Making LC Methods MS Friendly

Mark Powell

Applications Engineer Columns and Supplies Technical Support

8 October 2013

Topics

LC/MS ionization techniques

- •ESI
- •APCI
- •APPI

Appropriate conditions

- Volatile buffers for MS
- •lon pair chromatography
- •HILIC

Appropriate columns

- Column diameter
- Bonded phase
- Particle size

Adapting existing methods to LC/MS

Maximizing Sensitivity

- •Minimize extra column volume
- Avoiding interferences
- Sample preparation

LC/MS Techniques and Applications

•Atmospheric pressure ionization (API)

•Three typical API methods:

•ESI - electrospray ionization

•APCI - atmospheric pressure chemical ionization

•APPI - atmospheric pressure photoionization

•Appropriate ionization method depends largely on analyte polarity

•Positive ion mode (protonation) or negative ion mode (deprotonation)

•Masses measured as mass to charge ratio (m/z)

Applicability of Atmospheric Pressure Ionization Techniques

API-ESI = Atmospheric pressure electrospray ionization APCI = Atmospheric presure chemical ionization APPI = Atmospheric pressure photo ionization

Electrospray Ionization

- Most common ionization technique
- Used for high and low molecular weight compounds
- Ions are formed in solution and then the droplets are evaporated
- Analyte volatility not required
- Compounds containing heteroatoms such as N, S, and O typically analyze well
- Can form multiply-charged ions
- Like UV detection, ESI is concentration sensitive
- ESI is generally more sensitive for samples that are ionized in solution

Electrospray Ionization

APCI and APPI Sources

•APCI

•Analyte and mobile phase are first evaporated then ionized by corona needle

•Good technique for low to medium polarity analytes

- •High probe temperatures desolvate and vaporize the sample
- •Could lead to sample decomposition
- •Not a good choice for thermally unstable analytes
- •Forms singly charged ions

•APPI

- •Analyte and mobile phase are first evaporated then ionized with light
- Good technique for hydrophobic conjugated ring systems
- thermally sensitive compounds
- •May be less susceptible to ion suppression than ESI

APCI and APPI Sources for the LC/MSD

Multimode Source

Capable of simultaneously generating ions by electrospray and APCI
Positive ESI, negative ESI, positive APCI, and negative APCI in a single run

Multimode Source

Method Considerations for ESI

- pH of the mobile phase (and analyte pKa) affects ion formation
- Voltage applied to the electrospray probe will induce ion formation
- Choosing best mobile phase pH analytes can improve sensitivity
- Organic solvent has little effect on ionization
- Works best with buffer concentrations below 25 mM
- Works best at low flow rates (less than 0.5 mL/min)
 - 5 µL/min up to 2 mL/min (for ESI with Agilent Jet Stream thermal gradient focusing)
- Compatible with reversed phase, HILIC, normal phase

Buffer Considerations for ESI

•Buffer concentrations below 25 mM (best below 10 mM)

•Poor compatibility with non-volatile buffers

•Deposit buildup

•Metal ion buffers interfere with ionization

•Acidic mobile phases generally favor positive mode ionization

•0.1% - 1% formic acid, 0.1% - 1% acetic acid, 0.05% - 0.2% TFA

•Ammonium salts (ammonium formate and ammonium acetate) favor formation of ammonium adducts

•TFA causes ion suppression

•Use TFA "fix" – post column addition of acetic or propionic acid

•Basic mobile phases generally favor negative mode ionization

•Ammonium hydroxide, triethylamine, diethylamine, piperidine, ammonium bicarbonate

•pH 1 to 2 units away from the pKa of the analytes

Method Considerations for APCI and APPI

- •LC mobile phase solvents can interfere with ionization
- •Try methanol first (acetonitrile can be a problem)
- •Poor compatibility with non-volatile buffers
- •Works with wider range of buffer concentrations than ESI
- •Less than 100 mM
- •Broader range of flow rates, up to 1.5 mL/min
- •Higher sensitivity and less noise than ESI at flow rates >0.75 mL/min
- •Highly flammable solvents should be avoided

