

Now sold under the
Thermo Scientific brand

Thermo
SCIENTIFIC

Analysis of Benzalkonium Chloride on the Acclaim Surfactant Column by High-Performance Liquid Chromatography

INTRODUCTION

Benzalkonium chloride, a quaternary ammonium salt with antiseptic properties, is often used as an antiseptic, similar to other cationic surfactants. Its general formula is $[C_6H_5CH_2N(CH_3)_2R]Cl$, where R represents $n-C_8H_{17}$ to $n-C_{18}H_{37}$ (Figure 1). The mode of action of quaternary ammonium compounds appears to be associated with their effect on the cytoplasmic membrane, which controls cell permeability. Extensive data are reported for effective concentrations (0.01%–0.1%) and affected bacterial species. The homologs $n-C_{12}$ and $n-C_{14}$ in benzalkonium chloride products comprise a major portion of the alkyl group.¹ In general, the homolog $n-C_{12}$ is most effective against yeast and fungi, and the homolog $n-C_{14}$ against gram-positive bacteria.² Benzalkonium chloride is not effective against gram-negative bacteria, and is not recommended for treatment when sanitization is critical.³

Although high-performance liquid chromatography (HPLC) has been used to separate and quantify benzalkonium chloride homologs,^{2,4–7} the analysis can be challenging because the analyte peaks often tail on silica-based reversed-phase (RP) columns. This is due to the presence of residual silanols on the silica surface and the high degree of hydrophobicity of the surfactant. In this application note (AN), a complete HPLC methodology for determining benzalkonium chloride homologs in real samples, such as a sterile elastic strip and eye drops, is presented. The HPLC analysis was performed on a specialty column, the Acclaim[®] Surfactant column,

with UV detection. The stationary phase features a unique surface chemistry that effectively deactivates the ionic interaction between the silica surface and cationic surfactants, resulting in excellent peak shapes for cationic surfactants.⁸ In this AN, method development, linearity, and the limit of detection are also discussed. The total amount of benzalkonium chloride in sterile elastic strips and eye drops was determined and the amounts of homologs $n-C_{12}$ and $n-C_{14}$ were estimated by area normalization.

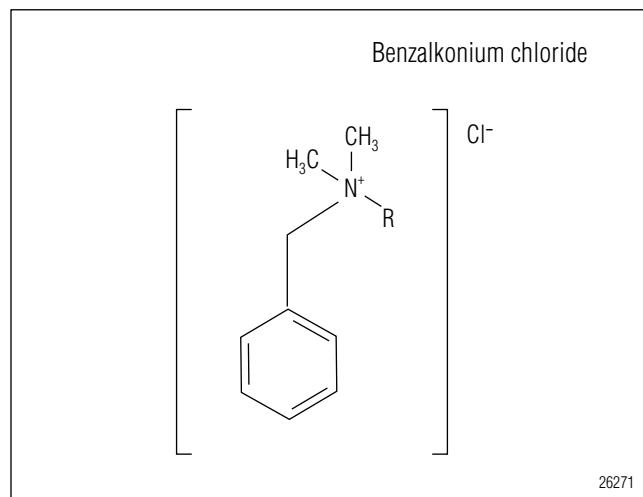


Figure 1. Structure of benzalkonium chloride.

EQUIPMENT

UltiMate® 3000 HPLC system
DGP-3600 pump with SRD-3600 Solvent Rack with degasser
TCC-3200 thermostatted column compartment
WPS-3000TSL autosampler
VWD-3400 UV-vis detector
Chromeleon® 6.80 SP3 Chromatography Data System
Kudos SK3200LH ultrasonic generator, Kudos Ultrasonic Instrumental Co., Shanghai, China

REAGENTS AND STANDARDS

Deionized water, from Milli-Q® Gradient A10
Acetonitrile (CH_3CN), HPLC grade, Fisher Scientific
Benzalkonium chloride (50% in water, CAS 63449-41-2, PN 09621), Fluka
Formic acid, ≥ 98%, Fluka

SAMPLES

Two sterile elastic strip samples (benzalkonium chloride patches, samples 1 and 2) and two samples of eye drops (samples 3 and 4) were purchased at a local store. Sterile elastic strip samples 1 and 2 were the same brand and product name but purchased from different stores. The two eye drop samples were over-the-counter drugs to which benzalkonium chloride was added as a supplementary component. Sample 3 is sold for anti-eyestrain and sample 4 is sold for allergic conjunctivitis treatment.

