Evaluation of the Importance of Accurate Mass, Mass Resolution and Dynamic Range for Impurity Profiling Applications with Multistage Mass Spectrometry

David A. Weil*, Zoltan Timar and Michael Zumwalt

Agilent Technologies Schaumburg, IL/ Boulder, CO

David_Weil@Agilent.com

Impurity Profiling 2008

Impurity Profiling..

- Identification of Impurities in Active Pharmaceutical Ingredients (API) Arising from Manufacturing/Processing
- Differentiation from other Pharma Applications
 - Chromatography, Quantitation, Identification
- Source of Impurities ...
 - Residual Solvents, Intermediates, Catalysts, Processing Aids

• Techniques

- GC/MS, LC/UV, ICP/MS, LC/MS and LC/MS/MS

Traditional Method for Impurity Analysis

Plant is Shutdown... Product has Failed.. Why, When, Where, How

Easy.. Just have Ph.D. Analytical Chemists Acquire Lots and Lot of GCMS and LCMS Data

Dump data onto Coworkers Desk ID the Differences.. Manual, Biased Approach Look for Known Things First High/Low Major Differences Is the Change Real?

Although Small a Needle in Hay Can Cause One Pain

Manually Compare LC/UV and MS Chromatograms from "Control" versus "Contaminated" Samples

API Degradation by Aging

Pathways

• Hydrolysis, Oxidation, Dehydration, Ring Cleavage, Photolysis

Challenge

Identify low-level degradation products in the presence of the major API component

Dream Solution – All Components ID and Separated

Chromatography – Infinite Resolving Power and Ultra Fast Separation Mass Spec – Infinite Scan Speed, Dynamic Range, Resolving Power with sub-ppm Mass Accuracy

Reality:

Coalition, ion suppression, limited dynamic range, accurate mass

New Analog/Digital Technology Evaluate the Importance of Resolution, Accurate Mass, Dynamic Range with Automated Data Mining Tools for Impurity Profiling

Impurity Profiling Workflow:

• **Objective:** Detection - ID low-level Impurities in Active Pharmaceutical Ingredients.

Impurity Profiling 2008

Sensitivity versus Unknown Identification

Ease of Use	Scan speed	Scan sensitivity	Qualitative (identification, structural info)	Sensitivity (specific detection)	Quantitation (accuracy, precision)
Single quad	TOF	TOF	Q-TOF (MS/MS w/ accurate mass)	QQQ esp. dirty matrix, < 5 pg on-col.	QQQ
TOF	Q-TOF	Q-TOF	TOF unknowns (acc. mass CID)	Single quad (SIM)	Single quad
QQQ	Single quad	Single quad	QQQ (MS/MS)	TOF (accurate mass EICs)	TOF
Q-TOF	QQQ	QQQ	Single quad (CID)	Q-TOF *	Q-TOF *

Agilent LC/MS/MS Solution

Impurity Profiling 2008

New Ultra High Speed Acquisition Intelligence at the Molecular Level

- 4 GHz (8 bit) Analog-Digital-Converter ADC
 - Adapted from Agilent High Speed Oscilloscope Systems
- Ultra High Speed FPGA Processors and Memory
 - 4Ghz peak detection
 - 4Ghz gain scaling
 - Up to 20,000 m/z depth
- Dual Input / Dual Gain High Bandwidth Input Amplifier for Extended Dynamic Range

Enhancements in Time-of-Flight and QTOF New Acquisition Technology Increasing Resolving Power

Impurity Profiling 2008

Enhanced Resolving Power Improved Mass Accuracy for Isobars

Previous 1 GHz Sampling +1.3 ppm -0.8 ppm 1:1 MAS 1:1 dilution MAS BP 2.9 ppm (MAS) at high level, poor accuracy when BP abundance increases Zoom view 128:1 dilution -0.2 ppm 128:1 dilution 128:1 dilution -1.4 ppm BP **BP** (unresolved, not detected at low levels) 195.02 195.04 195.06 195.08 195.1 195.12 195.14 195.16 195.18 195.2 195.22 195 195.02195.04195.06195.08 195.1 195.12195.14195.16195.18 195.2 195.22 Counts (%) vs. Mass-to-Charge (m/z) Counts vs. Mass-to-Charge (m/z) .0. ~0 O .OH Methyl 5-acetyl-salicylate (MAS) Butyl paraben (BP) [M+H]⁺ 195.065185 [M+H]⁺ 195.101571

