

Measurement of Underivatized Glyphosate and Other Polar Pesticides in Aqueous Matrices Using LC-TQ

Jean-Francois Roy Mass Spectrometry Application Scientist Montreal, Canada jean-francois_roy@agilent.com

Glyphosate

- Broad-spectrum herbicide first patented in the 1970s
- Roundup Ready™ crops introduced in the mid-1990s
- Widely used in fields and backyards

Pest Manag. Sci. 64:319-325 (2008)

1. Highly Polar

- Synthetic amino acid
- Glycine analogue

Glyphosate

Glycine

1. Highly Polar

- Synthetic amino acid
- Glycine analogue

Glyphosate

Glycine

Glufosinate

1. Highly Polar

- Synthetic amino acid
- Glycine analogue
- Amino acid synthesis inhibitor

Glyphosate

Glycine

$$H_2N$$
 OH NH_2

Glufosinate

Glutamine

1. Highly Polar

- · Synthetic amino acid
- Glycine analogue
- Amino acid synthesis inhibitor
- Metabolized by bacteria in plants, soil and water

Glyphosate

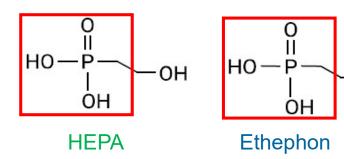
(Aminomethylphosphonic acid)

Glufosinate

MPPA

(3-(methylphosphinico)propionic acid)

1. Highly Polar

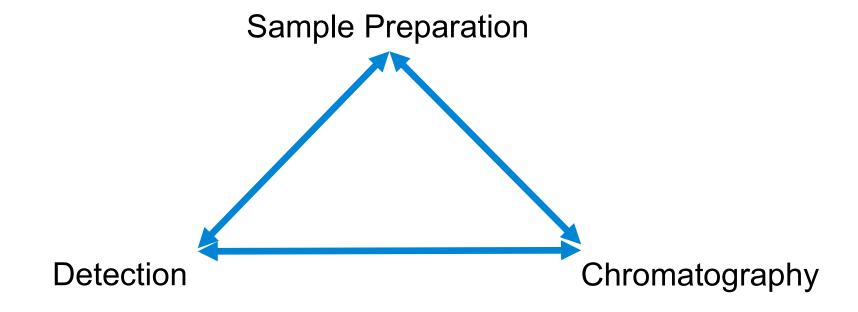

2. Chelating Agent

C

2. Chelating Agent

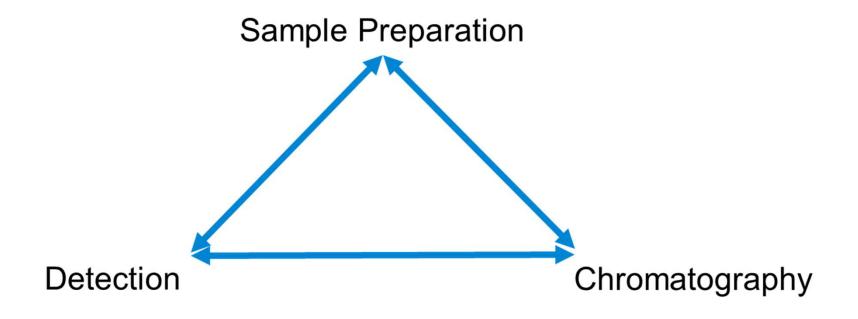
Phosphonate

- 3. Various Matrices and Regulatory Limits, Multiple Extraction Techniques
- Liquid-liquid extraction MeCl:water, derivatization with FMOC-Cl
- Extract with water, cleanup on SAX, elute with 1 N HCl, rotovap to dryness, derivatize with TMOA in glacial acetic acid, dried again and taken up in 9:1 water:methanol
- 3. Extract with water, pass through Plexa SPE and inject
- 4. QuPPe
- 5. Buffered extraction with PAX, elution with 1% formic acid
- Extract with 50mM acetic acid and 10 mM EDTA, pass through Oasis HLB, inject
- 7. 50 mM acetic acid 10 mM EDTA, pass through an SEC cartridge

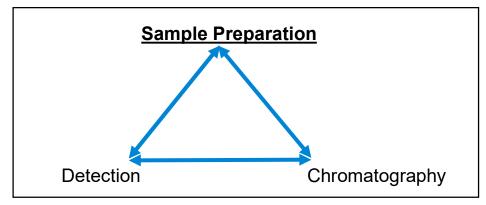

4. Separation Techniques in the Liquid Phase

- HILIC silica based
- iHILIC polymer based
- Reversed-phase chromatography
- Anion exchange chromatography with suppresser column
- Anion exchange without suppressor column
- Cation exchange chromatography
- Mixed mode chromatography
- 8. Ion pair chromatography (with reversed-phase column)

The Challenging Analysis of Glyphosate The Three Interconnected Pillars

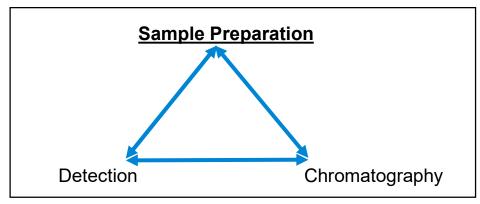


Objective



To develop a <u>sensitive</u> and <u>simple</u> methodology for the analysis of glyphosate and other polar pesticides, with perfectly aligned sample preparation, chromatography and mass spectrometry.

