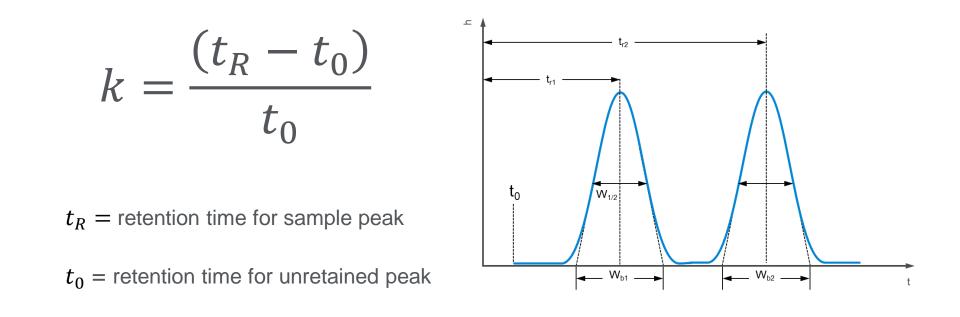
Thinking Outside the C18 Box

Agilent Trusted Answers

Modes of HPLC


- Reversed-phase
 - C18, C8, other non-polar phases
 - Phenyl, PFP, other more polar phases
- Ion Pairing
- HILIC
 - Silica
 - Amide
 - Zwitterionic
 - Hydroxyl-based
- Chiral
- Normal phase
 - Silica (Rx-SIL)
 - Aminopropyl
- Ion Exclusion (Hi-Plex)
 - Sulfonated polystyrene/divinylbenzene
- Ion Exchange (Bio IEX)
 - Anion exchange
 - Cation exchange

Title

• Size Exclusion/Gel Permeation (AdvanceBio SEC) (PLgel)

Retention Factor

The retention factor measures the period of time that the sample component resides in the stationary phase relative to the time it resides in the mobile phase. It is calculated from the retention time divided by the time for an unretained peak.

Pore Dewetting or Phase Collapse

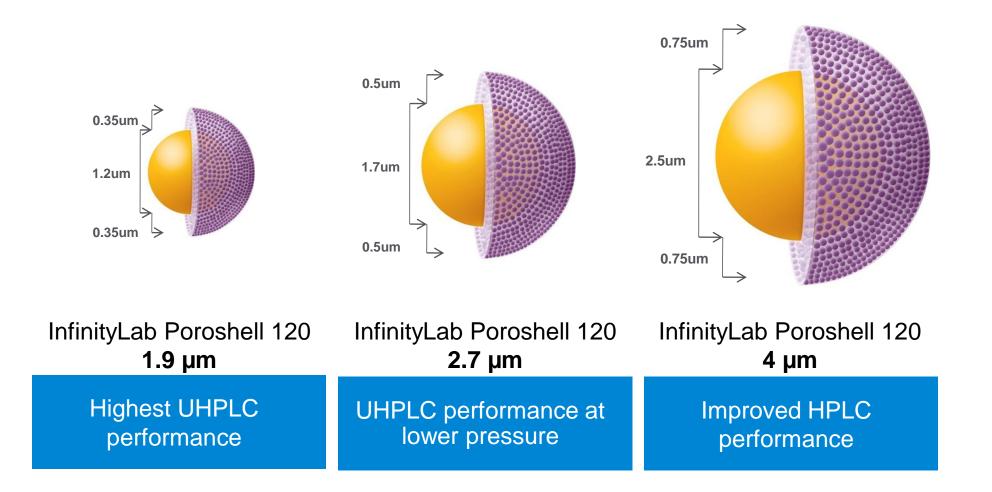
•Alkyl phases such as C8 or C18 can exhibit poor retention or reproducibility of retention in low organic mobile phases

•Phenomenon known as pore dewetting or phase collapse

•Onset can be unpredictable

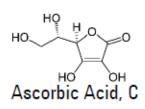
•A method robustness issue often mistaken as a column or lot issue

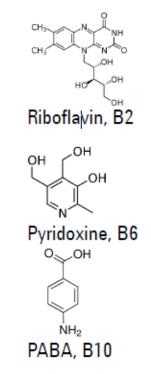
•See Przybyciel and Majors, *LCGC* **20**(6), 516-523 (2002).

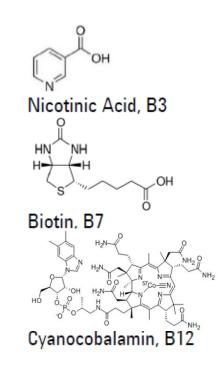


Agilent InfinityLab Poroshell Phases

Best all around	Best for low pH mobile phases	Best for high and mid pH mobile phases	Best for alternative selectivity	Best for more polar compounds	HILIC for polar compounds
Poroshell 120	Poroshell 120	Poroshell	Poroshell 120	Poroshell 120	Poroshell 120
EC-C18	SB-C18	HPH-C18	Phenyl-Hexyl	SB-Aq	HILIC
1.9 µm, 2.7 µm, 4 µm	2.7 µm	1.9 μm, 2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	2.7 µm	1.9 μm, 2.7 μm, 4 μm
Poroshell 120	Poroshell 120	Poroshell	Poroshell 120	Poroshell 120	Poroshell 120
EC-C8	SB-C8	HPH-C8	Bonus-RP	EC-CN	HILIC-Z
1.9 µm, 2.7 µm, 4 µm	2.7 µm	2.7 µm, 4 µm	1.9 μm, 2.7 μm, 4 μm	2.7 µm	2.7 µm
			Poroshell 120		Poroshell 120
			PFP		HILIC-OH5
			2.7 µm		2.7 µm