New 4 GHz Sampling

Impurity Profiling 2008

Extended Dynamic Range Mode Hardware

Impurity Profiling 2008

Extended Dynamic Range Mode

Impurity Profiling 2008

Extended Dynamic Range *Up To 5 Decades Of In-Spectrum Dynamic Range*

Impurity Profiling 2008

Mass Accuracy Function of Acquisition State

Impurity Profiling 2008

Resolution Comparison

High Resolution Mode

Extended Dynamic Range

Impurity Profiling 2008

Application of Enhanced Resolving Power C₉H₁₀NO Product from Albuterol from C₁₀H₁₃N

Automated Data Analysis – Show me the Data

- Find Compounds from Background MFE Algorithm
- Differential Analysis Mass Profiler Software
- Identification: Molecular Formula Generation, Databases
- Automation: MetID for Impurity Profiling

Impurity Profiling 2008

Molecular Feature Extraction (MFE) Automated Data Reduction Software

336

2M+Na+2 8.173 709.2895

Molecular Feature Extraction (MFE)

Generate Empirical Formulas

(Group #1(RT=10.19)4 Compounds													
		Species	RT	m/z	Mass	Abundance	Width	Satur.	Q Score					
Þ	1	М	10.193		454.0047	50500	0.071		72.6					
	2	M+H	10.198	455.0120	454.0047	34232	0.058		60.8					
	3	M+H+1	10.177	456.0209		12572	0.084		51.0					
	4	M+H+2	10.175	456.9993		3695	0.048		53.7					
	5													
	6	М	10.195		452.2466	35303036	0.114	×	100.0					
	7	M+H	10.204	453.2538	452.2466	16689319	0.128	×	95.1					
	8	M+H+1	10.195	454.2574		13454754	0.105	×	97.7					
	9	M+H+2	10.182	455.2607		4301315	0.081	×	100.0					
	10	M+H+3	10.181	456.2636		386489	0.082		100.0					
	11	M+H+4	10.182	457.2667		31758	0.082		100.0					
	12	M+H+5	10.205	458.2607		2874	0.067		86.9					
	13													
	14	M+Na	10.185	475.2360	452.2468	316119	0.098		100.0					
	15	M+Na+1	10.185	476.2390		95815	0.101		100.0					
	16	M+Na+2	10.187	477.2425		17223	0.106		100.0					
	17	M+Na+3	10.196	478.2454		2227	0.113		0.0					
	18													
	19	М+К	10.182	491.2122	452.2491	3428	0.103		0.0					
	20	M+K+1	10.221	492.2180		1711	0.096		0.0					
			-											

							.		
	Structu	re Infoma	ation	N	otes				
	Structure			m ol 1:	eperidine derivat f diarrhea ollery, Colin Ther 999 p. D156	ive used fi apeutic Di	or treatment rugs, 2nd Ed.		
18	155 = 452.24	ibb, lime	= 10.195						
	Obs. Mass	Obs. RT	Name	Formula	∆Mass(ppm)	ΔRT	MFG Score		
	452.2466	10.195	Diphenoxylate	C30H32N2O2	-0.4		100.0		
	452.2466	10.195		C18H36N4O9	6N4O9 3.7				

C15H28N14O3

C23H32N8S

0.7

1.1

Molecular Formula Generation and Database Search

452.2466

452.2466

10.195

10.195

M

2 3

4

Impurity Profiling 2008

March 4th 2008

81.1

78.1

Prednisolone: C₂₁H₂₈O₅ 360.193674

Impurity Profiling 2008

Sequential Neutral Water Losses Detected

12 Potential Degradation Products in Prenisolone

:6	Compoun	d List				
	Cpd	RT 🛆	Mass	Height	MFG Formula	MFG Diff (ppm)
	101	8.936	358.178719	23405	C21H26O5	-1.94
	105	9.343	306.162548	17280	C21H22O2	-1.85
	106	9.344	360.193836	1250150	C21H28O5	-0.45
	107	9.344	342.184322	213253	C21H26O4	-3.54
	108	9.344	324.173096	55376	C21H24O3	-1.7
	109	9.346	720.62685	34269	C45H84O6	-0.08
	110	9.351	382.176939	145634	C23H26O5	2.84
	117	10.429	416.220551	26523	C24H32O6	-1.59
	119	10.659	330.184135	120541	C20H26O4	-3.1
	120	10.659	312.173337	25839	C20H24O3	-2.54
	121	10.753	374.209809	36324	C22H30O5	-1.3
	122	10.854	342.183835	41196	C21H26O4	-2.12
	126	11.982	382.215005	26254	C24H30O4	-1.56
	127	11.983	400.225885	156648	C24H32O5	-2.28
	131	13.421	364.129999	18900	C22H20O5	2.95
	141	14.331	308.197352	130460	C18H28O4	4.57
	142	14.481	322.248984	14793	C20H34O3	5.62
	144	14.627	294.218533	15912	C18H30O3	3.27
	146	15.042	304.238844	16958	C20H32O2	4.56
	148	15.195	322.249471	34082	C20H34O3	4.11