Effects of Volatile and Non-Volatile Buffers

Theophylline (TP) M.W=180.17 pKa <1, 8.6

Theobromine (TB) M.W=180.17 pKa <1, 10.0

Caffeine (CF) M.W=194.19 pKa = 14

Volatile Buffer vs. Non Volatile Buffer

Column: ZORBAX Eclipse XDB-C18 2.1 x 150 mm, 5µm Mobile Phase: 1) 5mM AcONH4 (pH 4.6)/MeOH=80:20 2) 5mM KH2PO4 (pH	LC condition	<u>IS</u>	
2.1 x 150 mm, 5µm Mobile Phase: 1) 5mM AcONH4 (pH 4.6)/MeOH=80:20 2) 5mM KH2PO4 (pH	Column:	ZORBAX Eclipse XDB-C18	
Mobile Phase: 1) 5mM AcONH ₄ (pH 4.6)/MeOH=80:20 2) 5mM KH ₂ PO ₄ (pH		2.1 x 150 mm, 5µm	
4.6)/MeOH=80:20 2) 5mM KH2PO4 (pH	Mobile Phas	e: 1) 5mM AcONH4 (pH	
2) 5mM KH2PO4 (pH	4.6)/MeOH=80:20		
	-	2) 5mM KH2PO4 (pH	
2.5)/MeOH=80:20	2.5)/MeOH=	80:20	
Flow rate: 0.2mL/min	Flow rate:	0.2mL/min	
Temp: 40°C	Temp:	40°C	
Inj.volume: 5µL	Inj.volume:	5µL	

MS conditionsIonization:ESIMode:PositiveMass range:m/z 100~200Capillary volt.:3.5kVFragmentor volt :100VDrying gas:N2 (12.0L/min ,350°C)Nebulizer gas:N2(50psi)N2

APCI Signal After 600 Injections of Salt Solution

• Initial instability in the signal is probably due to changing electric fields as salt deposits in the source.

The Effects of Having Non-volatile Buffers in the Mobile Phase

Cleaning the spray chamber

Effect of Volatile Buffer Concentration on ESI

Lower buffer concentrations provide better droplet evaporation

Effect of Volatile Buffer Concentration on APCI

APCI

SIM: 195.2 and 609.3

Vcap: 4000V

Vaporizer: 400C

Nebulizer: APCI - 60 psig

Drying gas: APCI - 350 C, 5 L/min

Fragmentor: Ramped 70 V for 195.2; 120 V for 609.3

pH Effects on Selectivity and MS Sensitivity

Ion Pair Chromatography and LC/MS

- •Mobile phase includes an ion-pair reagent
- •Hydrophobic portion adsorbs to stationary phase
- Ionic portion pairs with the analyte
- •Alkyl sulfonates or tetraalkyl ammonium salts
- •Non-volatile
- •Ion pair reagents can interfere with ionization process
- •Use heptaflurobutyric acid (HFBA) and tributylamine (TBA)
- •HILIC can be an alternative

HILIC vs. Reversed Phase – ESI sensitivity

Agilent 1290 Infinity LC System Agilent 6410A LC/MS A: 10 mM ammonium formate pH 3.2 B. acetonitrile / 100 mM ammonium formate pH 3.2 (9:1) 0.4 mL/min Isocratic elution Injection Volume: 2 µL Column: 25 °C MS: ESI+, SIM, 250 °C, 11 L/min, 30 psi, 4000 V, 200 V delta EMV. 20 ms dwell time Sample: Normorphine, m/z 272 Morphine, m/z 286 Morphine-6-B-D-glucuronide (M6G), m/z 462 Morphine-3-B-D-glucuronide (M3G), m/z 462

5991-1242EN

Agilent LC-MS Column Configurations

Column Type	Column I.D.	Typical Flow Rate Range
Analytical	4.6 mm	1 – 1.5 mL/min
Solvent Saver	3.0 mm	0.3 – 1 mL/min
NarrowBore	2.1 mm	0.1 – 0.5 mL/min
MicroBore	1.0 mm	0.03 – 0.2 mL/min
Capillary	0.3, 0.5 mm	2 – 40 µL/min
Nano	0.075, 0.10 mm	0.1 – 0.6 µL/min

Column Choices for LC/MS Analysis

	TFA	Formate/ Formic Acid	Acetate/ Acetic Acid	Ammonium Hydroxide
Eclipse Plus	\checkmark	\checkmark	\checkmark	X
StableBond	\checkmark	\checkmark	\checkmark	X
Eclipse XDB	\checkmark	\checkmark	\checkmark	X
Bonus-RP	\checkmark	\checkmark	\checkmark	X
Extend-C18	✓	\checkmark	\checkmark	\checkmark
HILIC Plus	\checkmark	\checkmark	\checkmark	X

Poroshell 120 Phases

Superficially porous microparticulate column packing

Poroshell 120 particles have a 1.7 μ m solid silica core with a 0.5 μ m porous outer layer to make a 2.7 μ m particle. This carefully selected configuration gives you all the performance advantages of sub-2 μ m particles with backpressure that is comparable to a sub-3 μ m particle.

