Orbitrap Fusion Tribrid Mass Spectrometer for Pharmaceutical Impurity Analysis

Kate Comstock, Caroline Ding Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA, USA

OVERVIEW

Purpose: Demonstrate a workflow for API impurity identification and structure elucidation using very high resolution MS with multiple analyzers and fragmentation techniques couple with a customizable data processing software.

INTRODUCTION

Impurity analysis is an integral part of drug R&D, required by regulatory agencies^[1]. LCMS is routinely used for API impurities analysis because of its speed and sensitivity. A very high resolution mass spectrometer with multiple analyzers and dissociation techniques provides two dimensional, in-depth structure information, which is essential for impurity identification and structure elucidation.

This study demonstrates a workflow for API impurity profiling using a Thermo Scientific™ Orbitrap Fusion™ Tribrid™ mass spectrometer and Thermo Scientific™ Compound Discoverer™ 2.0 small molecule structure analysis software.

MATERIALS AND METHODS

Material

The commercial compound Fexofenadine (Sigma-Aldrich) was dissolved in 1:1 ACN/ Water at a concentration of 0.3 µg/mL.

Liquid Chromatography

The liquid chromatographically separations were conducted on a Thermo Scientific™ UltiMate™ 3000 RS UHPLC system consisting of: DGP-3000RS pump, WPS-3000RS sampler, TCC-3000RS column compartment and DAD-3000RS UV detector. Column: Thermo Scientific Accucore™ C18 (150x2.1 mm 2.6 µm) olumn temp: 25°C Mobile phase: (A) water, (B) acetonitrile, and (C) water/0.05% ammonium hydroxide.

Gradient:	Time (min)	A%	B%	C%
	0	80	10	10
	0.5	80	10	10
	15.0	30	60	10
	16.0	10	90	10
	17.0	10	90	10
	17.1	80	10	10
Flow rate (ul/min): 400			

Injection volume (µI): 2

Mass Spectrometry

Orbitrap FusionTribrid mass spectrometer Ion source: Thermo Scientific™ EASY-Max™ NG Ionization mode: ESI positive Sheath gas flow rate: 45 units N2 Auxiliary gas flow rate: 15 units N2 Spray voltage (KV): +3.5 Ion transfer tube temp (°C): 350 S-lens RF level: 60.0 Heater temp (°C): 250

RESULTS

MS Method

Multiple analyzers and fragmentation techniques, method editor, and internal calibration

The full scan and multiple MS/MS method was quickly built using the method editor by selecting the small molecule ID template from the templates library. HRAM data were acquired at highresolution full scan (60,000 FWHM @ m/z 200) followed by data-dependent HCD MS² fragmentation, then data-dependent CID MS³. Because of the parallel acquisition of the Orbitrap and linear trap analyzers, this method allowed access to the in-depth structure information without additional time.

The "EASY-IC" internal calibration was used, which generates internal calibrant ions for realtime mass calibration on every spectrum, and assured the mass accuracy was <1 ppm throughout.

FIGURE 1. Orbitrap Fusion MS Method for Full Scan, HCD, and CID Acquisition

FIGURE 3. HRAM Full Scan, HCD MS², and CID MS³ for Impurity ID

Data Analysis

The HRAM full scan, HCD MS², CID MS³ data acquired on the Orbitrap Fusion MS were processed using Compound Discoverer 2.0 (CD 2.0), a node-based small molecular structure analysis software, for Fexofenadine impurity identification and structure elucidation.

The HRAM full scan and MS/MS data, isotope pattern matching, as well as the MS/MS fragments were used for compound identification and structure elucidation. The nodebased processing workflow was built by following the "New Study and Analysis Wizard", which includes common small molecule analysis workflow templates. In this study, the workflow template "unknown compounds identification" was chosen (see Figure 4). In "Create FISh Trace" node, the Fexofenadine structure was selected, so its HCD MS/MS fragments would be used for reference to identify structurally related impurities.

FIGURE 4. CD 2.0 Node Based Workflow for Fexofenadine API Impurity ID

The comprehensive processing results are shown in Figure 5. For each identified compound, the predicted formula, mass accuracy, isotope pattern, and related information are listed in the table and sub-table. The results were filtered using the flexible "Result Filter". The compounds with high matching fragments with parent compound, high mass accuracy, high spectral fit (Sft) score, and high isotope matching (#MI) were added to the custom explanations table for structure elucidation.

The putative structure was proposed in the "Custom Explanation Editor". The FISh Scoring feature (FISh stands for Fragment Ion Search) searched the embedded fragmentation library, and any matching fragment structures were auto-annotated on the spectra, see Figure 6.