CONDITIONS

Chromatographic Conditions

Column: Acclaim Surfactant column, 5 μm , 4.6 \times 250 mm (P/N: 063203)
Column Temp.: 30 °C
Mobile Phase: A: 100 mM Formic acid (dissolve 1.90 mL formic acid in 500 mL water)
B: Water
C: Acetonitrile : H_2O (70 : 30, v/v)
In gradient (Table 1)
Flow Rate: 1.0 mL/min
Inj. Volume: 5 μL
Detection: Absorbance at 208 nm (other wavelengths, for example, 225 and 230 nm, may also be used to achieve a better baseline but analyte response is lower)

Table 1. Gradient Elution Program			
Time (min)	Formic acid 100 mM (%)	$\text{CH}_3\text{CN} / \text{H}_2\text{O}$ (70 / 30, v/v) (%)	H_2O
-5	15	5	80
0	15	5	80
10	15	55	30
15	15	55	30

PREPARATION OF STANDARDS AND SAMPLES

Stock Standard Solution

Measure 2 mL of benzalkonium chloride standard (50% in water) and dilute in a 10 mL volumetric flask with water. The concentration of stock standard solution is 10%.

Working Standard Solutions

Prepare five working standard solutions for calibration by adding defined volumes of the stock standard solution and diluting with water. The concentrations of benzalkonium chloride are 20, 50, 200, 500, and 1000 $\mu\text{g/mL}$, respectively.

Sample Preparation

Add two patches of sterile elastic strips and 20 mL water to a 50 mL conical flask with stopper, and then use ultrasonic extraction for 15 min. Prior to injection, filter the solution through a 0.22 μm filter (Millex-HV).

The eye drop samples can be injected directly without dilution.

Spiked Brand of Sterile Elastic Strip Samples

Add 200 μL of stock standard solution of benzalkonium chloride, two patches of sterile elastic strips, and 19.8 mL water to a 50 mL conical flask with stopper, and then use ultrasonic extraction for 15 min. Filter the solution through a 0.22 μm filter (Millex®-HV) prior to injection.

RESULTS AND DISCUSSION

Retention Behavior of Benzalkonium Chloride on the Acclaim Surfactant Column

The Acclaim Surfactant column features reversed-phase, anion-exchange, and hydrogen-bonding retention mechanisms.⁸ These features allow the column to be used differently than a conventional reversed-phase column. Thus, the retention behavior of benzalkonium chloride on the Acclaim Surfactant column was evaluated by varying the selectivity modifiers, ionic strength, pH value, and the amount and type of organic solvent in the mobile phase. Experiments show that increasing the buffer concentration (ionic strength) and buffer pH value produces an increase in retention time; and increasing the proportion of the organic solvent in mobile phase decreases the retention time. The results are consistent with the reported retention behavior of cationic surfactants on the Acclaim Surfactant column.⁹

Method Reproducibility

In the benzalkonium chloride standard (CAS 63449-41-2, Sigma-Aldrich), homolog n-C₁₂ is predominant, with homologs n-C₁₄ and n-C₁₆ also being present.^{10,11} Figure 2 shows an overlay of chromatograms of seven benzalkonium chloride standards with concentrations ranging from 20 to 1000 µg/mL. The peak area proportion of homolog n-C₁₆ on 1000 µg/mL level (chromatogram 7) is 0.71%, which was calculated by comparing homolog n-C₁₆ area to the total peak area of the three homologs; therefore, the amount of homolog n-C₁₆ in the standard was ignored in subsequent calculations.

The method reproducibility was estimated by making seven consecutive injections of a 500 µg/mL benzalkonium chloride standard. The retention time reproducibility for both homologs, n-C₁₂ and n-C₁₄ was 0.107%; the peak area reproducibility for homolog n-C₁₂ and n-C₁₄ were 0.656% and 1.809% respectively.