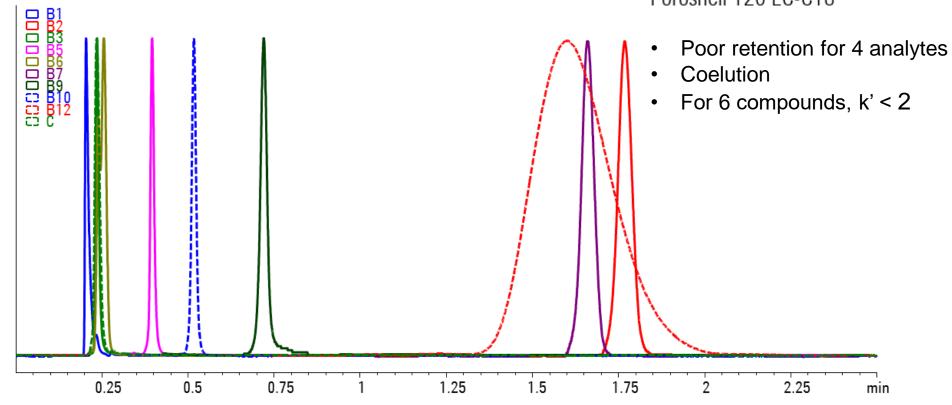

Poroshell 120 Particle Sizes





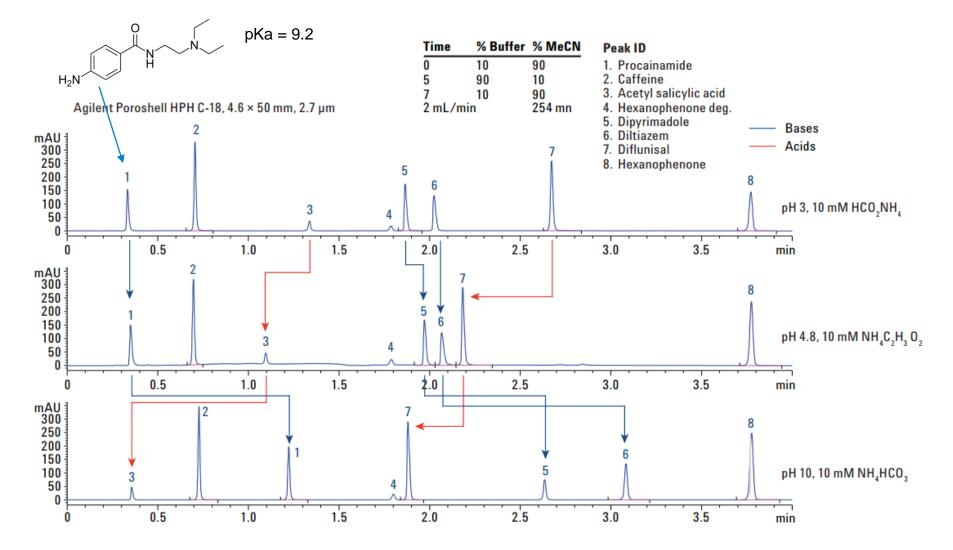
Water Soluble Vitamins

 NH_2 H₃C² H₃C ÒН Thiamine, B1 OH .OΗ HO H₃C CH₃Ö Ō Pantothenic Acid, B5 ÇO₂H 0 `CO₂H H_2N Folic Acid, B9



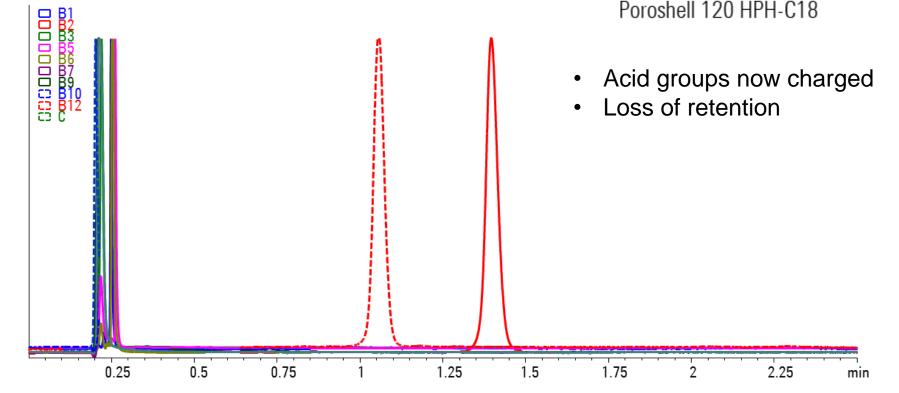
Water Soluble Vitamins C18 at low pH

A: $20 \text{ mM} \text{ NaH}_2\text{PO}_4 \text{ pH} 2.5$ B: CH₃CN, 10% B isocratic 0.5 mL/min, 30 C, 210 nm 2.1 x 50 mm, 2.7 µm Poroshell 120 EC-C18


Now What?

Adjust mobile phase pH

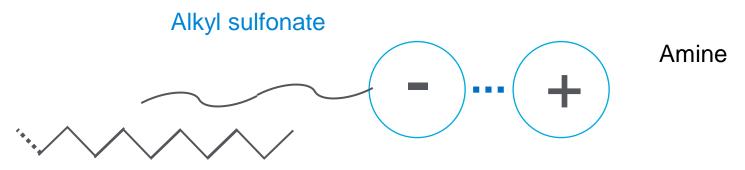
Ion-pair chromatographyAlternate column choiceHILIC



Why try higher pH? Poroshell HPH-C8 or C18

Water Soluble Vitamins C18 at pH 7.5

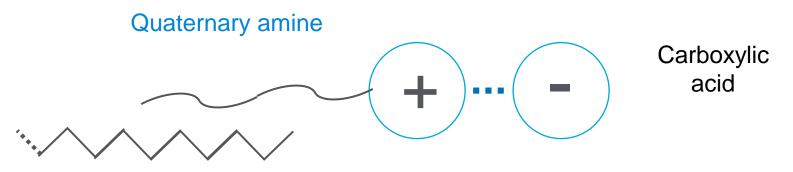
A: $20 \text{ mM} \text{ Na}_2\text{HPO}_4 \text{ pH 7.5}$ B: CH₃CN, 10% B isocratic 0.5 mL/min, 30 C, 210 nm 2.1 x 50 mm, 2.7 µm Poroshell 120 HPH-C18


Now What?

Adjust mobile phase pH
Ion-pair chromatography
Alternate column choice
HILIC

Ion-Pair Chromatography

Similar to reversed-phase, but an ion-pairing reagent is added to the mobile phase

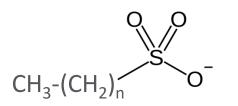

Non-polar stationary phase

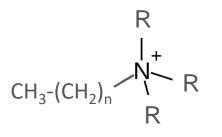
Non-polar alkyl chain will adsorb into the non-polar stationary phase
Polar part of the ion-pairing reagent will "stick-out" into the mobile phase

Ion-Pair Chromatography

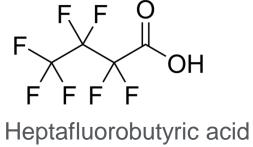
Similar to reversed-phase, but an ion-pairing reagent is added to the mobile phase

Non-polar stationary phase


Non-polar alkyl chain will adsorb into the non-polar stationary phase
Polar part of the ion-pairing reagent will "stick-out" into the mobile phase


Some Common Ion-Pairing Reagents

Pairs with Cations


Pairs with Anions

Alkyl sulfonates

Quaternary amines

(HFBA)

Ion-Pair Chromatography Suggested Experimental Conditions

Column: C8 or C18

Mobile Phase:

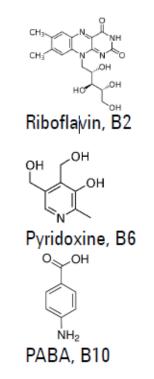
- Organic often methanol
- Aqueous Buffered with appropriate IP reagent
- Temperature controlled between 35° and 60°C