CH₂O Loss

-H₂, -H₂O, -CO₂H₂, +H₂, +CH₄+H₂-O,

Prednisolone

Impurity Profiling 2008

Is 6-methyl Prednisolone Present? [M+H]+ 375

Impurity Profiling 2008

Degradation Products of Amoxicillin and AmoxClavin

$\mathbf{C}_{16}\mathbf{H}_{19}\mathbf{N}_{3}\mathbf{SO}_{5}$

MW 365.10454

Source

- Tablet 875mg New
- Tablet 500mg 09/07

Sample Preparation

- Tablets Dissolved in 40mL Methanol Water with 0.1% Formic Acid
- Syndicated 20 minutes
- Spin 5 minutes 14000 RPM
- Dilute 100 and 1000 fold with water

Experimental Conditions

Chromatography

- Agilent 1200 RRLC
- Ecilpse Plus C18 2.1x100mm 1.8µm heated to 50°C
- Mobile Phase:
 - Water/Methanol 0.1% FA
 - Water/Methanol 5mM NH4Ac
- Multiple Gradients Tested
 - 0 to 95% in 16 Minutes
 - 0 to 95% in 13 Minutes
- Flow Rate: 400-500 µL/min

Mass Spectrometry

- Agilent 6520 QTOF
- Positive ion ESI
- Mass Range m/z 100-1000
- Acquisition Rate: 2 spectra/s
- Drying Gas: 250°C
- Internal Reference Mass
 - m/z 121 and 922
- Fragmenter: 165C
- Enhanced and High Resolution Modes

Buffer in Mobile Phase 10X Enhancement with NH₄Acetate

Impurity Profiling 2008

Effect of Gradient

Impurity Profiling 2008

Degradation Pathway of Amoxicillin (previous TOF/Trap work)

E. Naegele, R. Moritt, J. Am. Soc. Mass Spectrom. 2005, 16, 1670-1676

Impurity Profiling 2008

Accurate Mass: High Resolution Mode

Impurity Profiling 2008

Structural Information from MS/MS C₁₆H₁₉N₃SO₅

	m/z △	Formula	Abund%	Difference (ppm)	Loss Mass	Loss Formula
1	70.06483	C4H8N	6.29	4.16	296.04669	C12H12N2O5S
1	113.9996	C4H4NOS	66.02	10.6	252.11101	C12H16N2O4
1	134.05821	C8H8NO	12.06	13.69	232.05178	C8H12N2O4S
l	134.05821	C3H8N3O3	12.06	-16.32	232.0558	C13H12O2S
j	160.04098	C9H6NO2	7.97	-10.44	206.07251	C7H14N2O3S
j	160.04098	C6H10N02S	7.97	10.62	206.06914	C10H10N2O3
	165.06415	C8H9N2O2	4.01	10.33	201.04596	C8H11NO3S
	180.04691	C9H10NOS	3.66	4.7	186.06406	C7H10N2O4
1	180.04691	C12H6N0	3.66	-14.02	186.06743	C4H14N2O4S

m/z 🗠	Formula	Abund%	Difference (ppm)	Loss Mass	Loss Formula
113.0343	C4H5N2O2	9.28	2.22	253.07726	C12H15NO3S
114.03705	C5H8NS	16.55	1.27	252.07462	C11H12N2O5
160.04211	C6H10NO2S	74.18	3.53	206.06914	C10H10N2O3