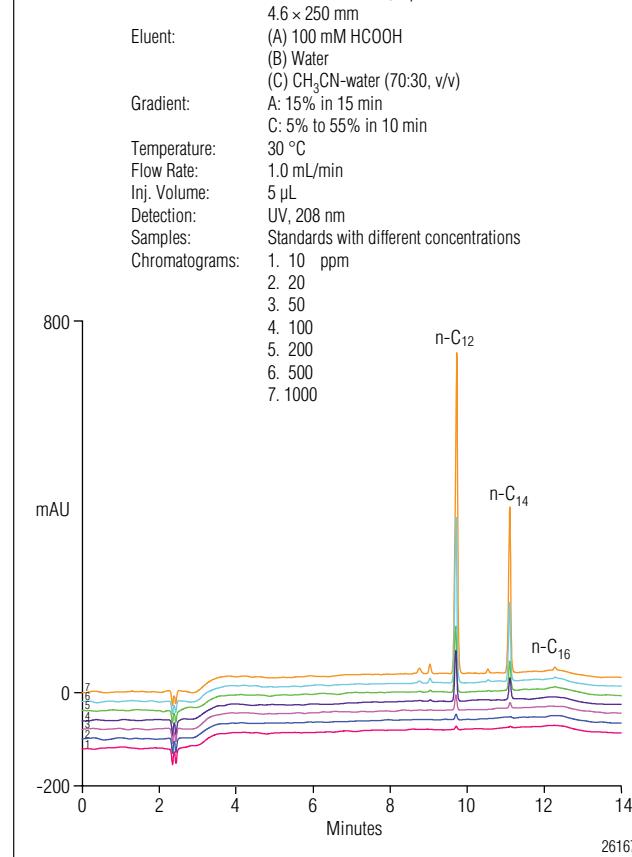


Figure 2. Overlay of chromatograms of seven benzalkonium chloride standards with different concentrations.

Linearity and Method Detection Limit of Benzalkonium Chloride

Calibration linearity for benzalkonium chloride was investigated by making five replicate injections of each of the five standard concentrations. The external standard method was used to establish the calibration curve and to quantify benzalkonium chloride in samples. As shown in Figure 3, excellent linearity was observed from 20 to 1000 $\mu\text{g/mL}$ on plotting the concentration versus the sum of peak areas for homologs n-C₁₂ and n-C₁₄. Separate calibration curves for homologs n-C₁₂ and n-C₁₄ were also prepared. These data are summarized in Table 2.

The detection limits for each of the homologs n-C₁₂ and n-C₁₄ were calculated using the equation:

$$\text{Detection limit} = St(n-1, 1-\alpha = 0.99)$$

where S = standard deviation of replicate analyses

n = number of replicates

$t(n-1, 1-\alpha = 0.99)$ = Student's value for the 99% confidence level with n – 1 degrees of freedom

Using eight consecutive injections of 500 $\mu\text{g/mL}$ benzalkonium chloride standard to determine the S value, the estimated method detection limits (MDL) were 15 and 12 $\mu\text{g/mL}$ for n-C₁₂ and n-C₁₄ respectively.

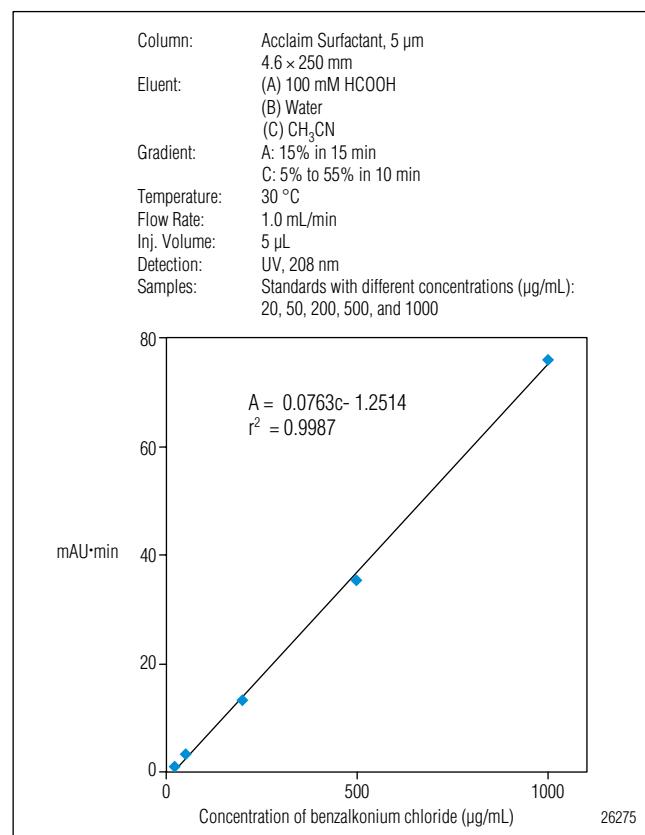


Figure 3. Calibration curve for benzalkonium chloride.