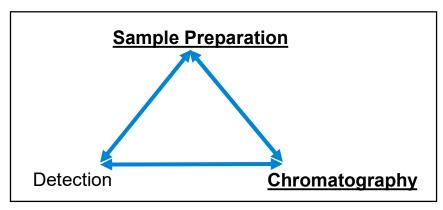
Sample Preparation – Surface Water


- 1. Collect in tube
- 2. Centrifuge at 5000 rpm for 5 min
- 3. Filter on 0.2 µm PES membrane

4. Acidify with concentrated formic acid (0.1 %)

Sample Preparation – Drinking Water

- 1. Filter on 0.2 μm PES membrane
- 2. Acidify with concentrated formic acid (0.1%)


Chromatography

Introducing the InfinityLab Poroshell 120 CS-C18

2.7 µm Poroshell superficially porous particles for UHPLC performance at lower pressure

Unique chemistry for pH stability from 1-11

Charged surface C18 for good peak shape with formic acid and unique selectivity

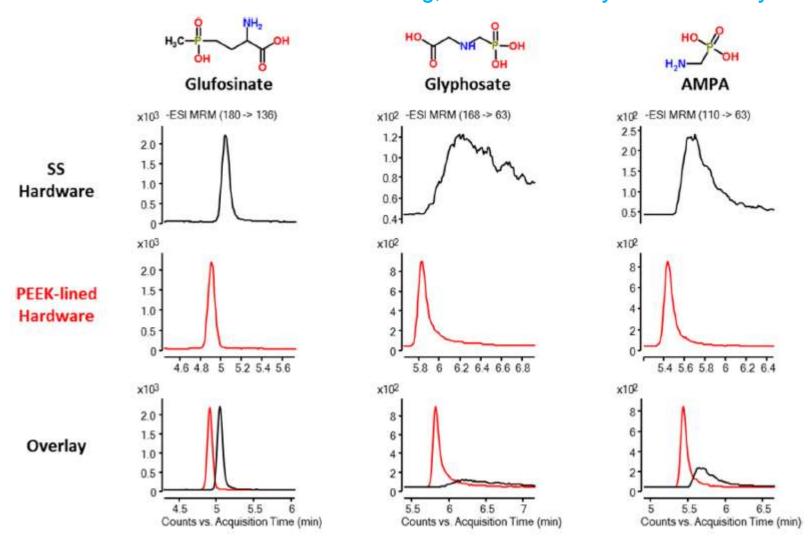
Presence of Trace Metal Will Lead to Tailing, Poor Sensitivity and Variability

Article

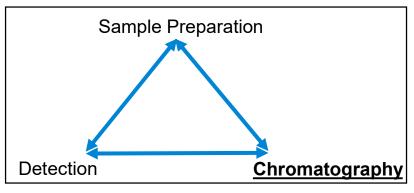
Cite This: Anal. Chem. 2018, 90, 9457-9464

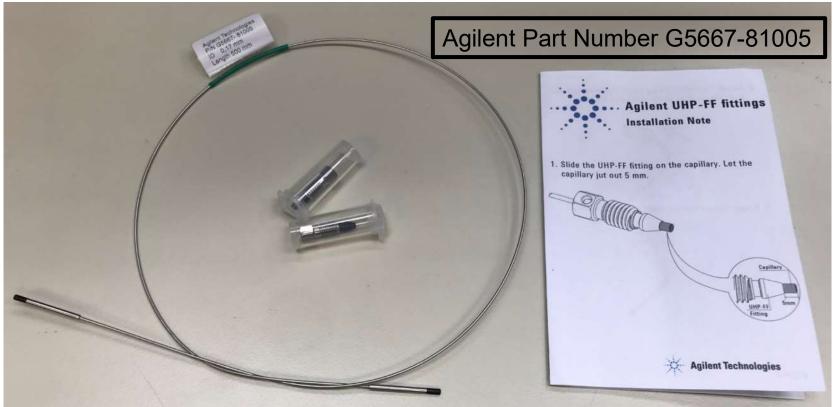
pubs.acs.org/ac

Improved LC/MS Methods for the Analysis of Metal-Sensitive Analytes Using Medronic Acid as a Mobile Phase Additive