C₆H₁₀NO₂S 3.53 ppm Error

Impurity Profiling 2008

Differential Analysis Using Mass Profiler

Impurity Profiling 2008

Impurity Analysis: Mass Profiling Software

S/N 5:1, RI > 0.01%, Mass 200-600, RT 1-11 Minutes 835 Features

Mass vs. Retention Time

Impurity Profiling 2008

36 Features after Filtering

Impurity Profiling 2008

Detected 17 Degradation Products

	ID	RT	SD	Mass	SD	Abundance	RSD	Freq.	Mark	RT	Mass	Abundance	RSD	Freq.	RT	Mass	Abundance	RSD	Freq.	RT	Mass	Log2(A1/A2)
1	13	4.244	0.009	383.1152	0.0005	267975	0.29	6		4.252	383.1152	336921	0.03	3	4.237	383.1153	199030	0.13	3	-0.015	0.0001	0.76
2	1	4.367	0.027	365.1048	0.0004	13924040	0.55	6		4.391	365.1052	6891901	0.02	3	4.342	365.1045	20956180	0.01	3	-0.049	-0.0007	-1.60
3	2	4.368	0.027	348.0785	0.0003	9272090	0.56	6		4.392	348.0787	4610367	0.03	3	4.344	348.0782	13933810	0.11	3	-0.049	-0.0005	-1.60
4	4	4.369	0.030	207.0352	0.0002	1071072	0.62	6		4.396	207.0350	463589	0.18	3	4.343	207.0353	1678555	0.00	3	-0.054	0.0002	-1.86
5	15	4.371	0.031	210.0634	0.0002	193118	0.63	6		4.398	210.0634	82008	0.16	3	4.344	210.0634	304229	0.01	3	-0.054	0.0000	-1.89
6	16	4.373	0.032	558.6432	0.0009	47625	0.71	6		4.402	558.6435	16814	0.03	3	4.344	558.6430	78435	0.02	3	-0.058	-0.0005	-2.22
7	9	4.802	0.009	322.0988	0.0003	465558	0.14	6		4.796	322.0987	406343	0.00	3	4.808	322.0989	524774	0.01	3	0.012	0.0001	-0.37
8	7	4.803	0.009	339.1254	0.0003	633992	0.04	6		4.796	339.1254	655426	0.01	3	4.809	339.1255	612558	0.01	3	0.013	0.0002	0.10
9	8	5.183	0.011	322.0989	0.0003	538439	0.20	6		5.174	322.0988	638707	0.00	3	5.191	322.0989	438171	0.01	3	0.016	0.0001	0.54
10	5	5.183	0.011	339.1256	0.0003	1036877	0.21	6		5.175	339.1255	1232619	0.02	3	5.192	339.1256	841134	0.01	3	0.017	0.0001	0.55
11	12	5.661	0.010	238.1414	0.0003	299491	0.44	6		5.654	238.1413	182178	0.26	3	5.667	238.1415	416804	0.01	3	0.012	0.0002	-1.19
12	14	6.258	0.016	299.1945	0.0003	253315	0.79	6		6.245	299.1943	71245	0.04	3	6.271	299.1947	435385	0.01	3	0.026	0.0004	-2.61
13	10	6.259	0.016	282.1679	0.0003	397361	0.78	6		6.245	282.1677	113254	0.02	3	6.272	282.1682	681468	0.01	3	0.026	0.0004	-2.59
14	3	6.502	0.007	397.1312	0.0005	3293522	0.72	6		6.498	397.1312	1120785	0.03	3	6.505	397.1313	5466259	0.01	3	0.007	0.0001	-2.29
15	17	6.502	0.008	496.0561	0.0013	18941	0.58	6		6.498	496.0555	9037	0.13	3	6.506	496.0568	28845	0.08	3	0.008	0.0013	-1.67
16	11	6.776	0.018	326.1942	0.0005	351970	0.97	6		6.762	326.1940	41734	0.04	3	6.789	326.1945	662205	0.01	3	0.027	0.0005	-3.99
17	6	6.776	0.017	343.2211	0.0006	883377	0.97	6		6.762	343.2208	103229	0.02	3	6.789	343.2214	1663524	0.01	3	0.027	0.0007	-4.01

