
UNI RUBY

DEVELOPMENT

• Text file with defined structure

• Can be edited in text editor (Notepad++ recommended)

• Easy to learn Ruby language https://www.ruby-lang.org/en/

• ruby gems not supported 

• Simple instruments are made with UNI Ruby (pump, thermostat, detector)

• C++ not needed (other than UNI Ruby script development the SDK needs to be used)

• You need to know the protocol (commands issued on HW)

UNI RUBY

UNI Ruby Development PAGE 2P049/90A 19/12/2023

MD1

Snímek 2

MD1 Přepsána řádka s C++ not needed - překlepy a nevím co tím chtěl autor říct
Mentlík Daniel; 2023-12-19T12:34:35.477

• Lots of code

• 2 classes (Device and SubDevice)

• You can‘t delete framework methods and classes (commented as „Method expected by
framework“).

• Common methods are Init, InitCommunication, InitConfiguration, CmdTimer,
CmdSendMethod, ...

• Common methods are in each script, but some devices have specific methods in addition

• Global variables at the begining ($) – script scope

• Device variables inside device class (@) – class scope

• Must be initialized in the CmdOpenInstrument function

SCRIPT WORKFLOW

UNI Ruby Development PAGE 3P049/90A 19/12/2023

MD1

Snímek 3

MD1 změněny uvozovky u komentáře, čtyřtečka na trojtečku
Mentlík Daniel; 2023-12-19T12:35:43.999

OPEN SCRIPT IN CLARITY

UNI Ruby Development PAGE 4P049/90A 19/12/2023

…WHEN YOU OPEN CLARITY

WHAT‘S HAPPENING...

UNI Ruby Development

When you modify a script file, you should restart Clarity to see changes.

PAGE 5P049/90A 19/12/2023

…WHEN YOU OPEN THE INSTRUMENT

WHAT‘S HAPPENING...

UNI Ruby Development PAGE 6P049/90A 19/12/2023

• Configuration()

• HW parameters, can‘t be changed after your open instrument (changes only from Clarity Configuration

dialog)

• Autodetection, if CmdAutoDetect implemented

•Device name, Serial number

•Maximal flow, pressure

•Other options

• Monitor()

• State of Device

• Buttons for Device control (stop pump, perform AutoZero, ...)

• Method()

• Parameters that are set on the device when CmdSendMethod() is called

CLARITY OBJECTS IN SCRIPT

UNI Ruby Development PAGE 7P049/90A 19/12/2023

MD1

Snímek 7

MD1 mezera před trojtečkou, přepis itemu u Method()
Mentlík Daniel; 2023-12-19T12:37:08.011

• Create UI Items

• TextBox <object>.AddString(...) or .AddInt(...) or .AddDouble

• CheckBox .AddCheckBox

• ComboBox .AddChoiceList and .AddChoiceListItem

• Button .AddButton

• Table .AddTable and .AddTableColumn

(only allowed in Method)

• Read values from UI Items with .GetString(...), GetInt(...), GetDouble(...), GetTableColumnValues(...)

• For ComboBox use GetString

• For CheckBox use GetInt

• For TextBox, it depends on definition

CLARITY OBJECTS IN SCRIPT

UNI Ruby Development PAGE 8P049/90A 19/12/2023

Once you add object to a Configuration, Method or Monitor, a type of the object is stored within

Clarity methods/configurations. You should not change the object type after releasing the script,
that will break compatibility with already created configuration and method files in Clarity.

e.g.

First version of ruby script:

Method().AddString(„myObject“,…)

Later, when you change string to double:

Method().AddDouble(„myObject“,…)

Method().GetDouble(„myObject“) => ruby exception

When you need to change the type of existing object, it is better to create a brand new object
with different ID and deprecate the old item (stop reading it, saving it, ...).