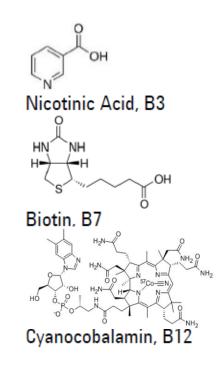
Cations – bases

Buffer: 25 – 50 mM phosphate, pH 2- 3

IP reagent: 10-100 mM heptane sulfonate

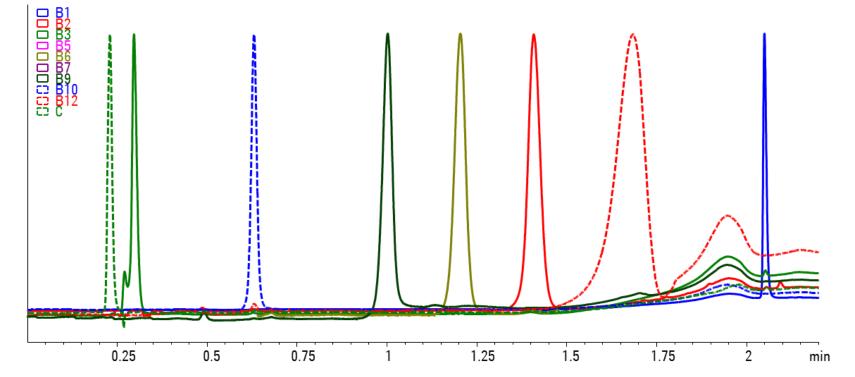
Anions – acids


Buffer: 25 – 50 mM phosphate, pH 6 – 7


IP reagent: 10-40 mM tetrabutyl ammonium phosphate

Water Soluble Vitamins

 NH_2 H₃C² H₃C ÒН Thiamine, B1 OH .OΗ HO H₃C CH₃Ö Ō Pantothenic Acid, B5 ÇO₂H 0 `CO₂H H_2N Folic Acid, B9


HO HO HO Ascorbic Acid, C

Water Soluble Vitamins Ion Pair Conditions

EC-C18

A: 1.5 g sodium 1-heptanesulfonate + 0.2 mL triethylamine + 7.5 mL acetic acid + 992.5 mL water

B: CH3CN

0.5 mL/min,10% B for 1 minute, then 10-40% B in 1 minute injection volume: varies according to signal strength TCC: 30 C 260, 8 nm Ref Off, 8 nm slit, 80 Hz The ion pairing reagent increased retention for most compounds

•6 compounds have k' > 2

•B5 and B7 could not be detected due to low signal and high background noise at 210 nm (not detectable at 260 nm)

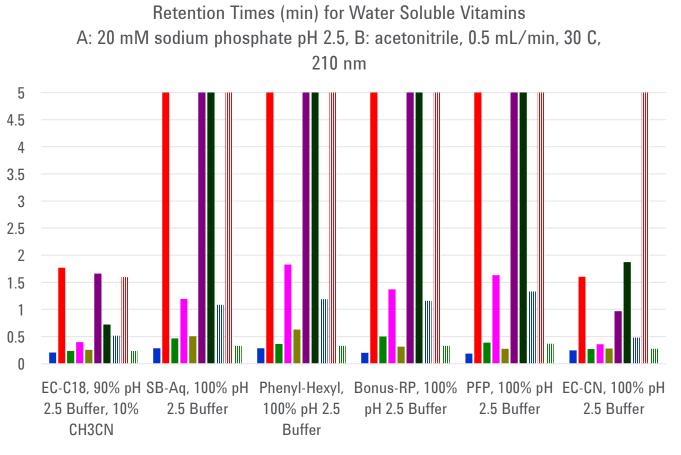
Ion-Pair Chromatography Limitations

•Higher level of complexity than RP, so generally chosen only if needed

- •Requires careful control of IP reagent, pH, temperature
- •Gradient methods are more difficult than RP
- •Equilibration is much slower than RP
- •Column dedicated to IP
- •IP reagent in the injection solvent
- •IP reagents not desirable for MS detection

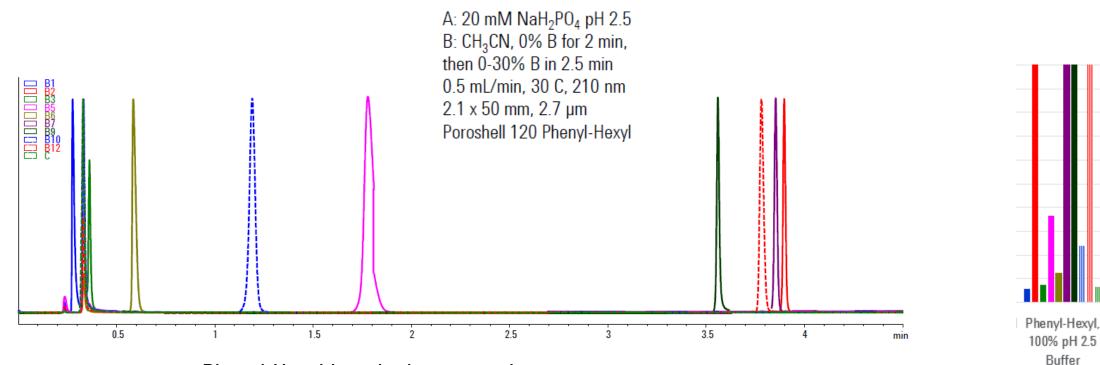
Now What?

Adjust method conditions
Ion-pair chromatography
Alternate column choice
HILIC

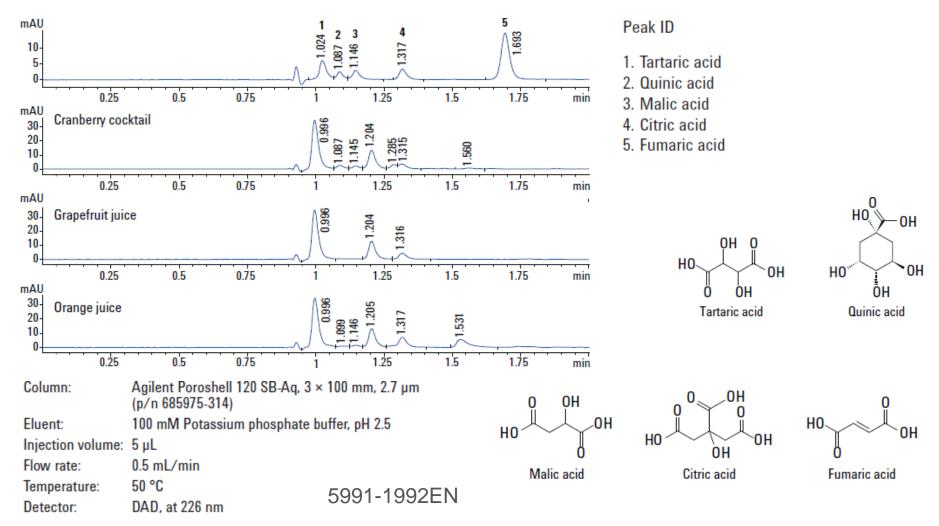

Phase Choices

Best all around	Best for low pH mobile phases	Best for high and mid pH mobile phases	Best for alternative selectivity	Best for more polar compounds	HILIC for polar compounds
Poroshell 120	Poroshell 120	Poroshell	Poroshell 120	Poroshell 120	Poroshell 120
EC-C18	SB-C18	HPH-C18	Phenyl-Hexyl	SB-Aq	HILIC
1.9 μm, 2.7 μm, 4 μm	2.7 µm	1.9 μm, 2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	2.7 µm	1.9 μm, 2.7 μm, 4 μm
Poroshell 120	Poroshell 120	Poroshell	Poroshell 120	Poroshell 120	Poroshell 120
EC-C8	SB-C8	HPH-C8	Bonus-RP	EC-CN	HILIC-Z
1.9 μm, 2.7 μm, 4 μm	2.7 µm	2.7 µm, 4 µm	1.9 μm, 2.7 μm, 4 μm	2.7 µm	2.7 µm
			Poroshell 120		Poroshell 120
			PFP		HILIC-OH5
			2.7 µm		2.7 µm