Jordy J. Hsiao,* Oscar G. Potter, Te-Wei Chu, and Hongfeng Yin

Agilent Technologies, Santa Clara, California 95051, United States

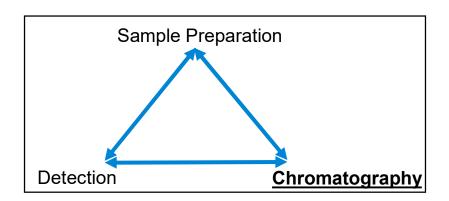

Presence of Trace Metal Will Lead to Tailing, Poor Sensitivity and Variability



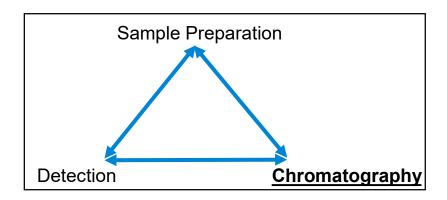
Anal. Chem. 2018, 90, 9457-9464

Infinity Lab

- PEEK needle seat and rotor seal
- PEEK-lined capillary from Multisampler to column inlet



- PEEK needle seat and rotor seal
- PEEK-lined capillary from Multisampler to column inlet
- InfinityLab Quick Turn Fitting with polymeric ferrule at Column Inlet



Agilent Part Number 5067-5966

- PEEK needle seat and rotor seal
- PEEK-lined capillary from Multisampler to column inlet
- InfinityLab Quick Turn Fitting with polymeric ferrule at Column Inlet
- PEEK capillary from Column Outlet to MS

Agilent Part Number 5067-5966

InfinityLab Poroshell 120 CS-C18 P/N 693775-942

From multisampler: P/N G5667-81005 (PEEK-lined capillary)

To MS: Regular PEEK tubing

Deactivator Additive in Mobile Phase

Article

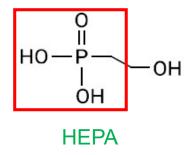
Cite This: Anal. Chem. 2018, 90, 9457-9464

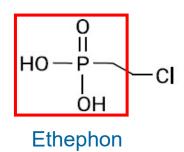
pubs.acs.org/ac

Improved LC/MS Methods for the Analysis of Metal-Sensitive Analytes Using Medronic Acid as a Mobile Phase Additive

Jordy J. Hsiao,* Oscar G. Potter, Te-Wei Chu, and Hongfeng Yin

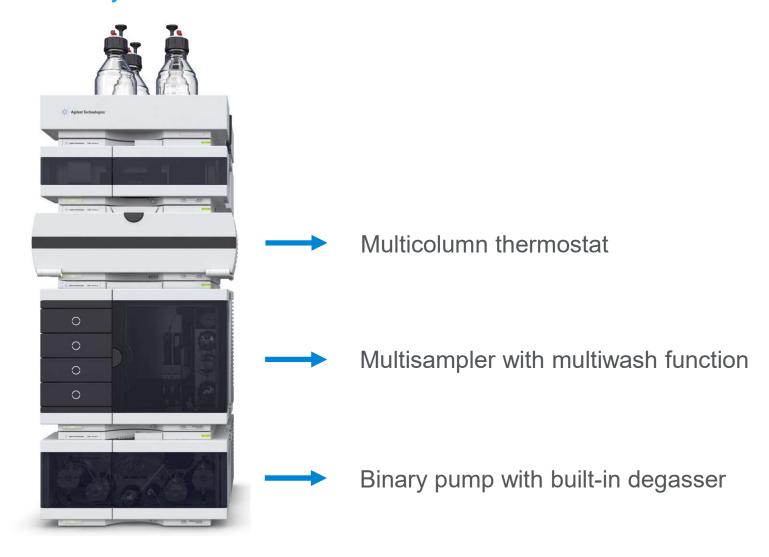
Agilent Technologies, Santa Clara, California 95051, United States





Deactivator Additive in Mobile Phase

Phosphonate


Deactivator Additive in Mobile Phase

Deactivator Additive Agilent Part Number 5191-4506

Hardware

Infinity **Lab**

1290 Infinity II Series UHPLC

UHPLC Conditions

Run Time: 8 min

Column: Agilent InfinityLab Poroshell 120 CS-C18, 2.1 × 150 mm, 2.7 μm

• Mobile Phase A: 0.1 % formic acid + 5 uM Infinity Lab Deactivator Additive in water

Mobile Phase B: 0.1 % formic acid in methanol

Injection Volume: 25 uL

Multisampler Temperature: 4 °C

Column Temperature: 40 °C

Flow: 0.350 mL/min

Gradient:

