Improving the Sensitivity, Ruggedness, and Accuracy of Pesticide Analysis

Philip L. Wylie and Chin-Kai Meng Agilent Technologies Wilmington, DE USA

Pittcon, 2008 Paper 2180-4

Wednesday, 2:30 pm

Room 242

Objectives

Create a multi-residue GC/MS method to detect large numbers of pesticides at <10 ppb</p>

Screen for virtually all GC-able pesticides and endocrine disruptors in a single run

Quant target compounds while screening for

"everything"

Shorten run times to <25 min

Reduce GC/MS maintenance

Obtain more accurate results

Why it's Hard to Meet these Objectives

- 10 ppb detection limits in scan require large volume injection (~10 μL)
- SIM is more sensitive, but need scan for comprehensive method
- Food and environmental extracts are "dirty"

10 μL injections = 10 X more maintenance Frequent source cleaning Long bakeout times

Column gets dirty fast

How can we look for hundreds of pesticides in one run?

A Method to Screen for (and Quant Targets) Pesticides at <10 ppb in Food and Environmental Extracts

Keys to Success

Use GC/MS with Trace Ion Detection

10 µL injections using PTV inlet

Backflush column using QuickSwap

Use Deconvolution Reporting Software

- Screen for 927 pesticides & endocrine disruptors in 1 run

Acquire data using Synchronous SIM/Scan

Quant targets using SIM, Scan, or deconvoluted scan peaks

Agilent 7890/5975 GC/MS System Configuration

A Method to Screen for (and Quant Targets) Pesticides at <10 ppb in Food and Environmental Extracts

Keys to Success

Use GC/MS with Trace Ion Detection

10 µL injections using PTV inlet

Backflush column using QuickSwap

Use Deconvolution Reporting Software

- Screen for 927 pesticides & endocrine disruptors in 1 run

Acquire data using Synchronous SIM/Scan

Quant targets using SIM, Scan, or deconvoluted scan peaks

QuickSwap MSD Interface

Remove column w/o venting

Air & H₂O blocked

Safe disconnection of column from inlet for inlet maintenance

Reversed flow through column during inlet maintenance

Backflushing

- Removes heavies from column

Maintain constant flow to MSD

Compensate for loss of sensitivity by making 10 µL injection

Turbo MSD required for backflushing

Backflush with QuickSwap

No Backflushing - Must Bake out the Column

With Backflushing "Dirt" is Removed Through the Inlet's Split Vent

Overlapped chromatograms of a Lettuce Extract: 1st & 3rd Injections made <u>without</u> Backflushing

1st Injection

Overlapped chromatograms of a Lettuce Extract: 3 Injections made <u>with</u> Backflushing

A Method to Screen for (and Quant Targets) Pesticides at <10 ppb in Food and Environmental Extracts

Keys to Success

Use GC/MS with Trace Ion Detection

10 µL injections using PTV inlet

Backflush column using QuickSwap

Use Deconvolution Reporting Software

- Screen for 927 pesticides & endocrine disruptors in 1 run

Acquire data using Synchronous SIM/Scan

Quant targets using SIM, Scan, or deconvoluted scan peaks

AMDIS Deconvolution Pulls Out Individual Components and their Spectra

Deconvolution

TIC & Spectrum

Deconvoluted peaks and spectra

AMDIS: Pulling a Useable Spectrum Out of a Mess

Metalaxyl Identified by DRS in Mixed Vegetable (QuEChERS) Extract (AMDIS View)

What is Agilent DRS?

Two Pesticide Databases Available for use with Deconvolution Reporting Software

"RTLPest3"

927 Compounds

Almost all GCable pesticides

Many metabolites

More endocrine disrupters

Important PCBs & PAHs

Some dyes (e.g., Sudan Red)

Synthetic musk compounds

Some OP fire retardants

Locked RTs + Mass Spectra

Uses Agilent's constant flow GC/MS method

"Japanese Positive List Pesticide Database"

430 Compounds

Contains all GC-amenable pesticides discussed in the Japanese Positive List System or in Quarantine Station publications

Nearly all are Pesticides

No other endocrine disruptors

Locked RTs + Mass Spectra

Uses Japanese Ministry of Health Labour & Welfare constant flow GC/MS method

QuEChERS Extract of a Mixed Vegetable Sample: DRS Report (Sample was not spiked)

R.T.	Cas#	Compound Name	Agilent	AMDIS		NIST	
			ChemStation Amount (ng)	Match	R.T. Diff sec.	Reverse Match	Hit Num.
6.5630	10265926	Methamidophos		68	8.0	77	1
8.5817	30560191	Acephate		66	-2.3	69	1
10.7634	122394	Diphenylamine		69	-1.4	67	1
12.5722	1517222	Phenanthrene-d10		98	-0.7	84	2
13.7143	57837191	Metalaxyl		85	-0.8	79	2
12.571		Phenanthrene-d10	10				

Report in 90 seconds

New DRS V.04: Qual (Spectra) + Quant (Peak Area)

54 Pesticides at 10 ppb in Lettuce Extract – Identified in ~2 min

MSD Deconvolution Report Sample Name: lechuga 10 ppb

Data File: C:\DOCUME~1\LFS-WY~1\MYDOCU~1

\COLLAB~1\ALMERI~1\DATAAN~1\JAN09_~1

\DATA_F~1\LETTUC~1.D

Date/Time: 04:26 PM Wednesday, Feb 27 2008

Adjacent Peak Subtraction = 1 Resolution = High

Sensitivity = High

Shape Requirements = Medium

The NIST library was searched for the components that were found in the AMDIS target library.

			Amount (ppb)		AMDIS		NIST	
R.T.	Cas#	Compound Name	Chem station	AMDIS	Match	R.T. Diff sec.	Reverse Match	Hit Num.
2.9335	10265926	Methamidophos			87	12.7	85	1
2.9491	62737	Dichlorvos			94	4.0	76	1
3.2439	3228033	Promecarb artifact [5-isopropyl-3- methylphenol]			71	8.6		
3.2439	1450722	Ethanone, 1-(2-hydroxy-5- methylphenyl)-					86	1
3.4364	97530	Eugenol			82	4.6	82	1
3.8936	30560191	Acephate			76	5.8	88	1
4.1809	27813214	Tetrahydrophthalimide, cis- 1,2,3,6-			87	6.0	90	3
4.3176	33704619	Cashmeran			74	0.9	71	21
4.9708	84662	Diethyl phthalate			96	-1.0	90	1
5.4542	126738	Tributyl phosphate			66	-0.6	71	2
5.6359	4710172	Dichlofluanid metabolite (DMSA)			95	7.0	88	1
5.8632	3689245	Sulfotep			88	-6.0	80	1
6.7323	58899	Lindane			91	0.2	83	4

Summary

- 10 μL injection with Trace Ion Detection allow <10 ppb pesticide detection</p>
- Backflushing with QuickSwap keeps column & MSD clean
- DRS used to screen for 927 pesticides & endocrine disruptors in one 23-minute GC/MS run
- Quant using scan, SIM, or Deconvoluted scan ions
- Rugged, Sensitive, Quantitative, and Accurate

Thanks to Dr. Kai Meng and to Prof. Amadeo Fernancez-Alba, Dr. Ana Aguera, Dr. Milagros Mezcua & the Pesticide Analysis Group at the University of Almeria, Spain