Composition and Database Searching

Composition Summary: 36 Features ∆Mass(ppm) Mass RT 🔺 Feature ID Abundance log2(A1/A2) Name Formula 2 17 C16H21N3O6S 383.1152 4.252 168460 16.00 Amoxicillin Hydrolysis -1.9 ► 3 304.0884 4.333 22 72261 -3.11 Sulfametoyl C15H16N2O3S -0.3 4 365.2759 4.342 18 156997 -16.0023 5 276.0932 4.360 43922 -3.28 0.8 C14H16N2O2S 6 365.1048 4.367 1 13924040 -1.60 Amoxicillin C16H19N305S 0.6 2 -0.3 7 348.0785 4.368 9272090 -1.60 Amoxicillin Amine Loss C16H16N2O5S 8 207.0352 4.369 5 1071072 -1.86 C10H9N02S 1.1 9 210.0634 4.371 16 193118 -1.89 C9H10N2O4 2.2 10 233.0143 4.402 39 9642 16.00 C11H7NO3S 2.2 382.1308 4.566 21 79152 16.00 C16H22N405S 0.4 11 12 322,0988 4.802 11 465558 -0.37 Amoxicillin Degrad Product B C15H18N2O4S -0.3 339,1254 4.803 9 633992 C15H21N3O4S 0.3 13 0.10 Amoxicillin Decarbonyl 322.0989 5.183 10 538439 0.54 Amoxicillin Degrad Product B C15H18N2O4S 0.1 14 6 15 339.1256 5.183 1036877 0.55 Amoxicillin Decarbonyl C15H21N304S -0.5 379,1200 5.318 38 11471 -16.00 Amoxicillin Degrad Product E C17H21N305S -0.2 16 339.2619 17 5.654 19 146888 -2.32 C20H37NOS -5.7 29 -0.5 18 240.1112 5.673 23537 16.00 C11H16N2O4 34 226.1681 6.175 16770 -16.00 Crotethamide C12H22N2O2 1.3 19 299.1945 20 6.258 13 253315 -2.61 C16H29N02S -8.8 16.00 Primidone 8.9 21 218.1030 6.453 41 4889 C12H14N2O2 380.1049 6.501 8 698499 -2.85 Amoxicillin Degrad Product F C17H20N2O6S -2.6 22 23 397.1312 6.502 3 3293522 -2.29 Amoxicillin Degrad Product E | C17H23N306S -1.7

MetID Software For Impurity Profiling

Impurity Profiling 2008

Overview MetID

- 1. Parent Compound: MW, Formula and Structure
- 2. Transformations: List Proposed Degradation Products
- 3. Identification Criteria: Vary Importance of Tests
- 4. Find Compounds by MFE: Molecular Feature Extraction
- 5. Find Compounds by AutoMSMS: For MSMS data
- 6. Sample Comparison: Mass Profiler What is Different
- 7. Isotope Pattern Filtering:
- 8. Mass Defect Filtering:
- 9. EIC Generation:

- Best for Halogenated Species
- From Proposed Compounds
- Confirms Presence of Compounds