These phases can be used with high aqueous mobile phases to improve retention of highly polar analytes in RPLC mode


Water Soluble Vitamins Alternative Phases

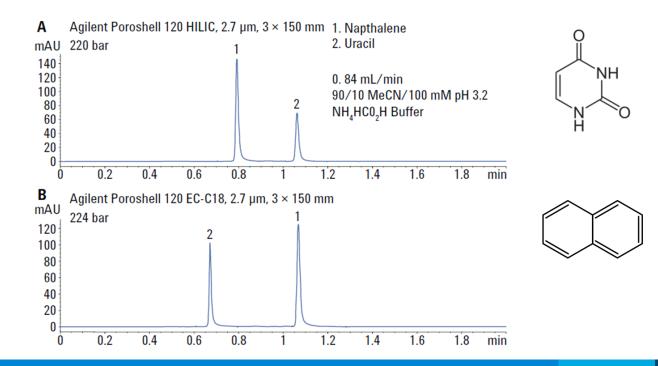
■ B1 ■ B2 ■ B3 ■ B5 ■ B6 ■ B7 ■ B9 Ⅲ B10 Ⅲ B12 Ⅲ C


Water Soluble Vitamins Phenyl-Hexyl

- Phenyl-Hexyl has the best retention
- 7 compounds have k'> 2;
- C18 analysis had only 4 compounds with k' > 2

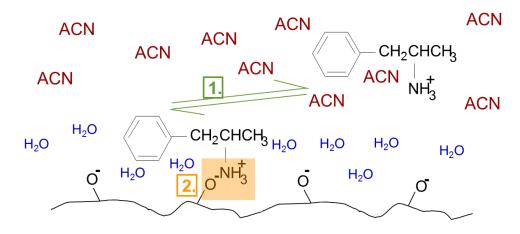
Aliphatic Acids SB-Aq

What Now?


Adjust method conditions
Ion-pair chromatography
Alternate column choice
HILIC

What is HILIC?

<u>Hydrophilic</u> Interaction <u>Liquid</u> Chromatography


- Retains hydrophilic compounds
- Polar stationary phase: silica, amino, diol/hydroxyl-based, zwitterionic, etc.
- Uses an organic and water mobile phase with a buffer

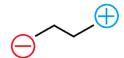
HILIC Mechanism

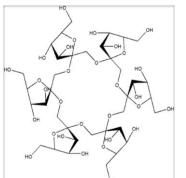
- Retains moderate to highly polar analytes
 - A water layer is adsorbed onto the polar silica surface, creating a liquid/liquid extraction system
 - Polar analytes can partition into and out of the water layer, with more polar analytes having a stronger interaction (1)
 - Charged polar analytes can also undergo ion exchange with the silica surface (2)

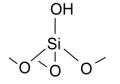
Partitioning in and out of adsorbed water layer
 Ion exchange with silanols

Key points to note:

- Water is the strong solvent
- Elution is least polar to most polar, opposite of RPLC.
- Gradients run from high organic to high aqueous (10% aqueous to 50% aqueous is a common scouting gradient)
- Reversed-phase solvents (ACN/Water)
 - MeOH, EtOH, IPA can also be used
- Typically uses a buffer like ammonium formate or ammonium acetate
- Higher buffer concentration increases solvent strength, improves peak shape, and can change selectivity slightly




InfinityLab Poroshell 120 HILIC Columns - Specifications


InfinityLab Poroshell Column	Bonded phase	Particle	Particle Size	Pressure Limit	Pore Size	Temp Limit	pH Range	Dimensions (ID in mm)	Dimensions (Length in mm)
zwittionic	Proprietary zwittionic chemistry	superficially	2.7µm	600 bar	100 Å	80°C	2-12	2.1 3.0 4.6	5 (guard) 50 100 150
								PEEK-lined version available	
HILIC-OH5	Poly-hydroxy fructan chemistry	Poroshell superficially porous particle	2.7µm	400 bar	120 Å	45°C	1-7	2.1 3.0 4.6	50 100 150
HILIC	Bare-silica (unbonded)	Poroshell superficially porous particle	1.9μm 2.7μm 4μm	1300 bar (1.9) 600 bar (2.7) 600 bar (4)	120 Å	60°C	0-8	2.1 3.0 4.6	5 (guard) 50 100 150

HILIC-Z Proprietary Zwitterionic chemistry

HILIC-OH5 Poly-hydroxy fructan chemistry

HILIC Bare Silica chemistry

HILIC Method Development: Common LC Parameters

Type of stationary phase

- Vary retention mechanism and selectivity
- 3 phases on Agilent InfinityLab Poroshell 120 2.7 µm particles
 - HILIC-Z, HILIC-OH5, HILIC

Mobile phase pH

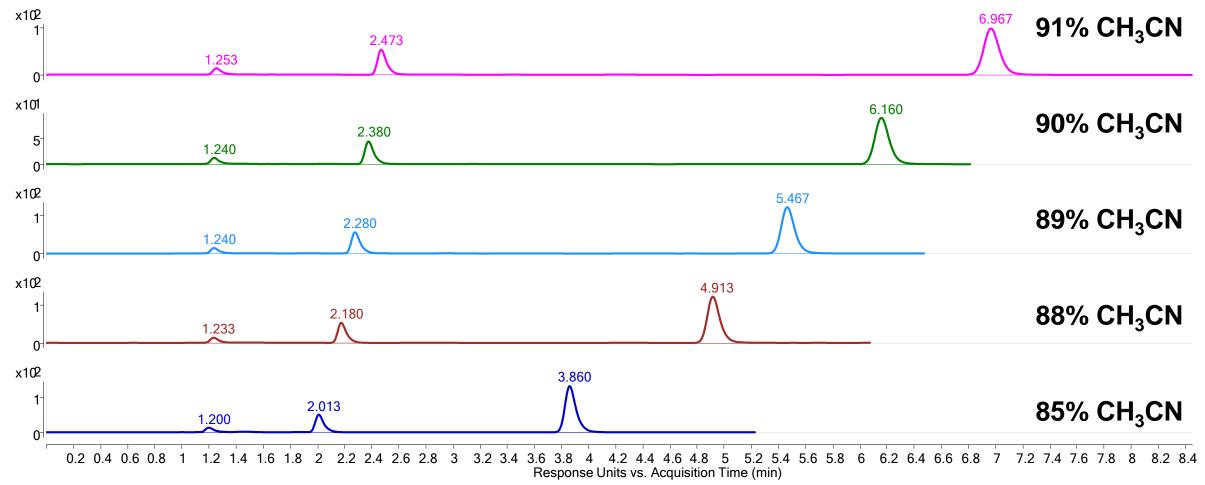
- Controls ionization of silica and analytes
- Compounds are more retained in their charged state
 - Acids should be run at high pH, bases at low pH

