L)<br>Higher voltage (E)<br>No RF fields, Uniform low DC field | Generally around 30<br>10cm drift in TriWave,<br>Multi-section device<br>RF fields | Over 2X the IM resolution of T-wave                        |  |
| Sensitivity                                         | High efficiency ion funnels - trapping and rear                                                          | Step wave lens<br>Pressure barrier between Q and<br>TriWave                        | 10X to 50X better than<br>T-wave                           |  |
| Collision Cross<br>Section (CCS)<br>measurement (Ω) | Direct determination of $\Omega$<br>Low electric field and constant drift<br>tube pressure               | $\Omega$ cannot be directly determined from drift time. Need calibration tables.   | 1-2% precision<br>Much better than<br>Synapt (5-10%)       |  |
| Molecular<br>structures                             | Lower RF fields, less ion heating.                                                                       | Higher RF fields, tendency for higher fragmentation and ion heating                | Lower RF allows<br>preservation of<br>molecular structures |  |
| Duty cycle                                          | IM cycle time 10 to 100 ms is fully<br>compatible with LC and MS duty<br>cycles                          | Duty cycle 1 to 10 ms. No analytical benefit.                                      | Drift IM is 10 to 50 more sensitive                        |  |
| LC                                                  |                                                                                                          |                                                                                    | MS<br>High Resolution<br>Accurate Mass                     |  |

The Measure of Confidence



# Summary

- Next generation of IM Q-TOF Technology
- Added dimension of separation based on size, charge and molecular conformation
- Resolve and characterize the complex samples
  - -- Increased peak capacity
- Direct determination collision cross sections
- Preservation of molecular structures





The Measure of Confidence



### Dual AJS ESI Source Settings: 6560 IM Q-TOF MS

| Parameter            | Setting                                           |  |  |
|----------------------|---------------------------------------------------|--|--|
| Source               | Dual Agilent Jet Stream                           |  |  |
| Acquisition Mode     | Positive, Extended (10000 m/z) Mass Range (2 GHz) |  |  |
| Gas Temp             | 250 °C                                            |  |  |
| Gas Flow             | 5 L/min                                           |  |  |
| Nebulizer            | 20 psig                                           |  |  |
| Sheath Gas Temp      | 275 °C                                            |  |  |
| Sheath Gas Flow      | 12 L/min                                          |  |  |
| VCap                 | 4000 V                                            |  |  |
| Nozzle Voltage       | 2000V                                             |  |  |
| Fragmentor           | 400 V                                             |  |  |
| Mass Range           | 300-10000 <i>m/z</i>                              |  |  |
| Scan Rate            | 0.9 frames/s                                      |  |  |
| IM Trap Fill Time    | 50,000 us                                         |  |  |
| IM Trap Release Time | 300 us                                            |  |  |