FIGURE 5. Result View Displays

FIGURE 6. Auto-Annotation

Figure 7. Custom Explanations Table

Chromato	oramo				K Mass	Spectrum							
 Group Bill Filter State 	by: Sample Ti Sample Ti By: Sample Ti Sample Ti Sample Ti Sample Ti	01/17/10 101/10 101/17/10 101/17/10 101/17/10 101/17/10 101/17/10 101/17/10 101/17/10 101/17/10 101/17/10 101/17/10 101/17/10 101/17/10 101/10 10	13 607 13.5 13.6 13.7 13.6 #T (Swell)	12.9 54.0		7+13-426 min, 1, 87+13-642 - 8683, 87+13-4 8684, 87+13-4 8684, 87+13-4 7+13-546 min, 2, 87+13-562 - 8764, 87+13-5 8765, 87+13-5 8765, 87+13-5	FTMS (+) nan, FTMS 48 min, IP 50 min, IP 51 min, IP 52 min, IP 53 min, IP 53 min, IP 54 min, IP 54 min, IP 55 min, IP 51 min, IP 51 min, IP	(+), MS2 (+C), DE MS (+), MS3 (CD, D MS (+), MS3 (CD, D MS (+), MS3 (CD, D (+), MS3 (CD, D MS (+), MS3 (CD, D MS (+), MS3 (CD, D MS (+), MS3 (CD, D	6, my 106, 1 106, 106, 106, 106, 106, 106, 106, 106,	64 C01 HO1 HO1 HO1 HO1 HO1 HO1 HO1 HO1 HO1 HO	127607 00 1 40600 0 602 MW 452 0000 A 6 12 Disset 23 Unwald 13 02 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 - 12 - 14 - 19 - 14 - 15 - 14 - 15 - 16 - 17 - 12 - 12 - 12 - 12 - 12 - 12 - 12	G32.30 G32.00 H38 (4) M. 4(+1 412.20 40.4 H38 (4) M. 4(+1) 400
Com	pounds *	Compounds per Ne Merge	d Features Features Cont	on Explanations	ISh Trace	Fragments	9 Spe	ecolord Traces					
e.	Checke	d Stucture	Name Formula	Molecular Weight	RT (min)	Best SFit (%)	Max. # MS	FISh Coverage	# Adducts	Area *	FWHM [min] Study File	<u>a</u>	1
1 =		Farta	C32 HH1 N 03	487.30864	10.716	85	5	37.04	2	594569	11		
2 -		Sara	CI1 H39 N 02	457,29808	13.510	59	4	45.38	3	296455	n		
3 0		gonor.	C32 H37 N 03	483.27734	11.485	86	4	62.50		117146	11		
4 -	×	gano	C31, H37 N 02	455,28243	12,866	91	4	63.64		93112	n		
5 =		gonor.	C33 H41 N 04	\$15,30356	11264	84	4	26.57		62750	n		
		ada	C29 H33 N 04	459,24096	8.424	80		37.50		45389			

TABLE 1. Impurities Identified Using Simple Unknown Workflow in CD 2.0

RT (min)	Peak ID	Molecular Formula	Calculated (M+H)	Measure (M+H)	Error (ppm)*
9.8	Parent	C32H39NO4	502.2952	502.2954	0.5
8.1	Impurity E	C18H21NO	268.1696	268.1696	0
8.2	New	C19H23NO	282.1852	282.1854	0.6
8.4	New	C29H33NO4	460.2482	460.2483	0.2
10.3	Impurity A	C32H37NO4	500.2795	500.2798	0.6
11.3	Impurity D	C ₃₃ H ₄₁ NO ₄	516.3108	516.3111	0.5
11.6	New	C32H37NO3	484.2846	484.2847	0.2
13.0	New	C31H37NO2	456.2897	456.2898	0.2
6.9	New	C26H35NO4	426.2639	426.2640	0.3
10.6	New	C31H37NO2	488.3159	488.3162	0.6
13.5	Impurity C	C31H39NO2	458.3054	458.3055	0.4
12.5	New	C38H43NO4	578.3265	578.3268	0.6

* Sub-ppm mass accuracy throughout.

Table 2. Proposed Structures Using Custom Explanation and FISh Scoring Feature

CONCLUSIONS

This study demonstrates a workflow for API impurity identification and structure elucidation using the very high resolution Orbitrpa Fusion Tribrid MS coupled with data processing by Compound Discoverer 2.0 small molecule structure analysis software.

The results shown that:

 The very high resolution data acquisition not only generated high mass accuracy, it also allowed access to isotope fine structure information for accurate elemental composition determination.

2. The multiple analyzers and fragmentation techniques enable flexible data acquisition: parallel, tandem, and any stages of CID/HCD MSⁿ fragmentations, which generated in-depth structural information for confident structure characterization.

3.The Easy IC internal calibration feature ensures sub-ppm mass accuracy throughout. 4.Compound Discoverer 2.0 software advanced algorithms fully utilize the HRAM full scan and ms/ms data, resulting in confident impurity ID and structure elucidation.

REFERENCES

1.FDA Guidance for Industry Q3A Impurities in New Drug Substances June 2008 ICH

DISCLAIMER: For Research Use Only.

www.thermofisher.com

©2016 Thermo Fisher Scientific Inc. All rights reserved. ISO is a trademark of the International Standards Organization. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

Africa +43 1 333 50 34 0 Australia +61 3 9757 4300 Austria +43 810 282 206 Belgium +32 53 73 42 41 Brazil +55 11 2730 3006 Canada +1 800 530 8447 China 800 810 5118 (free call domestic) 400 650 5118

Denmark +45 70 23 62 60 Europe-Other +43 1 333 50 34 0 Finland +358 10 3292 200 France +33 1 60 92 48 00 Germany +49 6103 408 1014 India +91 22 6742 9494 Italy +39 02 950 591 Japan +81 6 6885 1213 Korea +82 2 3420 8600 Latin America +1 561 688 8700 Middle East +43 1 333 50 34 0 Netherlands +31 76 579 55 55 New Zealand +64 9 980 6700 Norway +46 8 556 468 00 Russia/CIS +43 1 333 50 34 0 Singapore +65 6289 1190 Sweden +46 8 556 468 00 Switzerland +41 61 716 77 00 Taiwan +886 2 8751 6655 UK/Ireland +44 1442 23355 USA +1 800 532 4752 PN64784-EN 0616S

A Thermo Fisher Scientific Brand