🕮 Agilent MassHunter MetaboliteID - Amoxicllin.mid													
Eile View Worklist Method Graph Metabolites Browser Formulas	Fragments	Fragment Loss Fragments	s <u>O</u> verview	<u>S</u> tructure	MF <u>E</u> Cor	mpounds	<u>R</u> eport <u>T</u> o	ools <u>H</u> elp					
: U 🗈 💫 😂 🖵 🖧 🛵 🕼 🗗 🖬 🟠 🍃 🚰 🗟 🗄		😼 📑 🧭 🕨 Find Metab	olites 🛛 🕢										
Method Editor ×	🚦 😺 Metal	bolites Browser											×
🚰 🛛 Parent Compound 🗸 📴 🖫		🔄 Short 🕯	Summary 🔻	•	<filtered></filtered>	- 💷 🤕	i 🖪 🖪	📑 🖬					
Parent Compound	Metabolite:	\$								Sample	EIC Co	Mass D	sotopic 🔼
Name: Parent	Warnings	Name	V	RT	Mass	m/z	Qualified	Relevance	User Qual.	Qualified	Qualified	Qualified	Qualified
	1 🔺	Parent		4.443	365.1026	366.1099		84.2	V				
Description: Amoxiciliin	2 🛝	Parent		6.999	365.1051	366.1124		84.2					
	3 🔼	Oxidation and decarboxylati	on deamine	4.378	276.0928	277.1001		100.0					
	5	Methoxy		6.550	397.1316	398.1389		78.9			- -		
	6	Methanol Addition Amine los	s	6.550	380.1049	381.1122		100.0	V	V	✓	V	
Molecular Formula: C16H19N305S	7	Hydration and Amine and ca	arbonyl loss	4.854	322.0982	323.1055		78.9	✓	V			
The parent compound formula can affect the biol	8	Hydration and Amine and ca Departpowlic and Amine Los	arbonyl loss	5.234 4 272	322.0984	323.1057		80.0 100.0					
the parameters for formula calculation and	9	amoxicillin penilloic acid I an	» d II 3	4.861	339.1250	340.1323		63.2					
Molecular Structure: D:\Pitcon2008\2086.mol	11	amoxicillin penilloic acid I an	d II 3	5.231	339.1248	340.1321	V	80.0	V		- 		
	12 🕨	amoxicillin penicilloic acid 2		4.294	383.1146	384.1218		63.2			V	~	
NH2	13 🛝	Amine loss		4.379	348.0780	349.0853		100.0					
T ×	14 🗘			4.354	433.0775	434.0847		73.3			✓		×
Chromatograms & Spectra		×	🕴 🔜 Formu	ılas									×
🚛 👔 🔰 🛛 Custom 🗸 🕼 🕂 🏦 🚮 📖 Signals :	· 1 •		RP 1	4	Formula	- 🗈 (0 2 3	💷 🛲 e	3 🕹 🖷	Eg.			
Parent MS/MS (366.1108)			Selecte	ed Form	ula (M)	Calc. Ma	ss Score	Max		_			
×10 ³ 114/0008		12 + 0		C16H	121N306S	383.1	151	100.0					
6- 5.75-			lor	Formula	m/z	Ion	Mass	∆ Mass	[ppm] Scor	e			
5.5-			🖨 C1	6H22N3C	06S 384.	1218 (M+F	i)+ 383.1	146	1.42 100	.0			
5				Abund%	Calc Ab	und% m/	z Ca	lc m/z 🗛 m	/z [ppm]				
4.75-				100.0	00	100.00 38	4.1218 38	34.1224	1.42				
4.25-													
3.75			• -										
3.5- 3.25- 189.0687			🗄 🛱 Fragn	nents		_							×
3				🚣 🐼 🕹	🖨 🛕 🗎	I3							
2.5			m/z	z Abun	nd Abund®	& Abund	Sum % R	les. Width	Neutral Loss	FPM m/z	Shift m/z	∆ Shift [mD	a] Exac 🔷
2- 134.0603			87.0283	3	77 12.	93	3.11		297.0931				[
1.75-			107.0486	5	88 20. 26 21	19	4.86		277.0728	3	0.0000	-	
1.25 70.0665			122 0584	2	30 ∠1. 75 9	oz 42	5.25 2.27		262 0631	+ 114.0365	0.0000	۷	.00
	3	23.1006	122.0004		01 CI	 56	1.58		256.0702	2			Ľ
	~	\diamond	120.0313		JI: 0.4	301	1.00						
0.75 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	7.0935	Ŷ	134.0578	6	30 21.	50 61	5.20		250.0636	- 5 134.0603	0.0000	2	.46
$\begin{array}{c} 0.75 \\ 0.5 \\ 0.5 \\ 0.25 \\ 0.6 \\ 0.80 \\ 100 \\ 120 \\ 140 \\ 160 \\ 180 \\ 180 \\ 200 \\ 220 \\ 240 \\ 240 \\ 260 \end{array}$	7.0935	320 340 360 380 40	134.0578	6	30 21.1	50 61 25	5.20		250.0636	5 134.0603	0.0000	2	.46

Impurity Profiling 2008

Method Input

Parent Compound

Parent Compound Biotransformations 🔻 冯 🛃 🛕 Parent Name: Description: Amoxicillin • Molecular Formula: C16H19N305S 365.1045 Da The parent compound formula can affect the biotransformation list, the parameters for formula calculation and mass defect filter. Molecular Structure: D:\Pitcon2008\2086.mol Browse ... NH2 CH3 CHB • C ю

Propose Degradation Products

Biotransformation Repository **Result Formula** Result Mass Use | Name Phase | Formula Mass Reg. Parent **V** Y 0.0000 C16H19N3O5S 365.1045 ¥ ~ diketopiperazine 0.0000 C16H19N305S 365.1045 **~** amoxicillin penicilloic acid 2 🗸 +H2 +0 18.0106 C16H21N3O6S 383.1151 **~** ¥ amoxicillin penilloic acid I and II 3 +H2-C-0 -25.9793 C15H21N3O4S 339.1253 ~ 4-hydroxyphenylglycyl amoxicillin 4 ¥ +C8+H7+O2+N 149.0477 C24H26N4O7S 514.1522 1 **~** ¥ 32.0262 Methoxy +C+H4+0 C17H23N3O6S 397.1308 ✓ Dimethoxy Addition ¥ +C2+O2+H4 60.0211 C18H23N3O7S 425.1257 ~ ¥ -N-H3 -17.0265 C16H16N2O5S 348.0780 Amine loss **~** Decarboxylic and Amine Loss -N-H3-C-02 -61.0164 C15H16N2O3S 304.0882 **~** ¥ 15.9949 381.0995 Oxidation +0 C16H19N3O6S ~ +02 397.0944 Dioxidation 31,9898 C16H19N307S ~ +H2+0-C-0 -9.9843C15H21N3O5S 355.1202 Hydration decarboynl ¥ ~ 322.0987 Hydration and Amine and carbonyl loss -N-H-C-0 -43.0058 C15H18N2O4S ~ Methoxy for Hydroxyl ¥ +C+H2 14.0157 C17H21N305S 379.1202 ~ Acetic Acid Addition ¥ +C+H3+02 47.0133 C17H22N307S 412.1178 **~** Methanol Addition Amine loss ¥ +C+H3+O-N-H2 14.9997 C17H20N2O6S 380.1042 **~** Oxidation and decarboxylation deamine ¥ +0-C2-04-N-H3 -89.0113 C14H16N2O2S 276.0932 * ¥