OBJECTS TYPE

UNI Ruby Development PAGE 9P049/90A 19/12/2023

MD1

Snímek 9

MD1 zarovnání a text prvního odstavce, faktická správnost v kódovém příkladu
Mentlík Daniel; 2023-12-19T12:42:19.535

CONFIGURATION

UNI Ruby Development PAGE 10P049/90A 19/12/2023

CmdAutoDetect

InitCommunication

InitConfiguration

Hide with
SetHideAutoDetect (true)

• Values can be validated with

user-defined function

VALIDATING ITEMS

UNI Ruby Development PAGE 11P049/90A 19/12/2023

• You want to check some user input in Configuration table

Configuration().AddString(..., ..., ..., 'VerifyDetectorName')

• Validation function

• two parameters in declaration

•uiitemcollection, value

• When the value is out of range, it returns message

• Messagebox is shown automatically in Clarity from validation functions

DEVICE MONITOR

UNI Ruby Development PAGE 12P049/90A 19/12/2023

• Display status of device (temperature, flow, pressure)

• Define in Init()

• Monitor().Add....

• Data are typically read from device in CmdTimer()

• Change values in Monitor with SetXyz methods

• Monitor().SetString(ID, value)

• Monitor().SetInt(ID, x)

• Call Monitor().Synchronize() at the end of CmdTimer()

Similar to
defining

Configuration
item

MD1

Snímek 12

MD1 zarovnání, přepis Set metod
Mentlík Daniel; 2023-12-19T12:46:46.165

DEVICE MONITOR

UNI Ruby Development PAGE 13P049/90A 19/12/2023

• Monitor can be hidden

- SetHideMonitor(bool)

Device state
Monitor().SetReady(bool)

Monitor().SetStateName(...)

Monitor().SetRunning(bool)

Items defined in Init

DEVICE MONITOR

UNI Ruby Development PAGE 14P049/90A 19/12/2023

• Button with action

- Monitor().AddButton(‘ID‘, ‘label‘, ‘buttonText‘, ‘buttonAction‘)

Here, all
parameters are

passed as string,
even the name of

buttonAction.

buttonAction is

your function in
ruby script

DEVICE MONITOR

UNI Ruby Development PAGE 15P049/90A 19/12/2023

• The buttonAction in the monitor is performed immediately and in parallel with
the code in the CmdTimer, which can affect it executing code in the CmdTimer
function.

• The solution is to perform only a single buttonAction in one iteration of the

CmdTimer.

MD1

Snímek 15

MD1 drobné textové úpravy
Mentlík Daniel; 2023-12-19T12:49:15.231

METHOD

UNI Ruby Development PAGE 16P049/90A 19/12/2023

• Call Method().Add.... in Init() to define method table

• Similar to Configuration() and Monitor()

• or Hide whole method with

• SetHidePropertyPage(true)

Framework functions:

• CmdSendMethod()

• Send parameters to HW

• Method().Get....

• CmdLoadMethod()

• Read HW settings from device

• hide button with SetHideLoadMethod(true)

• CheckMethod(situation,method)

• Checking whether method is correct as a whole

• can get information from other places, e.g. vial number from sequence table, ...

MD1

Snímek 16

MD1 Změněn obrázek (šipka u Load Method ukazovala na nesouvisející tlačítko), faktická chyba u schovávání metody, přidáno

schování vyčítání metody, upravena poslední věta
Mentlík Daniel; 2023-12-19T13:12:06.506

THE INVOKE ORDER OF START FUNCTIONS

UNI Ruby Development PAGE 17P049/90A 19/12/2023

1. CmdStartSequence

2. CmdStartRun

3. CmdStartAcquisition

• Communication protocol
• Parameters of communication, set of commands used to control HW

• Communication pipe
• Serial (rs232)

• TCP

• USB

COMMUNICATION WITH HW

UNI Ruby Development PAGE 18P049/90A 19/12/2023

• InitCommunication()
• Set number of pipe configurations for communication. In our case one - serial communication.

Communication().SetPipeConfigCount(1)

• Set type for created pipe configuration.

•EPT_SERIAL Serial pipe.

•EPT_TCP TCP pipe.

•EPT_UDP UDP pipe.

•EPT_GSIOC GSIOC pipe.

•EPT_USBFTDI USB FTDI chipset pipe. SetUSBDeviceName().

•EPT_USBXP USB SiUSBXp chipset pipe. SetUSBDeviceName().