Time	Mobile Phase A	Mobile Phase B		
0.00 min	99.9	0.1		
1.50 min	99.9	0.1		
2.00 min	80	20		
4.00 min	60	40		
4.10 min	0	100		
8.00 min	0	100		

Key points:

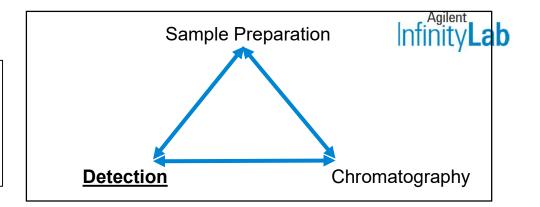
- Typical LCMS mobile phases
- Aqueous mobile phase allows large injection of aqueous samples

Needle wash: 0.1 % formic acid in methanol

Hardware

1290 Infinity II Series UHPLC Coupled to 6470 TQ

Mass Spec Settings


- Acquisition Mode : Dynamic MRM (dMRM)
- Source: Agilent JetStream ESI
- Polarity: Positive (+) or Negative (-)
- Capillary Voltage: 3000 V (+), 3500 V (-)
- Drying Gas Flow: 11 L/min
- Drying Gas Temperature: 220 °C
- Nebulizer Pressure: 30 psi
- Sheath Gas Temperature: 300 °C
- Sheath Gas Flow: 11 L/min
- Nozzle Voltage: 1500 V (+), 800 V(-)
- Q1 and Q2 Resolution: Unit (0.7 amu), optimized by Autotune
- Delta FMV: 0 V

Mass Spec Settings

Key point:

Positive and negative polarity transitions are no problem for instrument and software!

Compound	Quantifier Transition	Qualifier Transition 1	Qualifier Transition 2
AMPA	112 → 30 (+)	110 → 79 (-)	110 > 63 (-)
Glufosinate	182 → 56 (+)	182 → 136 (+)	
Glyphosate	170 → 88 (+)	170 → 60 (+)	170 → 42 (+)
НЕРА	125 → 79 (-)	127 → 81 (+)	127 → 109 (+)
MPPA	153 → 79 (+)	153 → 135 (+)	
NAG	224→ 56 (+)	224 → 164 (+)	224 → 136 (+)
Ethephon	145 → 63 (+)	145 → 91 (+)	143 → 107 (-)
Fosetyl	109 \rightarrow 81 (-)	111 → 83 (+)	111 → 65 (+)

