

Agilent LC & LC-MS Cannabis Testing

Potency Analysis for Cannabinoids

Mike Adams¹, A. Roth¹, Joan Stevens², Karen Kaikaris¹, & Sue D'Antonio² ¹ CWC LABS, ² Agilent Technologies,

RELIABLE ANALYTICAL WORKFLOWS FOR CANNABIS TESTING

AGILENT SCIENCE & TECHNOLOGY SYMPOSIUM

UV detection with UHPLC separation.....

1220

1260 Infinity II

1290 Infinity II

RELIABLE ANALYTICAL WORKFLOWS FOR CANNABIS TESTING

AGILENT SCIENCE & TECHNOLOGY SYMPOSIUM

Tetrahydrocannabivarin (THCV) (–)-trans-Δ9-tetrahydrocannabinol (THC) Cannabidiol (CBD) Cannabigerol (CBG) Tetrahydrocannabinolic acid (Δ9-THCA) Cannabidiolic Acid (CBDA) Cannabinol (CBN) Cannabigerolic acid (CBGA) Cannabichromene (CBC) Cannabidivarin (CBDV)

7696A SAMPLE PREP WORKBENCH

The new Agilent 1260 or 1290 Infinity || LC!

Zorbax Bonus-RP Polar-linked alkyl phase

Superb peak shape for basic compounds Long column life (pH 2-8) Unique selectivity Patented bonding technology •polar-linked alkyl phase for fast mass transfer giving good peak shape •bulky side groups give low pH stability •triple endcapped for mid-range pH stability and good peak shape

Buffer:

- 1. 1 vial (2.2 mL) of Ammonium Formate (G1946-85021)
- 2. 1 mL of Formic Acid (G2452-85060)
- 3. QS to 1 Liter of LC-MS grade H_2O

Caveat: make sure to flush columns (methanol) after use

Testing this method for ruggedness with the QBD approach

QBD: Quality by design

- 1. We used the method development column kit. Three columns of the same type from 3 different lots.
- 2. We ran the system of three different types of instruments
- 3. We ran the method with 3 different operators making the mobile phase

The Open Lab 2.1 data acquisition

	t - * x
Image: Second	
Run Queue S	Instrument Status ×
	terne in the term if the term if the term
	Spectrum x: () () () () () () () () () ()
12 13 13 13 13 13 13 13 13 13 13	
	- 10 12 4 June -
Entropy Entropy Activity log Bactory log Response Description Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne Interne	Just drop an MS- Excel® file into your sequence screen
Central C	Ease of use from ALS systems including workbench

HPLC Conditions for short method (5 minutes)

Agilent 1290 Infinity II UHPLC series Quaternary Pump, Multisampler with wash , Multi Column Themostat, DAD

Column: Zorbax Bonus RP 2.1 x 50 mm, 1.8 μm or Poroshell 3.0 x50 2.7 um

Column temperature:	50°C
Injection volume:	0.05 μL
Autosampler temp:	23 °C
Needle wash:	3.5 s Flush Port (25:25:50)
(H ₂ 0:IPA:M	eOH)
DAD-UV	254 nm
Mobile phase:	A = Water Binary pump - A is buffer
	B= Methanol
	$C = 0.1\% CH_2O_2 + 2.2 mI 5M NH_4$ formate in H_2C
Flow rate:	0.5 mL/min
Gradient:	Time (min) %B %C
	0.0 72 5
	6.25 95 5
Stop time:	5.00 min.
Post time:	1.0 min.
Overall run time	6.0 minutes (incl. re-equilibration)

Chemical Structures of Top 10 Cannabinoids

http://herb.co/2016/02/06/top-10-cannabinoids/

10 cannabinoids under 5 minutes with 1.86 Resolution between the critical pair

Carryover

Carry over with the Infinity II vial sampler 1300 Bar addition (G7129A) with needle wash. Blanks after a 10 ul injection of 1 mg/ml standard.

Note the chromatography will a 10 ul injection at that concentration saturates the column

A single click adds a peak to the calibration and assigns a compound name

Assigning compounds for calibration and create reference spectra

10 cannabinoids under 5 minutes @ 230 nm

	Con	Compound Table Qualifier Setup General										
Œ	#	Туре	Name	e		Signal	Exp. RT	Absolute RT windo	Relative RT win	RT update	RT update	Peak match
	1	ଚ	CBDV			DAD1D	0.843	0.000	1.000	Never	50.000	Closest
	2	ଚ	THCV			DAD1D	1.211	0.000	1.000	Never	50.000	Closest
	3	ଚ	CBD			DAD1D	1.324	0.000	1.000	Never	50.000	Closest
	4	ଚ	CBG			DAD1D	1.580	0.000	1.000	Never	50.000	Closest
	5	ଚ୍ଚ	CBN			DAD1D	1.772	0.000	1.000	Never	50.000	Closest
	6	ଚ	Delta 9	Delta 9 THC		DAD1D	1.927	0.000	1.000	Never	50.000	Closest
	7	ଚ	CBDA			DAD1D	2.345	0.000	1.000	Never	50.000	Closest
	8	ଚ	CBC			DAD1D	2.533	0.000	1.000	Never	50.000	Closest
	9	ଚ	CBGA			DAD1D	3.276	0.000	1.000	Never	50.000	Closest
	10	ଚ	Delta 9	9 THCA		DAD1D	4.594	0.000	1.000	Never	50.000	Closest
		•										