Table 2. Calibration Data		
Analyte	Equation	r
Benzalkonium Chloride	A = 0.0763c - 1.2514	0.9993
Homolog n-C ₁₂	A = 0.0734c - 0.7593	0.9980
Homolog n-C ₁₄	A = 0.0817c - 0.6133	0.9978

Determination of Total Benzalkonium Chloride in Samples

Two sterile elastic strip (samples 1 and 2) and two eye drop (samples 3 and 4) samples were analyzed. The results are summarized in Table 3. Figure 4(A) shows overlays of chromatograms of sample 1 and the same sample spiked with standard. The determined amount is in agreement with the labeled value. Sample 1 was found to contain homolog n-C₁₂ but no homolog n-C₁₄. Sample 2, despite being the same brand and same product type as sample 1, may be a faulty product or at least not a very effective one, as no homolog of benzalkonium chloride was found (Figure 4B). Figure 5 shows chromatograms of the eye drop samples. Homologs n-C₁₂ and n-C₁₄ were found in sample 3, and only homolog n-C₁₂ was found in sample 4.

Determination of Homologs n-C₁₂ and n-C₁₄ of Benzalkonium Chloride in Samples

Because homologs n-C₁₂ and n-C₁₄ only differ by two units of CH₂, their sensitivity by UV detection may be assumed to be similar. Thus, the proportions of homologs n-C₁₂ and n-C₁₄ in samples can be estimated using the following formula:¹²

$$Cc_{12} = \frac{Ac_{12}}{Ac_{12} \times Ac_{14}} \times C \quad (1)$$

$$Cc_{14} = \frac{Ac_{14}}{Ac_{12} \times Ac_{14}} \times C \quad (2)$$

where, Ac₁₂ and Ac₁₄ represent peak areas of homologs n-C₁₂ and n-C₁₄ respectively; Cc₁₂ and Cc₁₄ represent concentrations of homologs n-C₁₂ and n-C₁₄ respectively; and C is the concentration of benzalkonium chloride.

Figure 4. Chromatograms of sterile elastic strips sample (A) 1 and (B) 2.

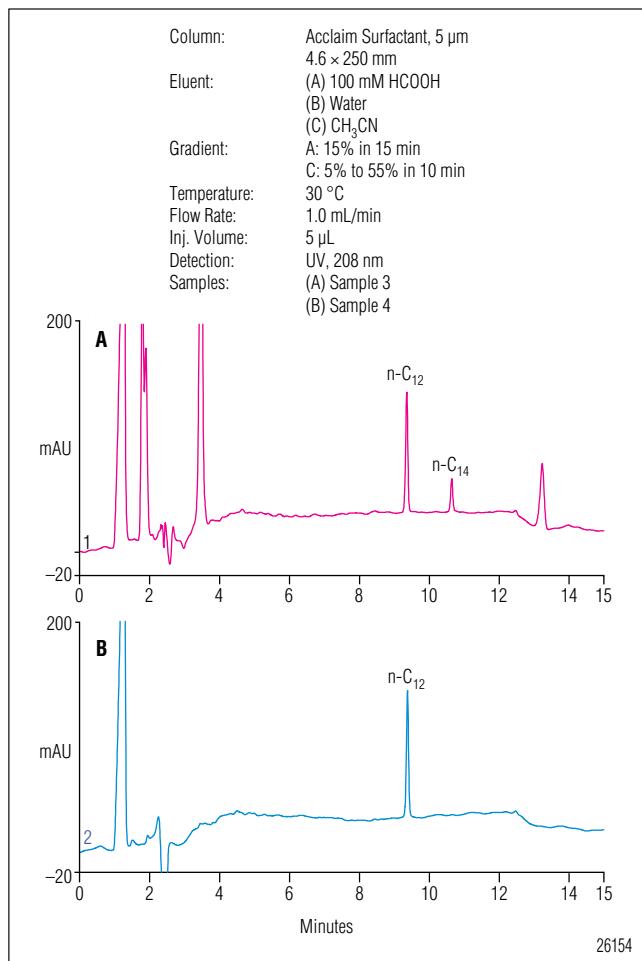


Figure 5. Chromatograms of eye drop sample (A) 3 and (B) 4.

Table 3. Analysis Results for Sterile Elastic Strips and Eye Drops

Analyte	Sterile Elastic Strips					Eye Drops		
	1					2	3	4
	Detected (mg/patch)	Labeled (mg/patch)	Added (μ g/mL)	Found (μ g/mL)	Recovery (%)	Detected (μ g/mL)	Detected (μ g/mL)	Detected (μ g/mL)
Benzalkonium Chloride	0.47	0.5	100	97	97	ND	146	118
Homolog n-C ₁₂	0.43		70	83	119	—	116	116
Homolog n-C ₁₄	ND		30	25	83	—	32	ND

Table 4. Concentrations of Homologs C₁₂ and C₁₄ in the Working Standards

Conc. of Benzalkonium Chloride Standard (µL/mL)	C ₁₂ Homolog		C ₁₄ Homolog	
	Proportion	Concentration (µL/mL)	Proportion	Concentration (µL/mL)
20	70%	14	30%	6
50		35		15
200		140		60
500		350		150
1000		700		300

The proportions of homologs n-C₁₂ and n-C₁₄ in the benzalkonium chloride standard solutions used for calibration were estimated using formulas 1 and 2. The average distribution was 70% for homolog n-C₁₂ and 30% for homolog n-C₁₄, based on which concentrations of homologs n-C₁₂ and C₁₄ in working standards were used to determine calibration linearity (Table 4). The calibration curves for the individual homologs were used to determine the amounts of these homologs in samples 1 through 4 (Table 3).