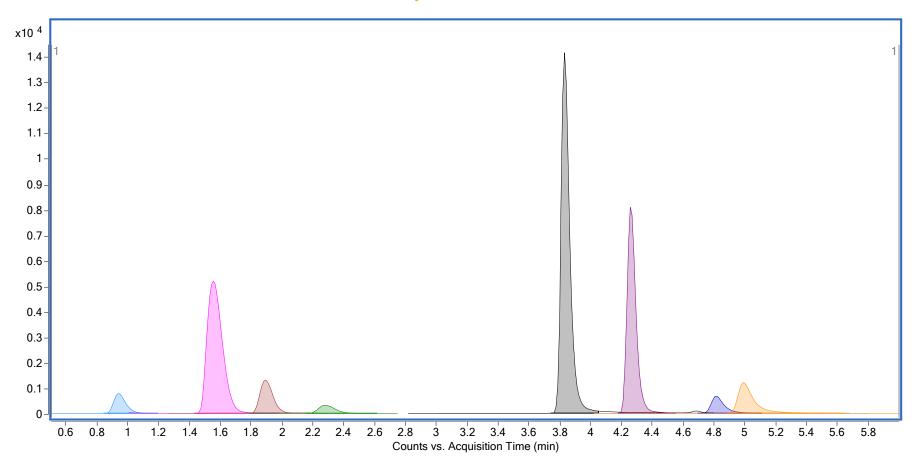
30

Results – Typical Chromatography

AMPA: 0.95 min

Glufosinate: 1.6 min

Glyphosate: 1.9 min

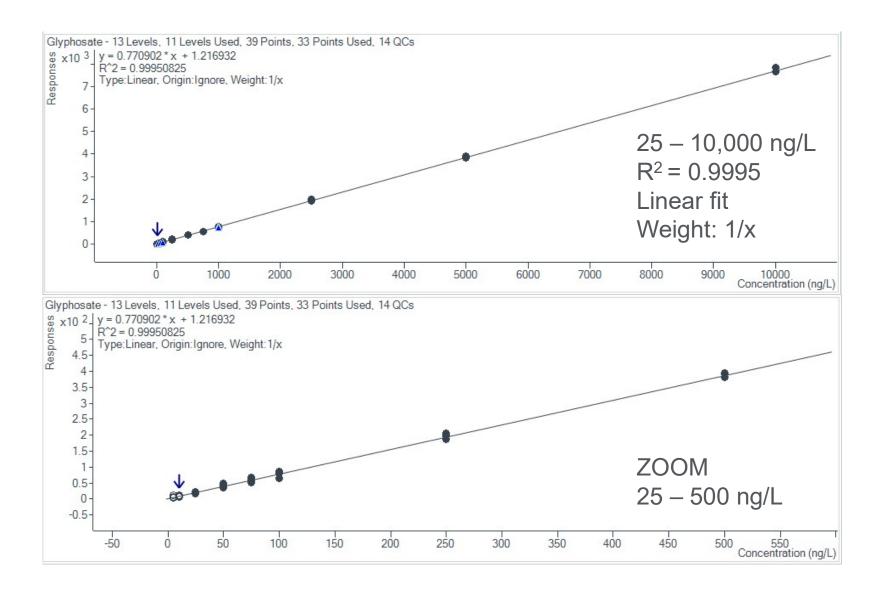

HEPA: 2.3 min

MPPA: 3.8 min

N-acetylglufosinate: 4.3 min

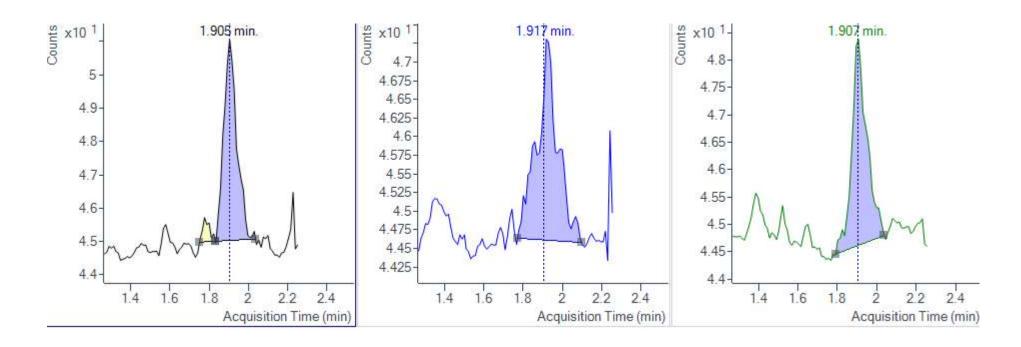
Ethephon: 4.8 min

Fosetyl: 5.0 min



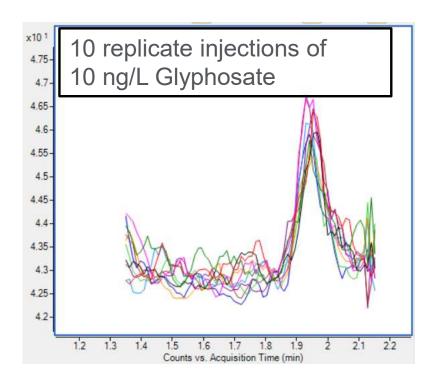
Results – Sensitivity and Linearity

		Drinking Water		River Water			
			Number of			Number of	
	Curve	Linearity	calibrator		Linearity	calibrator	
Compound	Туре	Range (ng/L)	levels	R ²	Range (ng/L)	levels	R ²
AMPA	Linear	100 - 10,000	8	0.9993	100 - 10,000	8	0.9993
Glufosinate	Quadratic	25 - 10,000	11	0.9998	25 - 10,000	11	0.9998
Glyphosate	Linear	25 - 10,000	11	0.9995	25 - 10,000	11	0.9997
НЕРА	Linear	50 - 10,000	10	0.9995	50 - 10,000	10	0.9994
МРРА	Linear	50 - 10,000	10	0.9991	50 - 10,000	10	0.9986
NAG	Linear	10 - 10,000	12	0.9986	10 - 10,000	12	0.9984
Ethephon	Linear	25 - 10,000	11	0.9990	50 - 10,000	10	0.9989
Fosetyl	Linear	10 - 10,000	12	0.9996	25 - 10,000	11	0.9996



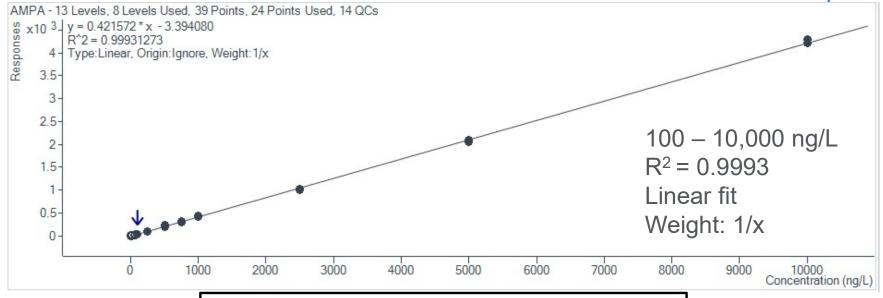
Limit of Quantitation (LOQ) = 25 ng/L (ppt)