Proposed Degradation Products Qualified by Mass Defect and Isotope Pattern

Meta	bolites								Sample	EIC Co	Mass D	I sotopic	Fragme	Biotran	Formulas
Warn	ings	Name	RT	Mass	m/z	Qualified	Relevance	User Qual.	Qualified	Qualified	Qualified	Qualified	Qualified	Assigned	Assigned
1	1	amoxicillin penicilloic acid 2	3.909	383.1152	384.1225		80.0	V						V	
2	Â		4.265	387.0867	388.0940	V	100.0	V	V	V	V	V			
3		Decarboxylic and Amine Loss	4.337	304.0882	305.0955	V	100.0	V	V	V	V	V		V	V
4		Parent	4.340	365.1043	366.1116	V	100.0	V	V	V	V	V		~	V
5		Oxidation and decarboxylation deamine	4.341	276.0930	277.1003	V	100.0	V	V	V	V	V		~	V
6	(Amine loss	4.345	348.0780	349.0853	V	100.0	V	V	V		V		~	~
7			4.359	384.0791	385.0863	V	100.0	V	V	V		V			
8		Parent	4.396	365.1049	366.1123	V	80.0	V				✓		V	✓
9		Hydration and Amine and carbonyl loss	4.807	322.0988	323.1061	V	80.0	V		V	V	✓			✓
10			4.808	411.1101	412.1175	✓	100.0	V	V	V	V	✓			✓
11		amoxicillin penilloic acid I and II 3	4.808	339.1256	340.1328	✓	80.0	V		V	V	V		V	✓
12	1	Hydration and Amine and carbonyl loss	5.191	322.0985	323.1058	V	80.0	V		V	V	V			✓
13		amoxicillin penilloic acid I and II 3	5.192	339.1252	340.1326	V	80.0	V		V	V	V		V	V
14	Â		6.509	435.0840	436.0912	V	100.0	V	V	V	V	V			
15		Methanol Addition Amine loss	6.511	380.1047	381.1120	V	100.0	V	V	V	~	V			v
16 I	•	Methoxy	6.511	397.1308	398.1381	✓	100.0	✓	~	~	~	~		~	✓
17		Amine loss	6.511	348.0777	349.0850		73.3		V			V		~	~
18			6.513	481.0834	482.0909		100.0		V	V		V			
19	Â	Parent	6.965	365.1058	366.1131		80.0				V				
20		Parent	7.002	365.1044	366.1118		53.3					V		V	V
21	Â	Parent	7.265	365.1040	366.1115		53.3				V	V		~	

Let's Determine Composition of MW 411

Accurate Mass Generates Composition Acid Hydrolysis (H₂O+CO₂H-OH)

Selecte	ected Formula (M) Calc. M		. Mass	Score Max Score Mass M			lax	Sc	ore Abund. Ma	ах	Score Space	Score Spacing Max 🛛 🖾 Mass				
	C17H21N307S 411.1100			11.1100		100.0)	:	99.8		9	9.1		98.2		0.41
lon	Formula	m/z	1	on	Ma	88	ΔМ	lass (ppm)	Scor	re	Mass Score	Ab	ound. Score	Spacing	Score	∆ Mass [ppm]
📥 (C17	H22N307	S 412.1	175 (M+H)+	41	1.1102		-0.41	100	0.0	99.8		99.1		98.2	0.41
	Abund%	Calc Abu	nd%	m/z		Calc m/	z	∆ m/z (ppm)								
	100.00	1	00.00	412.11	75	412.11	73	-0.4	1							
	21.77		20.79	413.12	205	413.12	02	-0.7	3							
	8.39		7.97	414.11	66	414.11	72	1.4	6							
	1.89		1.36	415.11	83	415.11	88	1.2	1							

