
 

Computational chemistry and AI have allowed us to make great strides in 

predicting reaction conditions for organic synthesis, providing valuable tools for 

optimising reactions and reducing the number of trials required. However, there 

are situations where running reactions under various conditions, altering things 

like the solvent, base, catalyst, or temperature, remains indispensable. Once such 

an array of reactions has been completed, it becomes necessary to acquire 

analytical data to experimentally measure the amounts of products, starting 

materials, and other components in the reaction. While LCMS offers a rapid 

method for gathering such data, it also presents a significant challenge in terms of 

processing and extracting useful information from the results so obtained. This is 

where Mnova’s automation engine (Mnova Gears, or simply Mgears) and the 

Chrom Reaction Optimization plugin come into play, offering a potential solution 

to these challenges. In this note, we explain how these tools can assist us in 

addressing these issues and discuss specific scenarios where they can be applied 

effectively. 

 

Figure 1 - Modern automation of reactions in arrays and rapid LCMS analysis creates a new headache – analysing 
the resulting data to quantify components of interest. 
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The basic problem that needs to be solved in 

reaction optimisation or monitoring is to find the 

same set of components (typically starting 

materials, products, known side products) across a 

collection of LCMS files. This problem consists of 

two parts: the first, which is common to any 

automation process, is to find or somehow specify 

the relevant data to be operated on. The Mgears 

engine provides a solution to this part with several 

ways to select data. Do you need to search for data 

on a file share? Or listen for new data as it is 

generated? Or perhaps provide a list of files in a 

CSV? Or maybe you have an SMDS or need retrieval 

from a custom database? All these modes are 

supported in Mgears – not just for reaction 

optimisation, but for any similar automation. In 

most cases, the desired actions can be achieved 

through simple configuration options, such as 

clicking a checkbox to ‘find LCMS data’. In cases 

where the requirements are more exotic, the script 

engine can always come to the rescue to customise 

the behaviour according to the specific needs. 

Once the data has been found, we must specify the 

components that require searching, and certain 

other options for analysis. Components can be 

defined in various ways: as a structure (mol file or 

SMILES string), a molecular formula, or simply as an 

m/z value. If you only have UV-based data, it is also 

feasible to define components solely according to 

their retention time. It is also possible to mix and 

match; in other words, you can potentially define 

certain components by mass, while others (such as 

those that do not ionise) can be defined exclusively 

by their retention time. This approach offers 

excellent flexibility, enabling the identification of 

components using the most suitable method for 

each individual case. 

 

 

One problem that can arise is that of isomers. 

Perhaps you have two products with the same 

molecular weight. You can address this problem 

using an AND logic – defining a mass and a 

retention time range to ensure isomers are 

identified in a consistent manner.  

 

Figure 2 - To analyse reaction optimisation data, we need to find 
samples, define components, and then quantify them in every sample. 
We also probably want to review and save the results. Mgears 
automation makes this process simple. 

Once the relevant data is found and the levels of 

the defined components have been calculated, we 

need a way to rapidly navigate and review the 

results, allowing us to home in on the best cases 

and see which conditions they correspond to. The 

Mgears viewer comes to our rescue here, providing 

a tabular or well plate view of the results that can 

be quickly navigated through. In addition, specific 

views for Chrom Reaction Optimization provide a 

visually appealing method for browsing the data. A 

pie chart of the components is standard which, 

together with a consistent colouring scheme 

between chromatogram and chart, helps to readily 

spot the best or worst conditions.  

Reviewing the results in this way is powerful, but 

typically what we really want to know are the 

conditions that go with that good result. If you then 

have to search or cross reference the sample name 

against a lookup table of conditions, this can 

become very tedious and error prone. Thankfully, 

Chrom Reaction Optimization provides a number 

of methods to directly display relevant metadata, 

either from a lookup mapping file such as a CSV, or 

from parameter values stored in the raw data. This 

means you can identify the best results and 

instantly determine the conditions they 

correspond to. 



 

                 

Automation really is the friend of scientists doing 

high throughput analyses of the type described 

here. But a common problem with automatic 

analyses is what to do with edge cases or failures. 

With the best will in the world, no method of 

automation will get an analysis correct 100% of the 

time. If we don’t have a quick way to identify 

problem samples, and perhaps even more 

importantly a simple way to fix them, we can end 

up in a situation where the net benefit of the 

automation has been significantly reduced. In my 

own experience, I have, in the past, not used 

automation because fixing the outliers was more 

problematic than analysing them all manually in 

the first place. 

Fortunately, the results viewer is designed with this 

in mind. Problematic samples can be identified and 

loaded into the main Mnova window with a single 

click. Integrals can be tweaked, missed 

components added, and misassigned components 

corrected. On completing this, all graphical 

summary outputs (such as pie charts) are updated 

and, very importantly, output pertinent to the 

batch, such as CSV files, is recreated to reflect the 

modifications. This process also includes rerunning 

any custom output scripts that write to other 

systems or generate summary reports. 

Such a review by exception strategy is essential to 

the efficient operation of an automated process. 

The simple yet powerful implementation here 

means the review is rapid and does not simply form 

a new bottleneck in the process. 

In the previous section, we emphasised the 

importance of quickly identifying and addressing 

problematic analyses. As a prerequisite to this, we 

said ‘problematic samples can be identified and 

loaded into the viewer’ for fixing. However, we 

skirted around the question of how we identify 

such problematic samples.  

Some cases may be obvious. In the example in 

Figure 3, it was clear something was amiss as no 

components were identified in a particular well. 

But how would we know if something was 

somehow misassigned without manually checking 

every sample? This is where the controls feature in 

Chrom Reaction Optimization becomes valuable.  