Communication().GetPipeConfig(0).SetType(EPT_SERIAL)

Communication().GetPipeConfig(0).SetBaudRate(19200)

Communication().GetPipeConfig(0).SetParity(NOPARITY)

Communication().GetPipeConfig(0).SetDataBits(DATABITS_8)

Communication().GetPipeConfig(0).SetStopBits(ONESTOPBIT)

COMMUNICATION WITH HW

UNI Ruby Development PAGE 19P049/90A 19/12/2023

• Termite
• a simple RS232 terminal

• http://www.compuphase.com/software_termite.htm

• Test connection settings, answers from HW

COMMUNICATION WITH HW

UNI Ruby Development PAGE 20P049/90A 19/12/2023

• Create and Send Command

cmd = CommandWrapper.new(self)

cmd.AppendANSIString(" ")

if (cmd.SendCommand($timeOut) == false)

return false

end

• Read Answer

answer = cmd.ParseANSIString()

• Parsed string when successful otherwise false!

• Parsed string is then removed from cmd

• other Append and Parse functions - see UNI Ruby documentation

AppendANSIInt(x)

AppendANSIDouble(...)

AppendANSIChar

COMMUNICATION WITH HW

UNI Ruby Development PAGE 21P049/90A 19/12/2023

• Example – send command and parse answer

cmd = CommandWrapper.new(self)

cmd.AppendANSIString(„send me ok 100")

if (cmd.SendCommand($timeOut) == false)

return false

end

ok = cmd.ParseANSIString(„ok“)

space = cmd.ParseANSIString(„ “)

number100 = cmd.ParseANSIInt()

thisIsFalse = cmd.ParseANSIString(„x“)

COMMUNICATION WITH HW

UNI Ruby Development PAGE 22P049/90A 19/12/2023

The last variable will
be false, because

cmd buffer contains
nothing at the

moment

Expecting answer: „ok
100“

• Example 2 – send command without expecting answer

cmd = CommandWrapper.new(self)

cmd.AppendANSIString("I1S0")

cmd.AppendANSIChar($cmdCharTerm)

if (cmd.SendCommand(0) == false)

return „command not sent“

else

return „command sent“

end

COMMUNICATION WITH HW

UNI Ruby Development PAGE 23P049/90A 19/12/2023

How UNI ruby gets data from HW

• UNI Ruby automatically checks for incoming data (sequence of bytes)

• Data are then passed into FindFrame function for completion

• FindFrame (dataArraySent, dataArrayReceived)

• dataArraySent – byte array containing your command

• dataArrayReceived – byte array containing incoming data

• Typical implementation - check leading & ending sequence of characters, calculate check sum of data and

then mark beginning and end of the frame with framework functions:

SetFrameStart(startIndex)

SetFrameEnd(endIndex)

• If sentByteArray is nil – it means you have not send command to HW and it has sent unrequested data

• Return false, if data are incomplete (e.g. ending character is not found)

COMMUNICATION WITH HW

UNI Ruby Development PAGE 24P049/90A 19/12/2023

MD1

Snímek 24

MD1 překlep v poslední větě, faktické pojmenování parametrů.
Mentlík Daniel; 2023-12-19T13:22:04.403

• Example:

FindFrame(dataArraySent, dataArrayReceived)
nEndFrameIdx = dataArrayReceived.index($cmdCharTerm)

if (nEndFrameIdx == nil)

return false

End

Set frame start and end indexes!

SetFrameStart(0)

SetFrameEnd(nEndFrameIdx)

return true

• Search character in byteArray with .index (or .rindex) function

• Example – find index of ‚a‘

nEndFrameIdx = dataArrayReceived.index(‘A‘.ord) - correct

nEndFrameIdx = dataArrayReceived.index(0x41) - correct (hex code)

nEndFrameIdx = dataArrayReceived.index(‘A‘) - wrong

you can‘t search char in byte array directly (convert array to string or
parameter to code)

COMMUNICATION WITH HW

UNI Ruby Development PAGE 25P049/90A 19/12/2023

Frame is complete, if
the data received

from HW contains a
terminating

character.