Quantifier transition

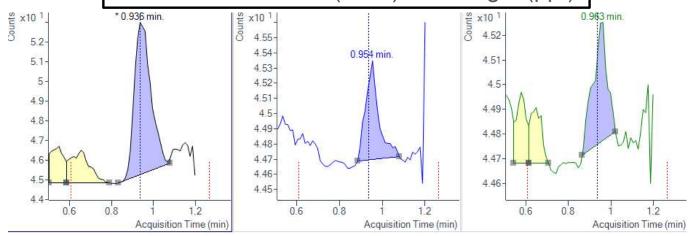

Qualifier transition

Qualifier transition

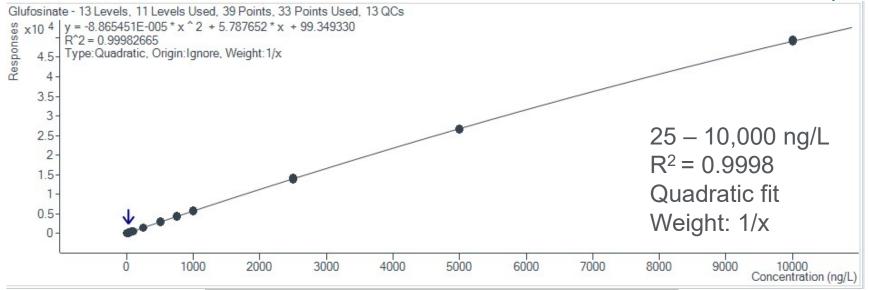
- ➤ The calculation of a Method Detection Limit (MDL) is based on the reproducibility statistics for a series of replicate injections, determining the on-column concentration where one is 99 % confident a sample is unambiguously and reproducibly distinguished from baseline noise.
- US EPA, Clean Water Act Analytical Methods, Procedures for Detection and Quantitation

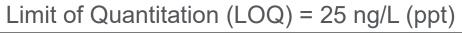


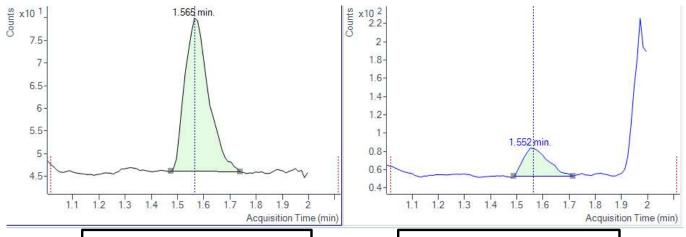
			Column 1	Column 2	Column 3	Column 4
		ng/L (on-column)	10	10	10	10
		Replicate #	User Input Response (no manual			
			integration)			
	pa eq	Replicate1	13	15	20	11
		Replicate2	19	30	15	12
١ ،		Replicate3	15	26	25	10
un		Replicate4	17	14	16	15
Minimum	ena	Replicate5	16	20	18	11
Ni	Recommended	Replicate6	16	13	11	15
	los	Replicate7	29	25	10	12
	Re	Replicate8	23	15	10	11
		Replicate9	14	22	14	7
		Replicate10	21	17	16	9
		Calculated Parameters				
		Mean (\bar{x})	18.3	19.7	15.5	11.3
		Standard Deviation (s)	4.877	5.851	4.720	2.452
		%RSD (<i>CV</i>)	26.7%	29.7%	30.5%	21.7%
# F		# Replicates (n)	10	10	10	10
		Degrees of Freedom (df)	9	9	9	9
		Critical t-value (t)	2 821	2 821	2 821	2 821
		MDL (ng/L)	7.5	8.4	8.6	6.1



