

Pesticides in Cannabis - A sample prep perspective

Christophe Deckers, M.Sc. Application Scientist, Sample Prep

christophe.deckers@agilent.com

Agilent products and solutions are intended to be used for cannabis quality control and safety testing in laboratories where such use is permitted under state/country law.

Traditional Reasons for Sample Prep

- Removal of interferences which would otherwise affect detection of analyte
- Concentration of an analyte to detectable levels
- Solvent switching into an analytically more compatible solvent

High Abundance Matrix Components Cause Suppression

- Cannabinoids (10-30% or 100,000-300,000 ppm), especially THC-A
- Non-cannabinoid plant components (10-5000 ppm) terpenes, fatty acids, sterols
- Pesticides in 500 ppb amounts (0.00005%)

MOUNTAIN MOLE HILL

LC/MSMS analysis after QuEChERS and dSPE cleanup (universal)

Constituents of Cannabis Plants: Complex

- Nitrogen containing compounds (27 known)
- Amino acids (18),
- Proteins (3)
- Glycoproteins (6)
- Enzymes (2)
- Sugars and related compounds (34)
- Hydrocarbons (50)
- Simple alcohols (7)
- Aldehydes (13)
- Ketones (13)
- Simple acids (21)
- Fatty acids (22)
- Simple esters (12)
- Lactones (1)
- Steroids (11)
- Terpenes (120)
- Non-cannabinoid phenols (25)
- Cannabinoids (66)
- Flavonoids (21)
- Vitamins (1) [Vitamin A]
- Pigments (2)
- Elements (9).

Ċ₅H₁₁

OH

0

.OF

OH

Some co-extract with Pesticides

он о

 $R_1 = OH, R_2 = isoprenyl, R_3 = H$

OH

H₂CO

Many Sample Preparation Techniques Can Be Used

	More Specific		← Instrument Separation and Detection Specificity ← Less Specific						
	Less Specific		→	Sample Preparation Specificity			→ More Specific		Specific
Sample Prep Technique Interference Removed	Dilute & Shoot	Filtration	Liquid/Liquid Extractions	Supported Liquid Extractions (SLE)	Dried Matrix Spotting	Precipitation	QuEChERS	Lipid Removal 'Hybrid' Filtration	Solid Phase Extraction
Lipids	No	No	No	Some	No	No	Yes	Yes	Yes
Oligomeric Surfactants	No	No	No	No	No	No	No	Yes	Yes
Particulates	No	Yes	No	Some	No	Yes	Yes	Yes	Yes
Pigments	No	No	No	Some	No	No	Yes	No	Yes
Polar Organic Acids	No	No	Yes	Yes	No	No	Yes	No	
Proteins	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Salts	No	No	Yes	Yes	No	No	No	No	Yes
Suggested Agilent Product	Agilent Autosampler Vials	Captiva Syringe Filters		Chem Elut		Captiva	Bond Elut QuEChERS	Captiva EMR LIPIDS	Bond Elut Silica and Polymeric SPE
Agilent Cantiva Filtration Products are recommended for use with any IC or IC-MS method									

QuEChERS – The Universal Sample Prep for Pesticides?

QuEChERS Extraction Flow Chart

AOAC EN 15 gm homogenized sample + 1\$ 10 gm homogenized sample + IS Add 15 mL ACN (1% AA), vortex Add 10 mL ACH, vortex Add AOAC Extraction Salts, shake Add EN Extraction Saits, shake Centrifuge Centrifuge Transfer 1 or 8 mL to ACAC d-SPE tube, vortex, centrifuge Transfer 1 or 6 mL to EN d-SPE tube, vortex, centrifuge Transfer to Analysis vial Transfer to Analysis vial Analyze by GC/MS or LC/MS/MS*

* Requires a dilution prior to analysis

QuEChERS First Step: Extraction

 Weigh sample, add water if needed, spike

- 2) Add 10ml ACN
- 3) Vortex
- 4) Add salt packet
- 5) Shake 1 minute
- 6) Centrifuge at 4,000 rpm for 5 minutes

Second Step: Dispersive SPE

- 7) Choose d-SPE kit based on matrix characteristics
- 8) Transfer 1-8ml aliquot, vortex 1 minute
- 9) Centrifuge
- 10) Analyze by GC/MS or LC/MS

- No endogenous water to eliminate
- Adding water increases pH, problem with base labile pesticides
- dSPE does not offer enough capacity
- PSA co-scavenges acidic pesticides (MeOH fix)
- GCB co-scavenges planar pesticides (toluene fix)