Define

$cmdCharTerm as
global variable

ASCII TABLE

COMMUNICATION WITH HW

UNI Ruby Development PAGE 26P049/90A 19/12/2023

• You can convert received data to string representation
• Use .pack("c*") => Pack every element as an 8-bit signed integer.

str = dataArrayReceived.pack("c*") => „Hello, world“

• If you expect non-ascii characters – use parameter "C*"

• C* is for 8-bit unsigned (unsigned char)

• Unicode characters
• .pack(„U*“)

COMMUNICATION WITH HW

UNI Ruby Development PAGE 27P049/90A 19/12/2023

Implement IsItAnswer(dataArraySent, dataArrayReceived)
- If IsItAnswer() returns false, then frame is not passed to command waiting for the answer

and frame is passed into ParseReceivedFrame() for processing as unrequested data

- common scenarios:

a) All data from HW can be your answer

return true

b) Pass answers to your questions only

if (dataArraySent == nil || dataArraySent.length == 0)
return false

end

c) Skip specific answers

if (dataArrayReceived[0] == 0x15)

return false

end

COMMUNICATION WITH HW

UNI Ruby Development

More info can be found in UNI RUBY DataApex Help - DeviceWrapper Class Reference

PAGE 28P049/90A 19/12/2023

• Implement ParseReceivedFrame(receivedByteArray) to processes unrequested data sent by

hardware

COMMUNICATION WITH HW

UNI Ruby Development PAGE 29P049/90A 19/12/2023

• Enable communication log for device

• open CommDrv.ini

• find your communication pipe (or add it) and set echo=ON

• restart Clarity for the changes to take effect

[COM1]

echo=ON

textmode=ON

filename=CommDrvCOM1_%D.txt

reset=OFF

COMMUNICATION WITH HW

UNI Ruby Development PAGE 30P049/90A 19/12/2023

Send command (Csw)

Received answer (PIPE)

MD1

Snímek 30

MD1 Přidán doplňující řádek, smazán deprecated ini soubor
Mentlík Daniel; 2023-12-19T13:28:59.731

• TracePipe (pipeNumber, message)
• Function allowing to place specific text right into the pipe communication log when

pipe logging is enabled and configured in CommDrv.ini

• Trace(message)
• sending a string to the debug monitor.

• The given string has to be less than 512 characters long. Output can be captured by
DbgView.exe.

• https://technet.microsoft.com/en-us/sysinternals/debugview.aspx

• Or newer open-source https://github.com/djeedjay/DebugViewPP

DEBUGGING SCRIPT

UNI Ruby Development PAGE 31P049/90A 19/12/2023

MD1

Snímek 31

MD1 odstranění deprecated ini souboru
Mentlík Daniel; 2023-12-19T13:30:23.492

ReportError (errorSeverity, message) – show error in Clarity
EsStopSingle_StopSeq

• Stops both current acquisition and sequence, device gets into initial/idle state. For example pipe error,

detector error, auto-sampler motor error. Clarity continues in CONTROL TIME, sub-device causing this error

must decide if it has sense for it to continue in CONTROL TIME itself, whatever decision is reported to Clarity

via CSubDevice::GetMethodLength. When CSubDevice::GetMethodLength returns METHOD_FINISHED

then CONTROL TIME is skipped.

EsStopSingle_RunSeqIfNotCalibration

• Autosampler's error level for reporting MISSING VIAL error.

• Stops current acquisition but tries to continue with sequence if current vial is not calibration. It should be

enabled in autosampler method (by some combobox) if Clarity should continue in sequence when non-

calibration vial is missing. Clarity continues in CONTROL TIME, sub-device causing this error must decide if it

has sense for it to continue in CONTROL TIME itself, whatever decision is reported to Clarity via

CSubDevice::GetMethodLength. When CSubDevice::GetMethodLength returns METHOD_FINISHED then

CONTROL TIME is skipped.

ERROR HANDLING

UNI Ruby Development PAGE 32P049/90A 19/12/2023

ReportError (errorSeverity, message) – show error in Clarity
EsStopSingle_RunSeq

• Autosampler's error level for reporting MISSING VIAL error.