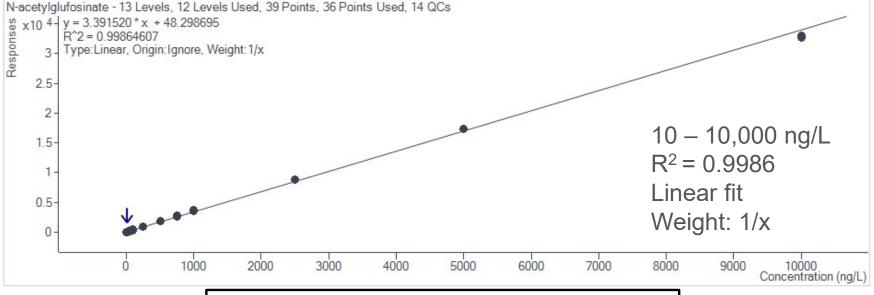
Results - AMPA

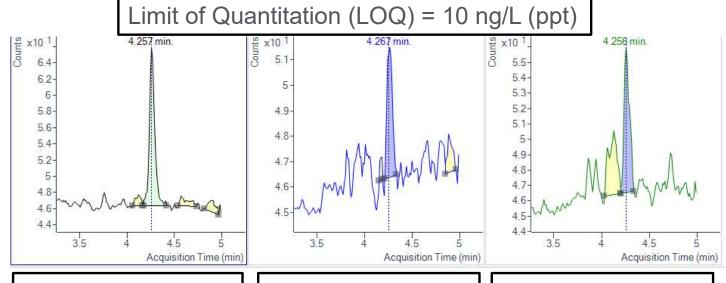

Quantifier transition


Qualifier transition

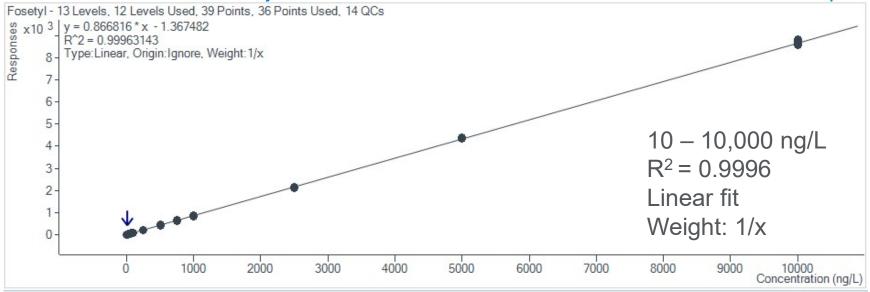


Results - Glufosinate

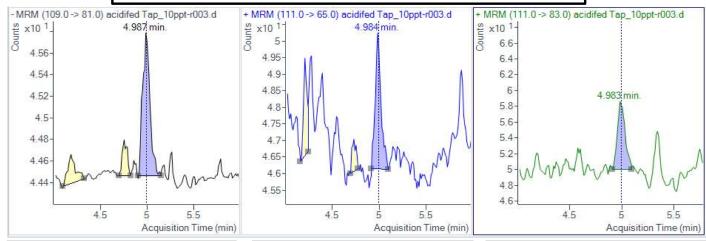



Quantifier transition

Results - NAG

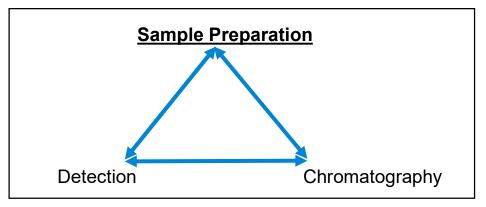

Quantifier transition

Qualifier transition



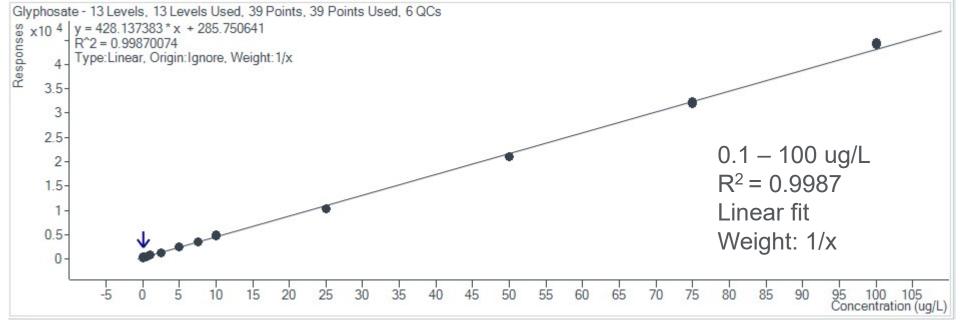
Results - Fosetyl

Limit of Quantitation (LOQ) = 10 ng/L (ppt)


Quantifier transition

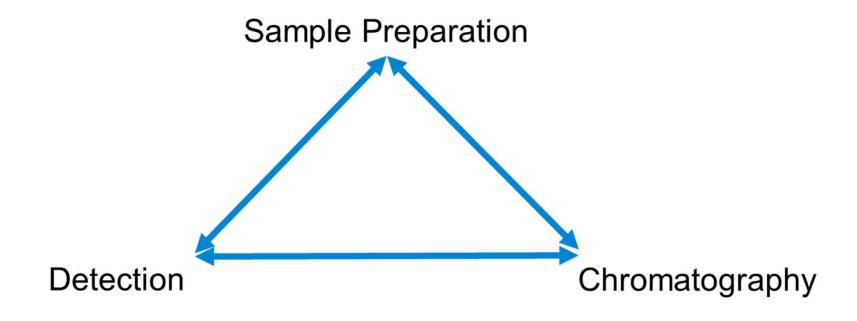
Qualifier transition

Sample Preparation – Wine

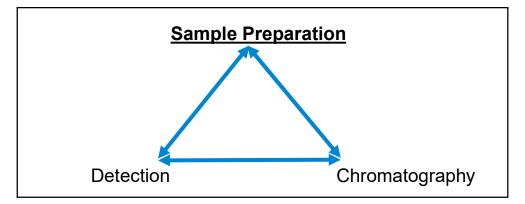

1. Filter on 0.2 μm PES membrane

- 2. Dilute 1 part of filtered wine with 9 parts of Type-1 water
- 3. Acidify with concentrated formic acid (0.1 %)