Controls check statistics at a sample or at a batch 

level, enabling us to make decisions about whether 

a sample should be reviewed or not. A good 

example of this is retention time outliers. In any 

identification of components by MS, there is the 

possibility of a false positive, where a target 

isotope cluster is matched by chance. If this 

happens to align with a peak in the UV trace 

(typically used to quantify), we have a false 

assignment. But such events are likely to be rare in 

a batch. So, if, for example, a starting material is 

identified at 1.5 ± 0.02 minutes in 95 samples out 

of a batch, but there is one sample where it has 

been identified at 2.7 minutes, it is highly likely that 

this is a misassignment. Thus, by setting up 

controls like this and checking the results displayed 

in the viewer across a well plate, we can quickly 

identify which samples might need a manual 

review. 

 

 

 

 

 

 

  
Figure 3 - In this example, one well does not seem to have processed properly. This 
was because the component definition was based on retention time, and in this 
chromatogram things moved too much for the window to identify the components. 
However, it is extremely fast to identify and fix this sample, assigning the two 
components manually. 



 

                 

One advantage of the post-acquisition analysis 

approach adopted by Mgears is that it is easy to 

rerun an analysis whilst making certain 

modifications. Perhaps on review, you identify an 

additional component that you had not initially 

considered when you set up the reaction and the 

LCMS run. In this paradigm, this is no issue, as the 

analysis can be easily rerun after modifying 

definitions or adding, deleting, or changing 

components. 

You might be thinking ‘this sounds great, but I have 

several reactions with different reagents on the 

same plate’. Or, in the extreme, perhaps you are 

doing parallel synthesis with different 

combinations of starting materials, that is, with 

related reactions all conducted under the same 

conditions. If we need to define the components in 

the batch analysis configuration, how can we 

accommodate different components in each well? 

Although not directly supported in the Chrom 

Reaction Optimization plugin, this is simple to 

achieve through a customisation to the script 

engine. Perhaps the actual components are 

defined in the metadata of the sample, or perhaps 

they are in a CSV file, or in a database. In this 

scenario, we can use the GUI of the Chrom 

Reaction Optimization plugin to define the generic 

components, their roles, and attributes (e.g., 

colour on the plot). Then, with the help of a script 

(which can be added as a hook in the Mgears 

engine), these generic components can be changed 

on-the-fly to the specific values of structures or 

molecular formulae required for each case. As 

Mnova is able to understand and render 

structures, the actual components used can be 

displayed in the main interface as you review your 

results.  

In the above discussion, we have focused on 

optimising reactions, and touched briefly on 

parallel reactions. It is worth stepping back for a 

second, though, to consider other analyses where 

the approach can be useful.  

At a slightly higher level, the purpose of the Chrom 

Reaction Optimization plugin is to find a set of 

components in a set of different samples. A 

reaction where conditions such as solvent, catalyst, 

and temperature are varied is, of course, just one 

example of where such an analysis could be useful. 

Following reaction kinetics is another such case. 

Here, instead of varying reaction conditions, the 

variable that is changing is time, yet the same 

workflow can be used to extract the relevant 

information about components. 

Another application might be to look at the best 

way to clean up a crude reaction mixture. Perhaps 

you are using crystallisation to isolate a product or 

remove impurities. Or perhaps you are washing a 

slurry with different solvent mixtures to achieve 

the same result. Either way, the same Chrom 

Reaction Optimization workflow can be used, with 

the goal of maximising or minimising the product, 

depending on which way round the separation is 

working. 

Automating analyses and rapidly determining 

optimum reaction conditions for a reaction is a 

significant time-saver for scientists. However, no 

process operates in isolation, and almost certainly 

the results will need to fit into the larger context of 

a research organisation. Perhaps the results need 

to be stored in a database for machine learning 

training. Perhaps they need to be reported in a 

LIMS. Almost certainly, they must be included in an 

ELN. The gains in efficiency can feel squandered if 

the final step involves time-consuming manual 

copying of data between systems. 

Fortunately, Chrom Reaction Optimization and the 

Mgears engine offer several solutions to this 

problem. In addition to the individual documents 

generated for each analysed well, a customisable 

CSV file is produced. This CSV file can be used to 

populate another system or can otherwise be 

attached to an ELN. Mgears also provides built-in 



 

                 

support for posting results to several ELN providers 

or to an Mnova spectral database. The CSV file is 

also very useful for analysis of the results in data 

exploration tools such as Spotfire or PowerBI. 

However, your integration requirements may be 

more complex than this. Maybe you need to 

automatically write the results to an SQL database 

or send them to an SMDS or LIMS system. The 

Mnova script engine can provide a straightforward 

solution to achieve this. The simple JavaScript 

interface, together with access to objects that can 

communicate with SQL databases or RESTful web 

services, enables a high level of integration. This 

means that with a little customisation you can 

achieve seamless integration, and so the dreaded 

‘now I need to write it up in my ELN’ problem is 

greatly reduced. 

Reaction optimisation is a critical step in 

developing efficient syntheses for final products or 

intermediates. While many approaches can be 

used to reduce the number of trial reactions, there 

is still a need to efficiently handle and analyse the 

generated LCMS data to quantify components. 

Mgears and Chrom Reaction Optimization provide 

a rapid, flexible, and configurable solution to this 

challenge, potentially saving laboratory scientists 

significant time. By providing efficient ways to 

locate data, define components, review results, 

address issues, and integrate with other systems, 

these tools streamline the analysis process and 

significantly enhance the productivity of research 

organisations. 

 

 

 

https://bit.ly/3XO17FE
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