• Stops current acquisition but tries to continue with sequence. It should be enabled in autosampler method

(by some combobox) if Clarity should continue in sequence when whatever vial is missing. Clarity continues

in CONTROL TIME, sub-device causing this error must decide if it has sense for it to continue in CONTROL

TIME itself, whatever decision is reported to Clarity via CSubDevice::GetMethodLength. When

CSubDevice::GetMethodLength returns METHOD_FINISHED then CONTROL TIME is skipped.

EsLogInfo

• Information or success to be written into Clarity CDS, sequence and chromatogram log (no message box

would appear on screen).

EsLogFailure

• The least severe error, writes into Clarity CDS, sequence and chromatogram log (no message box would

appear on screen).

ERROR HANDLING

UNI Ruby Development PAGE 33P049/90A 19/12/2023

ReportError (errorSeverity, message) – show error in Clarity
EsAbort

• Little less severe error than esShutDown for reporting LC pressure errors and similar.

• It is possible to customize reaction on CmdAbortRunError signal in device method, for example user wants
to switch detector lamps off when running sequence over night but does not want to switch detector

lamps off when running attended single runs. Clarity does not continue in CONTROL TIME but
chromatogram is created.

EsCommunication

• Indicates, that particular HW does not communicate.

if (cmd.SendCommand($timeOut) == false)
ReportError(EsCommunication, t("COMMAND_TIMEOUTED") % „xxx")

return false

end

ERROR HANDLING

UNI Ruby Development PAGE 34P049/90A 19/12/2023

• Check your script with Ctrl+shift+F7 from Notepad++ with UNI Ruby Plugin installed

• When error in ruby script occurs (syntax error, wrong variable used,...), Clarity will show error

message with description.

• Look for a line number and message, if you have Notepad++ with script opened, the line

should be automatically selected

RUBY EXCEPTION

UNI Ruby Development PAGE 35P049/90A 19/12/2023

• Implement function t(stringID) - copy code to your script from other existing scripts

def t(stringID)

$locale = GetLanguageCode() # ask Clarity about current language code

defaultLang = "ENG" #TraceLine ("Lang:" << $locale.to_s)

if (!$locale)

$locale = defaultLang

elsif (!$translation.has_key?($locale)) #Missing language - set language to
default $locale = defaultLang

end

if ($translation.has_key?($locale) && $translation[$locale].has_key?(stringID))
return $translation[$locale][stringID]

elsif ($locale != defaultLang && $translation.has_key?(defaultLang) &&
$translation[defaultLang].has_key?(stringID))

#Chosen language does not have translation with given ID, use default language instead

return $translation[defaultLang][stringID]

end

return stringID + " string not found"

end

RUBY SCRIPT LOCALIZATION

UNI Ruby Development PAGE 36P049/90A 19/12/2023

MD1

Snímek 36

MD1 doplnění první uvozující věty
Mentlík Daniel; 2023-12-19T13:34:54.744

• Localized string are stored in global variable $translation at the end of script

• type Hash http://ruby-doc.org/core-2.3.0/Hash.html

$translation = {

"ENG" => {

"NAME" => "LC Name",

"NAME_LONG" => "LC name too long.",

"COMMAND_TIMEOUTED" => "Command %s timeouted.",

"BAD_ANSWER" => "Command %s wrong answer",

"BAD_ANSWER2" => "Command %s wrong answer: %s",

"ERR_10" => "Command not in the specified format",

"ERR_20" => "Outside of set value limits specified„

}

}

• Use in script

t(„string_ID“)

t(„string with %parameter“) % variable

t(„string with 2 % parameters) % [variable1, variable 2]

RUBY SCRIPT LOCALIZATION

UNI Ruby Development PAGE 37P049/90A 19/12/2023

String parameters:
%s - string

%d – integer number
%.3f – float number (3

decimal places)

UNI RUBY

DEVICES TYPES

• SubDevice class

• class Thermostat < ThermostatSubDeviceWrapper

• Device class Init

@m_Thermostat=Thermostat.new

AddSubDevice(@m_Thermostat)

• Add Auxiliary signal (optional)

AuxSignal().AddSignal("Temperature", t("TEMPERATURE"), EMeaningTemperature)

• Doesn‘t have any special framework methods

THERMOSTAT (OVEN)

UNI Ruby Device Types PAGE 39P049/90A 19/12/2023

Aux. signals
can be added

in all device
types

• Check signal in Method Setup > Advanced dialog

AUXILIARY SIGNAL

UNI Ruby Device Types PAGE 40P049/90A 19/12/2023

• SubDevice class

• class LC < LCSubDeviceWrapper

• Device class Init

@m_LC=LC.new

• Set Pressure limits

SetDefaultLowerPressureLimit(...)