The Measure of Confidence

•SB-Aq •Bonus-RP •Phenyl-Hexyl •HILIC

5990-8795EN

Particle size and LC/MS performance

Agilent 1290 Infinity LC System Agilent 6410A LC/MS A: 10 mM ammonium formate pH 3.2 B: acetonitrile / 100 mM ammonium formate pH 3.2 (9:1) 0.4 mL/min Isocratic elution, 10% B Injection Volume: 2 µL Column: 25 °C MS: ESI+, SIM, 250 °C, 11 L/min, 30 psi, 4000 V, 200 V delta EMV, 20 ms dwell time Sample: Morphine-6- β -D-glucuronide (M6G), m/z 462 Morphine-3- β -D-glucuronide (M3G), m/z 462

Particle Size and LC/MS performance

Particle Size and LC/MS performance

1	SMR	6	SMMX
2	PYM	7	DFZ
3	TCP	8	SDMX
4	SDD	9	SOX
5	FZD	10	OXA

Instrument:	Agilent 1100 Series HPLC		
Column:	250 mm × 4 mm id, RP-18 Purospher, 5 μm, p/n 79925PU-584		
Mobile phase:	$A = 0.7\%$ Phosphoric acid, $B = CH_3CN$		
Gradient:	0.0 min 5% B; 10.0 min 5% B; 40.0 min 65% B; 45.0 min 65% B; Post Time 7.0 min 5% B		
Flow rate:	1.0 mL/min		
Temperature:	40 °C		
Injection volume:	20 µL		

5988-7135EN

5990-6238EN

Agilent Poroshell 120 EC-C18 4.6 mm × 50 mm, 2.7 µm

nm, 8 nm, ref off 3 mm, 2 uL micro flow cell; Peak width >0.05 min. (40Hz)

5990-6238EN

•Conditions were scaled for a 3.0 x 50 mm column

•Shows that 3.0 mm can easily be used for conventional UV and MS detection

5990-6238EN

Analysis of Ten Compounds Found in Green Tea

5990-7824EN

Analysis of Ten Compounds Found in Green Tea

A = 0.1% H3PO4 in H2O B = CH3CN 1 mL/min 40 °C Sig = 210,4 nm, Ref = Off 2- μ L, 3-mm micro flow cell Sample: 0.03 mg/mL each in H2O/CH3CN **4.6 × 150 mm Zorbax SB-C18, 5 \mum** 0.0 min, 10% B; 7.5 min, 15% B; 15 min, 27% B 15 μ L injection

5990-7824EN

Optimizing Sensitivity with Mobile Phase Selection

Agilent 1200 Series RRLC / 6410A Triple Quadrupole MS; Poroshell 120 SB-C18, 2.1 x 100 mm; Acidified Water / Acetonitrile Gradient, 0.7 mL/min; ESI-, SIM, 350 °C, 10 L/min, 50 psi, -3500 V

Extra Column Volume and Sensitivity

Agilent 1290 Infinity Binary LC system containing 6140 Single Quad MS

Column: Agilent ZORBAX SB C18, 50 × 2.1 mm, 1.8 μ m Solvent A: Water + 0.1% formic acid; Solvent B: Acetonitrile + 0.1% formic acid; Flow rate: 0.5 mL/min Gradient : 0 min 10% B; 5 min 20% B; 5.01 min 95% B; 6 min 95% B Injection volume: 1 μ L; Column temperature: 40 °C; Source: Gas temperature: 350 °C, nebulizer pressure: 45 psi, gas flow: 11 L/min, positive polarity, Scan: 100 – 1000 *m/z* Sample: Solution of Sulfamethizole (first peak, *m/z 271.0), Sulfamethazine* (second peak, *m/z 279.0), Sulfachloropyridazine (third peak, m/z 285.0), Sulfadimethoxine (fourth peak, m/z 311.0) each at a* concentration of 100 ng/ μ L.

Extra Column Volume and Sensitivity

Extra Column Volume and Sensitivity

Avoiding Interferences and Ion Suppression

Agilent 1200 Series RRLC / 6460A Triple Quadrupole MS; Ammonium Acetate pH 5 / Acetonitrile Gradient, 0.4 mL/min; ESI+, Scan 100-800, 400 °C, 12 L/min, 40 psi, 3500 V;

5990-8623EN

Interferences and Sample Prep

Interferences and Sample Prep

Preventing Instrument Down Time

Clean Source

After SPE

After PPT

Summary

•ESI is most common atmospheric pressure ionization technique

- •APCI and APPI for less polar molecules that do not ionize well by ESI
- •Flow rate and mobile phase buffer selection are important for best LC/MS performance
- •Importance of choosing column ID and phase for the best results
- •Column particle size and efficiency can avoid interferences and maximize sensitivity
- •Removing interferences when avoiding them is not enough

Contact Tech Support 1-800-227-9770 Ic-column-support@agilent.com