Accurate Mass of Fragments Ions

m/z ⊽	Abund	Abund%	Abun	Neutral Loss	FPM m/z	Shift m/z	Shift Formula	Ion Formula	Loss Formula	Calc m/z	∆m/z [ppm]	∆ m/	Loss Mass
323.1043	1915	30.68	13.54	89.0128	366.1108	-43.0058	-N-H-C-O	C15H19N2O4S	C2H3NO3	323.1060	5.39	1.74	89.0113
305.0918	626	10.03	4.43	107.0253				C15H17N2O3S	C2H5NO4	305.0954	11.92	3.64	107.0219
199.0579	674	10.79	4.76	213.0592				C13H11S	C4H11N307	199.0576	-1.52	-0.30	213.0597
190.0738	795	12.73	5.62	222.0433									
189.0703	6242	100.00	44.14	223.0468				C7H13N2O2S	C10H9N05	189.0692	-5.59	-1.06	223.0481
160.0406	850	13.61	6.01	252.0765	160.0409	0.0000		C9H6NO2	C8H16N2O5S	160.0393	-8.16	-1.31	252.0780
143.0673	540	8.65	3.82	269.0497				C7H11O3	C10H11N304S	143.0703	20.44	2.92	269.0470
114.0379	319	5.11	2.26	298.0791	114.0365	0.0000		C5H8NS	C12H14N2O7	114.0372	-6.60	-0.75	298.0801
107.0485	1805	28.91	12.76	305.0686				C7H7O	C10H15N306S	107.0491	6.21	0.66	305.0682

Overlay MSMS Spectrum Parent/Product

MSMS of MW 380 Compound

Impurity Profiling 2008

3D of MSMS Spectra Fragmentation Pattern

Summary:

- New 4GHz A/D Electronics, Resolution > 10,000: m/z > 100, Which Enables Resolving Trace Level Degradation Products from Chemical Background
- 2. Automated Data Analysis: Molecular Feature Extraction
- 3. Differential Analysis: MassProfiler
- 4. Identification: Personal Metlin Database
- 5. Impurity Profiling: MetID Software with MS/MS Data

Acknowledgements

- Edgar Naegele Agilent Technologies, Germany
- Lehmann Horst Agilent Technologies, Germany
- Patrick Perkins Agilent Technologies, Santa Clara CA
- Mike Woodman Agilent Technologies, Schaumburg, IL
- Dawn Kasper, RDH Buffalo Grove, IL
- Thank you ... Kentucky Fried Chicken Boulder, CO.. For being open at 10:50pm
- •Thank you.. For your Attention..

References:

- J. Roy, AAPS PharmSciTech, 2002, 3,(2)
- L. Zhou, B. Mao, R. Reamer, T. Novak, Z. Ge, J Pharm. Biomed. Analysis, 44(2007) 421-429
- S. Erram; C. Fanska, M. Asif; J Pharm. Biomed. Analysis; 40(2006)864-874
- Y. Wu; Biomed Chromatography; 14(2000) 384-396

Albuterol Sulfate/Levosalbutamol

C₁₃H₂₁NO₃ MW 239.15214

Sources

- Syrup 2MG/ML 10/26/99
- Aerosol 90ug/dose New
- Suspension 0.65mg/3mL New

Add reference article

Impurity Profiling 2008

Loratadine

C₂₂H₂₃N₂O₂CI MW 383.15257

Source

- Syrup 10mg/mL 05/02
- Claritan D 07/02

Impurity Profiling 2008

Naproxen

C₁₄H₁₄O₃ MW 230.094294

Source

- Tablet 500mg 08/97
- Tablet 220mg New

Impurity Profiling 2008

Diphenoxylate

Diphenoxylate

- $C_{30}H_{32}N_2O_2$
- MW 452.246378

Atropine

- C₁₇H₂₃NO₃
- ME 289.16

Source

• Tablet 5/1994

Hyosophen-Donnatal

Phenobarbital

- C₁₂H₁₂N₂O₃
- MW 232.084794 Atropine
- C₁₇H₂₃NO₃
- MW 289.16
- Scopolamine
- C₁₇H₂₁NO₄
- MW 303.147058

Tablets 90mg

1/97

Atarax

Atarax

 $C_{21}H_{27}N_2O_2CI$

MW

Source

• Tablet 10mg 7/2002

Impurity Profiling 2008