SetDefaultUpperPressureLimit(...)

• Auxiliary pump

@m_LC.SetLCIsAuxiliaryEventTable(Configuration().GetInt("AuxiliaryPump")!=0)

• Add Auxiliary Signals (optional)

• if the pump is auxiliary specify EMeaningAuxiliaryFlowRate
AuxSignal().AddSignal(@m_LC,"LCFlow", t("LC_FLOW"),
EMeaningAuxiliaryFlowRate)

• or standard flow rate

AuxSignal().AddSignal(@m_LC,"LCFlow", t("LC_FLOW"), EMeaningFlowRate)

PUMP

UNI Ruby Device Types PAGE 41P049/90A 19/12/2023

• Write auxiliary signal in CmdTimer()

• AuxSignal().WriteSignal(string signalName, double value)

• Implement framework methods for pumps

• CmdSendAuxiliaryLCFlow(lc,float)

• float in ml/min

• CmdSendLCFlow(floats)

• Use floats[0] !

PUMP

UNI Ruby Device Types PAGE 42P049/90A 19/12/2023

Both methods
do the same

thing, but the
have different

parameters

• SubDevice class

• class Aux < SamplerSubDeviceWrapper

• Device class Init

@m_Aux=Aux.new

AddSubDevice(@m_Aux)

• Specify minimum and maximum injection volume and possible step in mL

SetVolumeRange (double min, double max, double step)

• Add Input (optional)

• Init

Input().AddInput("Input1", EitDigital, 0,
Configuration().GetString("Input1"), "")

• Sends event of specified input and given value into Clarity CDS to be processed. Change of input can be

detected in CmdTimer() or ParseReceivedFrame().

Input().WriteInput("Input1",1)

Input().WriteInput("Input1",0)

AUTOSAMPLER

UNI Ruby Device Types PAGE 43P049/90A 19/12/2023

More info can be found in UNI RUBY DataApex Help - DeviceWrapper Class Reference

AUTOSAMPLER - INPUTS

UNI Ruby Device Types PAGE 44P049/90A 19/12/2023

• Add Output (optional)

• see UNI Ruby help

• CmdWriteOutputInt

• CmdWriteOutputDouble

• CmdWriteOutputString

• Implement CmdSendMethod – get vial number from Clarity and set vial for AutoSampler

Method().GetVial()

• Implement

• CmdPerformInjection - Indicates into samplers, that injection should be performed

• CmdByPassInjection

AUTOSAMPLER

UNI Ruby Device Types PAGE 45P049/90A 19/12/2023

• SubDevice class

• class Detector < DetectorSubDeviceWrapperDevice

• Decice class Init

@m_Detector = Detector.new

@m_Detector.SetName(Configuration().GetString('DetectorName')

AddSubDevice(@m_Detector)

• Set Rate and Range after AddSubDevice

@m_Detector.SetRate (double sampleRate)

@m_Detector.SetRange (double range)

@m_Detector.SetYUnits (strBaseUnit, strAxisName, bool bScalable, double
nCoefToBase)

• @m_Detector.SetYUnits('µRIU', t("REFRACTIVE_INDEX"), false, 1.0)

DETECTOR

UNI Ruby Device Types PAGE 46P049/90A 19/12/2023

• Implement framework methods:

• GetMethodRate(method)

• GetMethodRange(method)

• Set Rate and Range at the beginning of CmdSendMethod

@m_Detector.SetRate(...)

@m_Detector.SetRange(...)