Temperature

- Increasing temperature will decrease retention
- Increasing temperature will increase column efficiency
- Decreasing temperature can improve selectivity

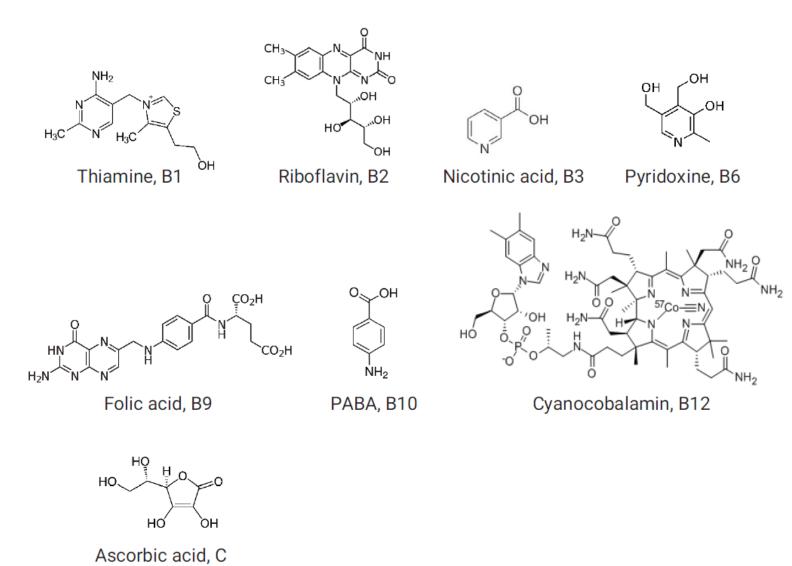
HILIC Method Development: Mobile Phase Considerations

Organic solvent concentration

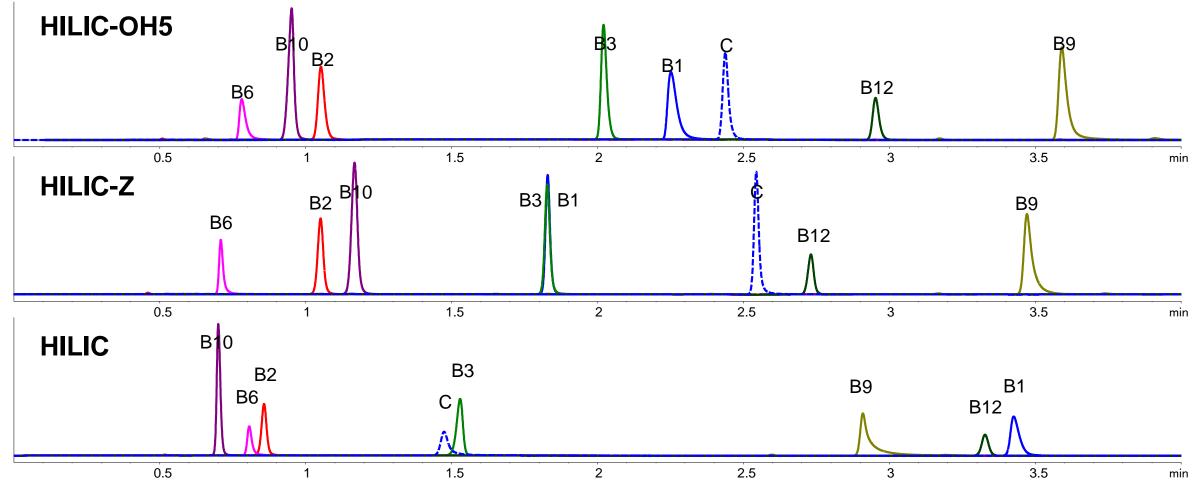

- Solvent strength in HILIC mode:
 - THF < Acetone < CH_3CN < IPA < EtOH < MeOH < H_2O
- H_2O must be present *need* > 3% H_2O
- Ionic strength of buffer
- Concentration of (salt) buffer increases strength
- Different anions and cations may can also affect analyte retention

Type of buffer

- Acetates, formates good, soluble in CH₃CN—also MS friendly
- *Phosphate salts* have low CH₃CN solubility

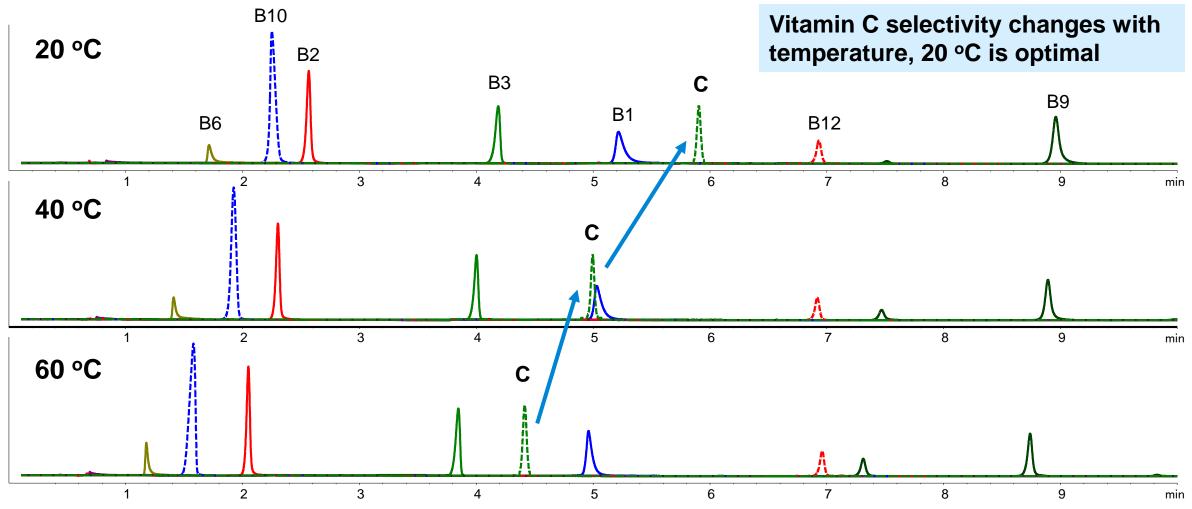

Less CH₃CN Makes a HILIC Mobile Phase Stronger, Causing Less Retention

Column used was 2.1 x 150 mm, 2.7 µm Agilent InfinityLab Poroshell 120 HILIC-Z (PEEK lined); A: 100 mM pH 3 Ammonium Formate in Water, B: Acetonitrile, x % B, isocratic elution, 0.25 mL/min, 30 °C, 1 uL injection of toluene, cytosine, uracil QC mixture, 254 nm