Diode Array Quant Data

Sample		CBD	V Results	THC	V Results	CBC	Results	CBC	G Results	CBN	Results	CBE	Results	CBD/	A Results	THC	C Results	CBG	àA Results	THCA	A Results
Data File	Level	RT	Final Conc.	RT	Final Conc.	RT	Final Conc.	RT	Final Conc.												
F1 sample.d		0.866	25.9360	1.265	196.8121	1.423	33.4284	1.716	97.2052	1.931	15.4707	2.157	527.4073	2.157	85.5359	2.472	104.8505	2.996	36.5274	3.952	261.6931
F2 sample d		0.858	24.6873	1.267	197.1329	1.477	63.8837	1.710	95.1358	1.932	16.3020	2.157	283.4697	2.157	53.5110	2.470	57.3868	3.002	44.1850	3.955	226.5327
C_005.d	1	0.881	58.8132	1.287	60.8064	1.392	51.9682	1.683	93.6521	1.890	46.8645	2.053	59.3040	2.194	55.3583	2.496	53.5617	2.963	49.1957	3.909	48.4821
C_01.d	2	0.877	102.1864	1.287	81.3097	1.388	93.8596	1.674	132.3486	1.886	100.5738	2.046	94.9242	2.192	94.1240	2.486	99.3961	2.954	104.1515	3.897	107.3859
C 02.d	3	0.876	207.5743	1.283	206.2700	1.387	202.9129	1.675	181.4908	1.885	202.2938	2.049	192.3522	2.189	200.6918	2.489	200.3667	2.953	199.3742	3.892	199.6648
C_03.d	4	0.879	292.9750	1.287	300.3324	1.395	305.1618	1.687	245.4112	1.892	298.1676	2.053	298.4257	2.196	301.5343	2.494	295.4400	2.960	290.9286	3.901	284.6336
C0_5.d	5	0.877	473.6127	1.285	506.6916	1.392	492.9007	1.681	458.1870	1.888	502.6745	2.049	499.8125	2.190	496.7521	2.489	497.6630	2.954	507.2672	3.886	508.0259
C 075.d	6	0.877	756.8458	1.285	741.8427	1.390	755.0507	1.681	763.3711	1.887	752.2910	2.049	762.1737	2.189	750.7780	2.490	754.9083	2.953	750.9788	3.882	757.2254
C_1.d	7	0.879	1007.9926	1.288	1002.7471	1.394	998.1461	1.687	1025.5392	1.893	997.1349	2.054	993.0077	2.195	1000.7614	2.497	998.6642	2.961	998.1039	3.886	994.5823

Agilent Technologies

Lower end of CBG calibration curve: 1 – 9 ng/mL

▲ Calibration table

1 4781398.320 1.000 -486676.5111 -0.0924 -9.2382 4781398.320 1.00000000 Image: C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1 2 8840981.590 2.000 214962.7054 0.0249 2.4920 8840981.590 2.00000000 Image: C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1 3 15595266.613 4.000 253359.6202 0.0165 1.6514 15595266.613 4.00000000 Image: C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1 4 25976676.681 7.000 560937.5251 0.0221 2.2070 25976676.681 7.00000000 Image: C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1 5 31589043.924 9.000 -542583.3395 -0.0169 -1.6886 31589043.924 9.00000000 Image: C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1	Level	Avg. response	Avg. amount	Residual per leve	Rel. residual	Rel. residual %	Response	Amount	Use	Injection
2 8840981.590 2.000 214962.7054 0.0249 2.4920 8840981.590 2.00000000 Image: C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1 3 15595266.613 4.000 253359.6202 0.0165 1.6514 15595266.613 4.00000000 Image: C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1 4 25976676.681 7.000 560937.5251 0.0221 2.2070 25976676.681 7.00000000 Image: C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1 5 31589043.924 9.000 -542583.3395 -0.0169 -1.6886 31589043.924 9.00000000 Image: C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1	1	4781398.320	1.000	-486676.5111	-0.0924	-9.2382	4781398.320	1.000000000	~	C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1
3 15595266.613 4.000 253359.6202 0.0165 1.6514 15595266.613 4.00000000 Image: C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1 4 25976676.681 7.000 560937.5251 0.0221 2.2070 25976676.681 7.00000000 Image: C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1 5 31589043.924 9.000 -542583.3395 -0.0169 -1.6886 31589043.924 9.00000000 Image: C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1	2	8840981.590	2.000	214962.7054	0.0249	2.4920	8840981.590	2.00000000	~	C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1
4 25976676.681 7.000 560937.5251 0.0221 2.2070 25976676.681 7.00000000 C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1 5 31589043.924 9.000 -542583.3395 -0.0169 -1.6886 31589043.924 9.00000000 C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1	3	15595266.613	4.000	253359.6202	0.0165	1.6514	15595266.613	4.00000000	~	C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1
5 31589043.924 9.000 -542583.3395 -0.0169 -1.6886 31589043.924 9.00000000 🗹 C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1	4	25976676.681	7.000	560937.5251	0.0221	2.2070	25976676.681	7.00000000	~	C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1
	5	31589043.924	9.000	-542583.3395	-0.0169	-1.6886	31589043.924	9.000000000	~	C:\CDSProjects\THC and CBD\Results\cbd with quat 2016-12-1