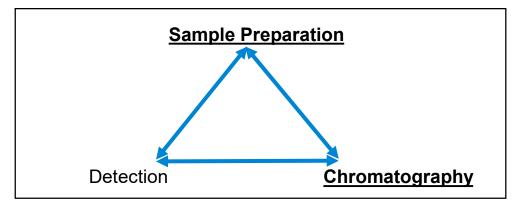
Results - Wine

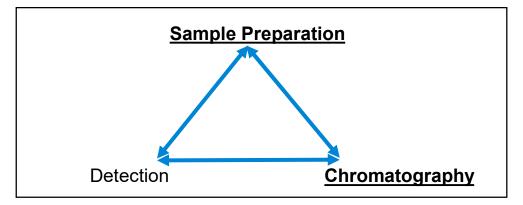


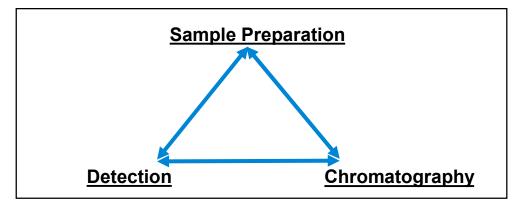
Compound	LOQ in vial (ug/L)		LOQ in wine (ug/L)	
AMPA	1			10
Glufosinate	0.25			2.5
Glyphosate	0.1			1
HEPA	1	. X'	$1 \cap$	10
MPPA	0.25			2.5
NAG	0.1			1
Ethephon	0.25			2.5
Fosetyl	0.1		L 1	


Need to account for dilution in LOQ calculation!

An all-Agilent solution for the analysis of underivatized glyphosate and seven (7) other polar pesticides in aqueous matrices, with perfectly-aligned sample preparation, chromatography and mass spectrometry:




Very quick and simple sample preparation, acidification identical to mobile phase system


- Very quick and simple sample preparation, acidification identical to mobile phase system
- Sources of potentially problematic trace metal are removed from flow path by using PEEK components; any remaining trace is chelated with Deactivator Additive, which does not accumulate in system and is not detrimental to positive or negative ionization

- Very quick and simple sample preparation, acidification identical to mobile phase system
- Sources of potentially problematic trace metal are removed from flow path by using PEEK components; any remaining trace is chelated with Deactivator Additive, which does not accumulate in system and is not detrimental to positive or negative ionization
- Newly introduced InfinityLab Poroshell 120 CS-C18 column uses a novel reversed-phase packing; it is resistant to large injection volumes of aqueous extracts and offers good retention of these polar compounds in acidic conditions without sacrificing peak shape

- Very quick and simple sample preparation, acidification identical to mobile phase system
- Sources of potentially problematic trace metal are removed from flow path by using PEEK components; any remaining trace is chelated with Deactivator Additive, which does not accumulate in system and is not detrimental to positive or negative ionization
- Newly introduced InfinityLab Poroshell 120 CS-C18 column uses a novel reversed-phase packing; it is resistant to large injection volumes of aqueous extracts and offers good retention of these polar compounds in acidic conditions without sacrificing peak shape
- The Agilent 6470 Triple Quadrupole LC/MS System offers great sensitivity, reproducibility and linearity, and along with MassHunter software, is compatible with dual polarity transitions for a given analyte

Additional Resources

Columns and Supplies Shopping Cart for Polar Pesticide Application:

View here.

InfinityLab Poroshell 120 Product Page:

 https://www.agilent.com/en/product/small-moleculecolumns/reversed-phase-hplc-columns/infinitylab-poroshell-120

InfinityLab Poroshell 120 Ordering Guide:

Publication number <u>5991-9123EN</u>

InfinityLab Poroshell 120 CS-C18 Flyer:

Publication number <u>5994-2720EN</u>

Agilent Environmental Solutions:

https://www.agilent.com/en/solutions/environmental

Acknowledgements

Agilent Technologies

Theresa Sosienski Jordy Hsiao Jarod Grossman Tarun Anumol Anne Mack Megan Marr Sami Chanaa

Agilent Infinity Lab