Pesticide Analytes and Their Action Levels in Oregon

Analyte	Chemical Abstract Services (CAS) Registry number	Action level ppm	
Abamectin	71751-41-2	0.5	
Acephate	30560-19-1	0.4	
Acequinocyl	57960-19-7	2	
Acetamiprid	135410-20-7	0.2	
Aldicarb	116-06-3	0.4	
Azoxystrobin	131860-33-8	0.2	
Bifenazate	149877-41-8	0.2	
Bifenthrin	82657-04-3	0.2	
Boscalid	188425-85-6	0.4	
Carbaryl	63-25-2	0.2	
Carbofuran	1563-66-2	0.2	
Chlorantraniliprole	500008-45-7	0.2	
Chlorfenapyr	122453-73-0	1	
Chlorpyrifos	2921-88-2	0.2	
Clofentezine	74115-24-5	0.2	
Cyfluthrin	68359-37-5	1	
Cypermethrin	52315-07-8	1	
Daminozide	1596-84-5	1	
DDVP (Dichlorvos)	62-73-7	0.1	
Diazinon	333-41-5	0.2	
Dimethoate	60-51-5	0.2	
Ethoprophos	13194-48-4	0.2	
Etofenprox	80844-07-1	0.4	
Etoxazole	153233-91-1	0.2	
Fenoxycarb	72490-01-8	0.2	
Fenpyroximate	134098-61-6	0.4	
Fipronil	120068-37-3	0.4	
Flonicamid	158062-67-0	1	
Fludioxonil	131341-86-1	0.4	
Heyythiazov	78587-05-0	1	

AM	Chemical Abstract	Action	
Analyte	Services (CAS)	level nom	
	Registry number	iever ppin	
Imazalil	35554-44-0	0.2	
Imidacloprid	138261-41-3	0.4	
Kresoxim-methyl	143390-89-0	0.4	
Malathion	121-75-5	0.2	
Metalaxyl	57837-19-1	0.2	
Methiocarb	2032-65-7	0.2	
Methomyl	16752-77-5	0.4	
Methyl parathion	298-00-0	0.2	
MGK-264	113-48-4	0.2	
Myclobutanil	88671-89-0	0.2	
Naled	300-76-5	0.5	
Oxamyl	23135-22-0	1	
Paclobutrazol	76738-62-0	0.4	
Permethrins*	52645-53-1	0.2	
Phosmet	732-11-6	0.2	
Piperonyl_butoxide	51-03-6	2	
Prallethrin	23031-36-9	0.2	
Propiconazole	60207-90-1	0.4	
Propoxur	114-26-1	0.2	
Pyrethrins†	8003-34-7	1	
Pyridaben	96489-71-3	0.2	
Spinosad	168316-95-8	0.2	
Spiromesifen	283594-90-1	0.2	
Spirotetramat	203313-25-1	0.2	
Spiroxamine	118134-30-8	0.4	
Tebuconazole	80443-41-0	0.4	
Thiacloprid	111988-49-9	0.2	
Thiamethoxam	153719-23-4	0.2	
Trifloxystrobin	141517-21-7	0.2	

Range 0.1-1 ppm or 100-1000 ppb

* Permethrins should be measured as cumulative residue of cis- and trans-permethrin isomers (CAS numbers 54774-45-7 and 51877-74-8).

† Pyrethrins should be measured as the cumulative residues of pyrethrin 1, cinerin 1 and jasmolin 1 (CAS numbers 121-21-1, 25402-06-6, and 4466-14-2 respectively).

Customized Approach to Sample Preparation

Step 1: Solvent extraction of sample

- No water addition, no salting out
- ACN is most commonly used (adjust polarity as needed)

Step 2: Removal/Reduction of Cannabinoids

- Cartridge based clean up improves capacity
- Highly inert SPE material prevents analyte loss
- SampliQ C18 EC provides economic solution vs polymeric sorbents

Step 3: Removal of miscellaneous matrix components

- Different dSPE for LC/MS-MS vs. GC/MS-MS

Basic Protocol: Pesticide Analysis

dSPE Tips and Tricks

- PSA reduces recovery of acidic/heavily hydroxylated compounds adjust to approx. 10-20% MeOH
- GCB reduces recovery of planar compounds adjust to approx. 3% toluene

A novel comprehensive strategy for residual pesticide analysis in cannabis flower

© Agilent Technologies, Inc. 2018 Printed in the USA, March 9, 2018 5991-9030EN

Dilution

is the

Solution

to

Pollution

Ultivo: Robust and Low Maintenance LC/TQ

Typical LC/TQ Lab Layout

Dilution better for Quantitation & Recovery?

1:100 dilution required for acceptable recoveries >90% of the compounds

LCMS Full Scan of the Cannabis Mix Extracted with JASBC Protocol, 1 ppb

Hengel, M. J. Expanded Method Development for the Determination of Pesticides in Dried Hops by Liquid Chromatography with Tandem Mass Spectrometry. *J. American Society Brewing Chemists.* 69(3): 121-126, 2011.

Need for Further Customization?

- State-specific list of analytes
- State-specific list of matrices (edibles!!)
- Pending and future regulatory changes

THC and CBD High Fat Products

Captiva EMR-Lipid: Mechanism of Lipid Removal

EMR sorbent <u>technology</u> effectively traps lipids through two mechanisms:

- <u>Size exclusion</u> Unbranched hydrocarbon chains (lipids) enter the sorbent; bulky analytes do not
- <u>Sorbent chemis</u>try Lipid chains that enter the sorbent are trapped by hydrophobic interactions

LC/MSMS Extracts After d-SPE (C18/PSA) and New EMR Lipid Formulations Cleanup

 \square

F

Insights and Observations

- Cannabis is a very unique matrix without scientific precedent
- Sample Preparation must accommodate diverse coextracting matrix components
- Importance of dilution
- Monitor background contamination (TIC/MS2 scan) to assess risk to analytical instrument
- Is the existing clean-up techniques enough for long term analysis?