• Read data from detector and write it to Clarity

@m_Detector.WriteSignal (value)

• usually in CmdTimer()

• you can write multiple values in one period of CmdTimer

DETECTOR

UNI Ruby Device Types PAGE 47P049/90A 19/12/2023

It can be constant, or
you can use parameter

to read values from
method table:
method.Get.....

• SubDevice class

• class FRC < FRCSubDeviceWrapper

• Device class Init

@m_FRC=FRC.new

AddSubDevice(@m_FRC)

• Initialize vial range - default FRC start/end vial number to be shown in UI, interesting for FRC

methods only.

SetDefaultFRCStartVial (int vialNumber)

SetDefaultFRCEndVial (int vialNumber)

• Implement framework methods:

• CmdFRCCollect() - change FRC to collect mode

• CmdFRCWaste() - change FRC to waste mode

FRACTION COLLECTOR

UNI Ruby Device Types PAGE 48P049/90A 19/12/2023

• CmdNextFRCPosition() - Send request to go to next valve position. Called by FC in UNI Ruby

during automatic collection

• CmdGetFRCPosition() (optional – some collectors do not report their position)

Fraction collector manual control

• from Monitor() - button

• notify framework that FRC changed its state and vial position

• OnFRC(state, vialPosition)

• OnFRC(FrcConfirmVial, Position)

• OnFRC(FrcManualWaste,NOVIAL)

• OnFRC(FrcManualCollect,NOVIAL)

• OnFRC(FrcManualNext,NOVIAL)

• OnFRC(FrcManualChangeVial,setPosition)

FRACTION COLLECTOR

UNI Ruby Device Types PAGE 49P049/90A 19/12/2023

MD1

Snímek 49

MD1 Přepis CmdGetFRCPosition popisku
Mentlík Daniel; 2023-12-19T13:41:31.325

FrcConfirmVial

• Confirm current vial number, can be called from Resume Method button

FrcManualWaste

• Notify, that FRC started collecting as a reaction to user request from monitor, should be called

from button click event handler. CmdFRCWaste() will get called from framework!

FrcManualCollect

• Notify, that FRC started collecting as a reaction to user request from monitor, should be called

from button click event handler. CmdFRCCollect() will get called from framework!

FRACTION COLLECTOR

UNI Ruby Device Types PAGE 50P049/90A 19/12/2023

FrcManualNext

• Notify, that FRC shifted to next vial as a reaction to user request from monitor, should be called

from button click event handler. CmdNextFRCPosition() will get called from framework. If

collecting and ‚Waste during vial change‘ is checked, also CmdFRCWaste() and

CmdFRCCollect().

FrcManualChangeVial

• Notify, that FRC changed vial as a reaction to user request from monitor, should be called from

button click event handler. If collecting and ‚Waste during vial change is checked‘, also

CmdFRCWaste() and CmdFRCCollect().

FRACTION COLLECTOR

UNI Ruby Device Types PAGE 51P049/90A 19/12/2023

option in Method Setup dialog

• Important FRC functions

• method.GetFRCStartVial() – obtain default start vial set in method

• method.GetFRCEndVial() – obtain default end vial

• Method().GetFRCResetCondition()

• ErcStartRun set hardware position to GetFRCStartVial() after start of method run - implement in
CmdStartSequence()

if Method().GetFRCResetCondition()==ErcStartRun
#CmdFRCWaste()
CmdSetFRCPosition(Method().GetFRCStartVial())

end

• ErcStartSequence set hardware position to GetFRCStartVial() after start of sequence - implement in

if Method().GetFRCResetCondition()==ErcStartSequence
CmdSetFRCPosition(Method().GetFRCStartVial())

end

• ErcOpenInstrument - set hardware position to FRCStartVial() after Instrument window is opened –
implement in CmdSendMethod, when method is send for the first time

FRACTION COLLECTOR

UNI Ruby Device Types PAGE 52P049/90A 19/12/2023

FRACTION COLLECTOR

UNI Ruby Device Types PAGE 53P049/90A 19/12/2023

Method().GetFRCStartVial()

Method().GetFRCEndVial()

Method().GetFRCResetCondition()

…

THANK YOU FOR YOUR ATTENTION

P049/90A 19/12/2023 PAGE 54