Custom Reporting

Custom reporting is wizard based. It allows you to use all your existing IR reports. It allow a simple answer with chromatographic calculations with **Pass/Fail** color flags

Overview of all the samples

CBD results in commercially available hemp oil products (names) masked)

Sample Identifier	Average Concentration (mg/mL)	Standard Deviation	Standard Error	99% CI
SIA-1	508.1	9.8	4.9	479.5, 536.7
SIA-2	460.7	14.7	7.4	417.8, 503.6
SIB	Not detected	N/A	N/A	N/A
SIC	2.3	0.17	0.085	1.7, 2.9
SID	9.3	0.86	0.43	6.8, 11.8
SIE	11.6	0.85	0.43	9.1, 14.1
SIF	12.3	0.78	0.39	9.9, 14.5

SIA-1 and SIA-2: Same manufacturer

SIB: Non CBD product

SIC: Filtered product about 1/3 of labeled concentration

SID: 15% higher than labeled concentration

SIE and SIF: 50% higher than labeled concentration

* Calibrators and samples were note matrix matched

Optional detectors and what they add... High Dynamic Range (HDR)

Expanding the linear range

Expanding the linear dynamic range is achieved by making use of the technology in *Agilent's Max-Light flow cells*. Optofluidic waveguides in these flow cells facilitate total internal reflection for superior light transmission.

This gives you extremely low detector noise regardless of the length of the optical path.

The Agilent *high dynamic range* detection solution now takes the signal from the *60* mm path length flow cell to quantify the low level concentrations and the signal from the **3.7** mm cell for the high level concentrations.

Specially developed algorithms compute these signals to expand the linear dynamic range by a factor of 30

High Dynamic Range Diode Array

Cluster of two DADs

- **DAD 2:** 3.7 mm Cell – for high concentrations
- DAD 1: 60 mm Cell – for low concentrations
- Output: One, combined signal, normalized to 10 mm path length (HDR range: 0.6 x 10⁻⁶ to 6.7 AU/cm) vs for 1200 Series: 7 x 10⁻⁶ to 2 AU/cm)

Control / Usability

• Like standard 1290/1260 DAD

Investment Protection

- Existing 1290/1260 DAD can be upgraded (by 2nd DAD)
- Existing 1100/1200 Systems can be upgraded (by two 1290 or 1260 DAD)

UV Spectrum and Chromatogram

The addition of spectra and multiple signals

This is an example of the HDR chromatograms.

*DAD1 A, Sig=254,4 Ret=360,100 (HDR\TEST.D) mAU/cm 300 250 200 150 100 0.072 3.637 0,883 584 288 50 0 1.5 35 0.5 2.5 min *DAD2 A, Sig*254,4 Ref*360,100 (HDR\TEST.D) mAU/cm 245 300 0.817 250 200 150 100 8 50 2.6 1.5 3.5 0.5 3 3 4 min HDR1 A, Sig=254,4 Ret=360,100 (HDR\TEST.D) mAU/cm 300 250 HDR 200 284 919 150 0.858 0 100 28 50 eń 0 1.5 2.5 0.5 3.5 1 2 min 4

All signal are Normalized (considering the Flow cell Path length and the Delay volume between Dad 1 and DAD 2)

Note the Y axis is mAu/cm typically Y axis are mAu/ mm

HDR Chromatogram Output

Product peaks are no longer off scale and impurity peaks are quantifiable

Adding Mass Spectrometry

MSD Spectrum of Peaks Bonus RP column

This is QQQ data with the Agilent G6470 using Acetonitrile as a mobile phase. They used a 2.1 x 100 poroshell Bonus RP

Can do potency and pesticides on same system (different columns) D8 will separate

Check out

www.agilent.com for more information, applications, videos, etc.

Thank you!