Water Soluble Vitamins

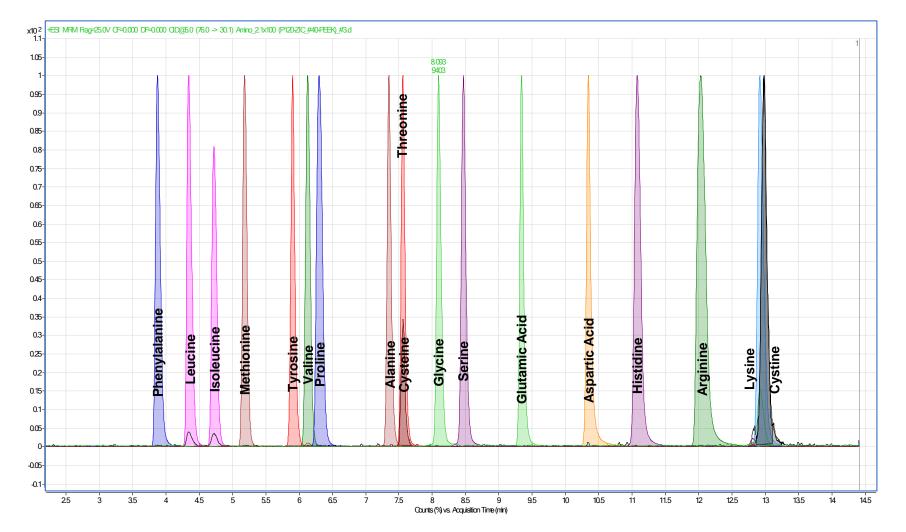
Water Soluble Vitamins by HILIC



Columns used were 2.1 x 100 mm, 2.7 μm; A: 100 mM Ammonium Acetate + 0.5% Acetic Acid (pH ~4.6) in H₂O, B: CH₃CN, 0.5 mL/min, 87% B for 1 min, 87-50% B in 4 min, 3 min reequilibration, 1 μL injection of individual vitamin standards (0.1-0.4 mg/mL each), 40 °C, 260 nm, 80 Hz

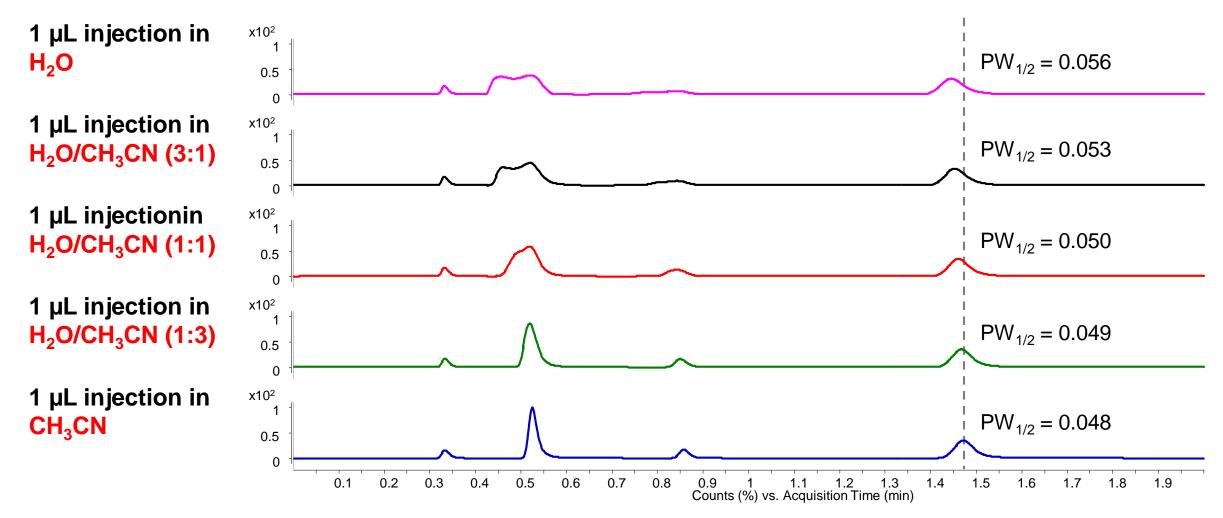
🔆 Agilent

Temperature Used to Optimize a HILIC Separation


Water Soluble Vitamins on Agilent InfinityLab Poroshell 120 HILIC-OH5

Agilent InfinityLab Poroshell 120 HILIC-OH5 2.1 x 100 mm, 2.7 µm; A: 100 mM Ammonium Acetate (no pH adjustment) in H₂O, B: CH₃CN, 0.5 mL/min, 95-60%B in 10 min, 3 min reequilibration, 1 µL injection of individual vitamin standards (0.1-0.4 mg/mL each), 20/40/60 °C, 260 nm, 80 Hz

Excellent retention, peak shape and sensitivity with HILIC-Z Underivatized Amino Acids by LC/MS



InfinityLab Poroshell HILIC-Z 2.1 x 100mm, 2.7μm

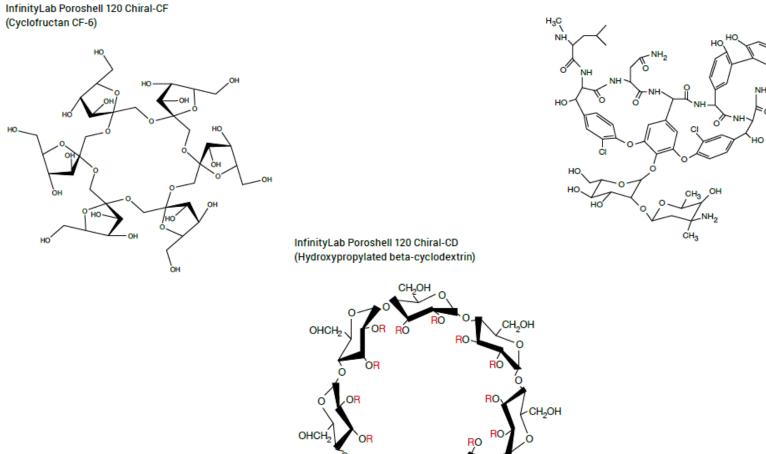
A: 20mM ammonium formate in H20, pH3
B: 9/1 ACN/H20 with 20mm ammonium formate, pH3
Gradient: 100%B to 70% B over 10 min, return to 100%
B
Flow rate: 0.8 ml/min
Temp: 30deg
MS Detection: Agilent MS-QQQ, MS2 SIM mode

HILIC Analyses Perform Best with Weak Injection Solvents B Vitamins on HILIC with Isocratic Elution

Agilent ZORBAX RRHD HILIC Plus 2.1 x 50 mm, 1.8 µm; Mobile Phase: acetonitrile / 100 mM Ammonium Formate pH 3.2 in water (9:1), isocratic elution, 0.4 mL/min, 1 µL injection of 5.7 µg/mL each of 4-aminobenzoic acid, nicotinamide, riboflavin, nicotinic acid ; 25 °C, MS Source: ESI+, 200 °C, 10 L/min,, 30 psi, 4000 V; SIM: 138, 123, 377, 124

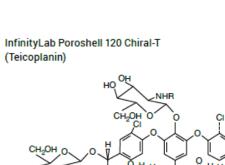
Advantages of HILIC

- Retains polar analytes where reversed-phase methods may not
- Offers alternative selectivity to RPLC mode
- Can retain cations, anions, and polar neutrals in a single run
- Can improve peak shape for basic compounds
- Uses a standard LC system and common reversed-phase solvents
- Uses low viscosity mobile phases with high organic content
 - Fast methods with high flow rates
 - Longer columns for higher efficiency at lower pressures
- Enhanced detection sensitivity with MS compatible methods, in both positive and negative modes
- Can directly inject ACN extracts from C18 SPE cartridges