CONCLUSION

This application note describes an efficient and simple method for the analysis of benzalkonium chloride used as an antiseptic in sterile elastic strips and eye drops. The Acclaim Surfactant column yields efficient and symmetrical peaks for benzalkonium chloride, demonstrating its effectiveness for cationic surfactant analysis.

REFERENCES

1. Yang, Y.W.; Zhang, W.Q.; Zhu, Y. Simultaneous Determination of Quaternary Ammonium Salts in Antiseptics by High-Performance Liquid Chromatography. *Chin. J. Health Lab. Tech.* **2006**, *16* (7), 823–824.
2. Prince, S.J.; McLaury, H.J.; Allen, L.V.; McLaury, P. Analysis of Benzalkonium Chloride and Its Homologs: HPLC versus HPCE. *J. Pharm. & Biomed. Anal.* **1999**, *19*, 877–882.
3. Yuan, Q.X.; Ling, B. Utility Techniques of Antiseptics, Beijing: Chemical Industry Press, 2002.
4. Xue, Y.Y.; Hieda, Y.; Kimura, K.; Nishiyama, T.; Adachi, T. Sensitive Determination of Benzalkonium Chloride in Blood and Tissues Using High-Performance Liquid Chromatography with Solid Phase Extraction. *Legal Medicine* **2002**, *4*, 232–238.
5. Dudkiewicz-Wilczyńska, J.; Tautt, J.; Roman, I. Application of the HPLC Method for Benzalkonium Chloride Determination in Aerosol Preparations. *J. Pharm. & Biomed. Anal.* **2004**, *34*, 909–920.
6. Radke, M.; Behrends, T.; Forster, J.; Herrmann, R. Analysis of Cationic Surfactants by Microbore High-Performance Liquid Chromatography-Electrospray Mass Spectrometry. *Anal. Chem.* **1999**, *71*, 0005362–5366.
7. Nunez, O.; Moyano, E.; Galceran, M.T. Determination of Quaternary Ammonium Biocides by Liquid Chromatography–Mass Spectrometry. *J. Chromatogr. A* **2004**, *1058*, 89–95.
8. Dionex Corporation. Pohl, C.; Liu, X.; Tracy, M. Analysis of Cationic Surfactants in Formulated Products by HPLC. LPN 1908-04 06/07, Sunnyvale, CA. 2007.
9. Dionex Corporation. Product Manual, Acclaim Surfactant Column. Doc. no. 065087-02, Sunnyvale, CA, 2009.
10. Product Information, Product Number B6295, Sigma Aldrich.
11. Product Information, Product Code 23442-7, Sigma Aldrich.
12. *Instrumental Analysis*. Shanghai Press of East China Normal University, 1986.

Acclaim, Chromeleon, and UltiMate are registered trademarks of Dionex Corporation. Milli-Q and Millex are registered trademarks of Millipore.

Passion. Power. Productivity.

Dionex Corporation
1228 Titan Way
P.O. Box 3603
Sunnyvale, CA
94088-3603
(408) 737-0700

North America
U.S./Canada (847) 295-7500
Europe
Austria (43) 1 616 51 25 Benelux (31) 20 683 9768 (32) 3 353 4294
Denmark (45) 36 36 90 90 France (33) 1 39 30 01 10 Germany (49) 6126 991 0
Ireland (353) 1 644 0064 Italy (39) 02 51 62 1267 Sweden (46) 8 473 3380
Switzerland (41) 62 205 9966 United Kingdom (44) 1276 691722

South America
Brazil (55) 11 3731 5140

Asia Pacific

Australia (61) 2 9420 5233 China (852) 2428 3282 India (91) 22 2764 2735
Japan (81) 6 6885 1213 Korea (82) 2 2653 2580 Singapore (65) 6289 1190
Taiwan (886) 2 8751 6655

www.dionex.com

LPN 2313-02 PDF 10/10
©2010 Dionex Corporation