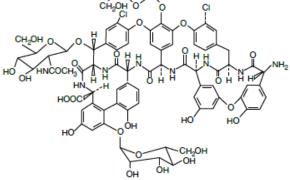


Agilent InfinityLab Poroshell Phases

Best all around	Best for low pH mobile phases	Best for high and mid pH mobile phases	Best for alternative selectivity	Best for more polar compounds	HILIC for polar compounds	Chiral phases
Poroshell 120	Poroshell 120	Poroshell	Poroshell 120	Poroshell 120	Poroshell 120	Poroshell 120
EC-C18	SB-C18	HPH-C18	Phenyl-Hexyl	SB-Aq	HILIC	Chiral-CF
1.9 µm, 2.7 µm, 4 µm	2.7 µm	1.9 μm, 2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	2.7 µm	1.9 μm, 2.7 μm, 4 μm	2.7 µm
Poroshell 120	Poroshell 120	Poroshell	Poroshell 120	Poroshell 120	Poroshell 120	Poroshell 120
EC-C8	SB-C8	HPH-C8	Bonus-RP	EC-CN	HILIC-Z	Chiral-CD
1.9 μm, 2.7 μm, 4 μm	2.7 µm	2.7 µm, 4 µm	1.9 μm, 2.7 μm, 4 μm	2.7 µm	2.7 µm	2.7 µm
			Poroshell 120		Poroshell 120	Poroshell 120
			PFP		HILIC-OH5	Chiral-V
			2.7 µm		2.7 µm	2.7 µm
						Poroshell 120
						Chiral-T
						2.7 µm



Poroshell 120 Chiral Chemistries



CHOH

InfinityLab Poroshell 120 Chiral-V (Vancomycin)

-COOH



Title

Poroshell 120 Chiral Chemistries

Column Chemistry	Chiral Selector (bonded chemistry)	Typical LC Mode	Typical Applications	
	Device the device (opp)	Polar Organic (PO)	Primary amines	
InfinityLab Poroshell 120 Chiral-CF	Derivatized cyclofructan (CF6)	Normal Phase (NP)	Primary amines	
		Reversed Phase (RP)	Stimulants, fungicides, t-boc amino acids	
InfinityLab Poroshell 120 Chiral-CD	Hydroxypropylated-β-cyclodextrin	Polar Organic (PO)	Complex molecules	
	Vancomycin (macrolide antibiotic)	Polar Ionic (PI)	Basic pharmaceuticals (various)	
InfinityLab Poroshell 120 Chiral-V		Reversed Phase (RP)	Amines, profens	
		Polar Organic (PO)	Complex neutral molecules	
	Teicoplanin (macrolide antibiotic)	Polar Ionic (PI)	Beta blockers, hydroxyl acids	
InfinityLab Poroshell 120 Chiral-T		Reversed Phase (RP)	Amino acids, hydroxyl acids, profens	
		Polar Organic (PO)	Hydantoins, benzodiazepines	

Confidentiality label

Modes of Separation used with Infinity Lab Chiral Columns

Polar Ionic Mode

Methanol with acid or base or volatile salt < 0.2 % wt. (MeOH + HOAc + TEA)

Non-aqueous mobile phase; fast, MS detection; for ionizable molecules - any acid or base

Dominant interactions: Ionic interaction, hydrogen bonding

Example: MeOH with 0.2 wt% ammonium formate

Reversed Phase Mode

Methanol/Water/Buffer,

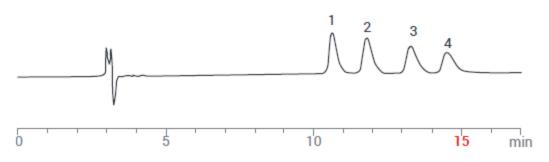
MS compatible, ideal for manufacturing QC, bioanalysis for all types of molecules

Example: 30/70 MeOH/20 mM ammonium formate (pH 4)

Polar Organic Mode

Acetonitrile/Methanol/Ethanol/Isopropanol+ HOAc + TEA Dominant interactions: Hydrogen bonding, dipole-dipole Example: 60/40/0.3/0.2 ACN/MeOH/acetic acid/TEA

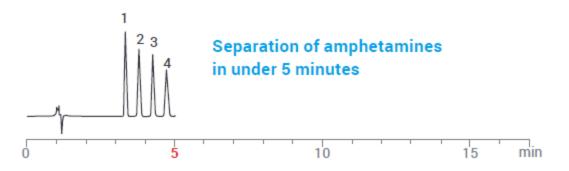
Normal Phase


Heptane (or Hexane)/methanol or ethanol Example: 60/40/0.3/0.2 ACN/MeOH/acetic acid/TEA

Fast, High Efficiency Chiral Separations

Traditional Chiral Separationtotally porous particle

Chirobiotic V2 (250 x 4.6 mm, 5 µm)

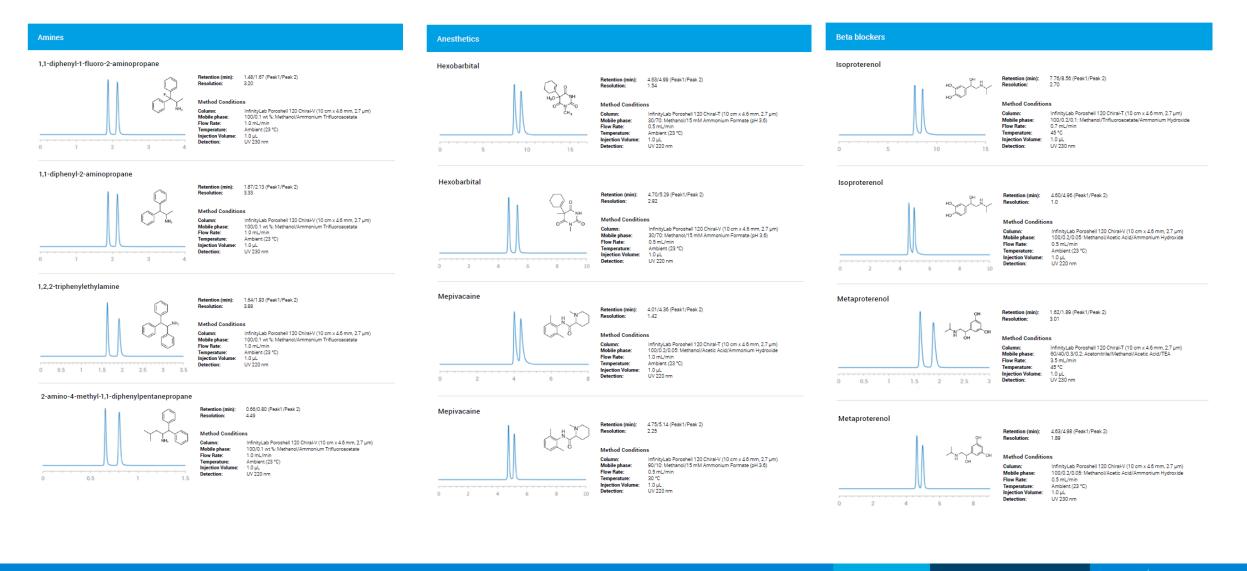


1. D-(+)-Amphetamine, 2. L-(-)-Amphetamine, 3. D-(+)-Methamphetamine 4. L-(-)-Methamphetamine 100/0.1/0.02 MeOH/HOAc/NH₄OH with a 1.0 mL/min flow rate at room temperature and UV at 220 nm

Title

Agilent InfinityLab Poroshell 120 Chiral Separationsuperficially porous particle

InfinityLab Poroshell 120 Chiral-V (100 x 4.6 mm, 2.7 µm)



1. D-(+)-Amphetamine, 2. L-(-)-Amphetamine, 3. D-(+)-Methamphetamine 4. L-(-)-Methamphetamine 100/0.1/0.02 MeOH/HOAc/NH₄OH with a 1.0 mL/min flow rate at room temperature and UV at 220 nm

Confidentiality label

Chiral Applications Compendium Publication number: **5991-8450EN**

Confidentiality label

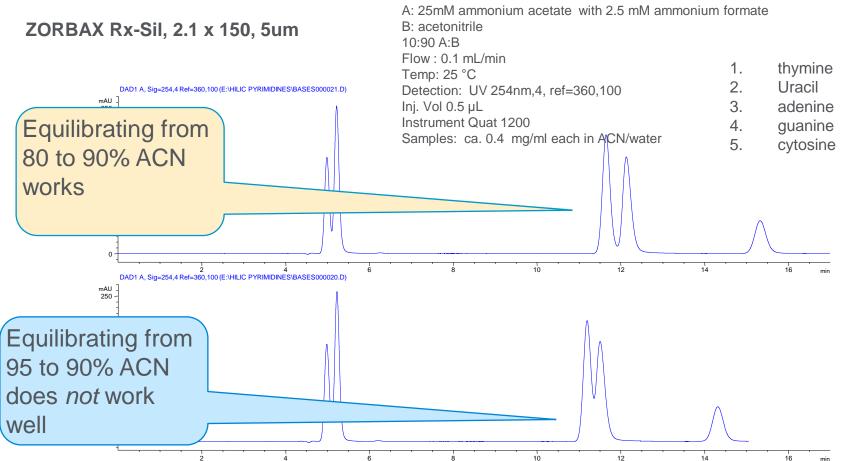
Title

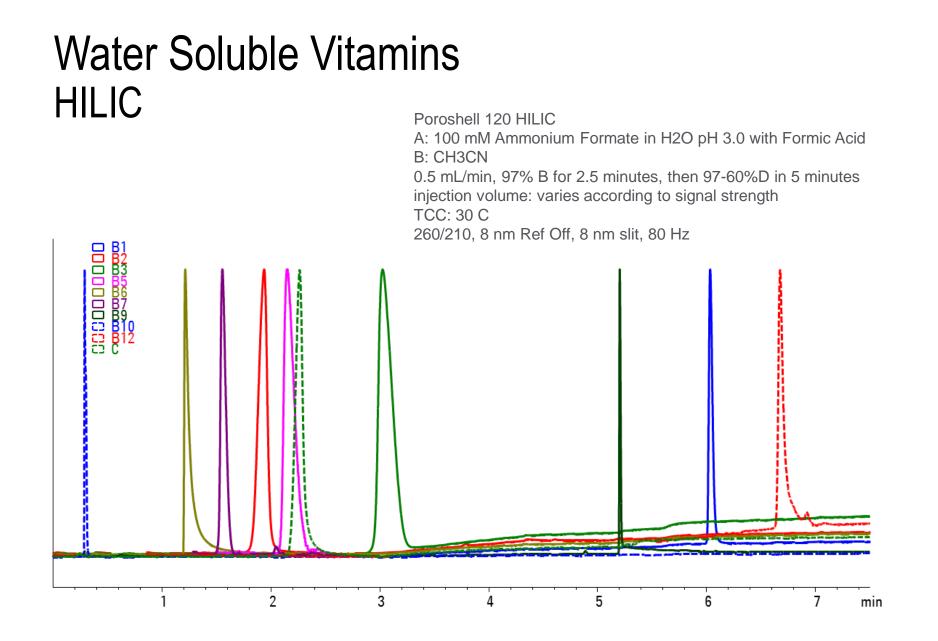
Summary

- •What do you do when C18 does not work?
- •Stick with reversed-phase but--
 - Adjust pH of mobile phase
 - Try a more polar bonded phase
- •Consider HILIC
- •Chiral phases

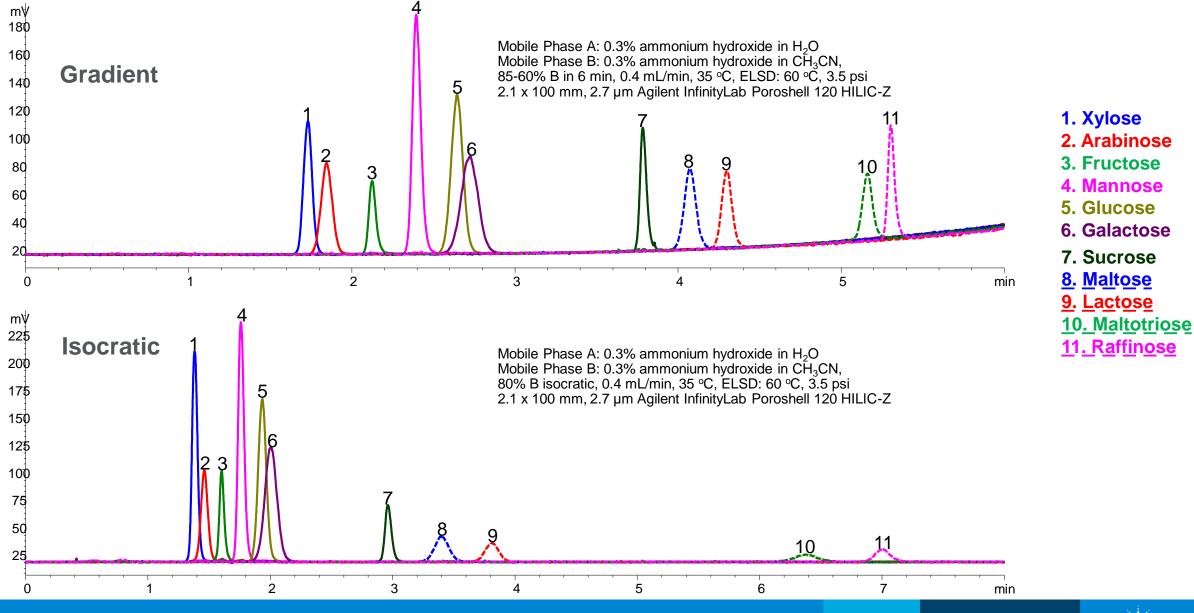
•Fast Poroshell methods make method development faster

Contact Agilent Chemistries and Supplies Technical Support


1-800-227-9770 Option 3, Option 3:
Option 1 for GC/GCMS Columns and Supplies
Option 2 for LC/LCMS Columns and Supplies
Option 3 for Sample Prep Products, Filtration and QuEChERS
Option 4 for Spectroscopy Supplies
Available in the USA 8-5 all time zones


gc-column-support@agilent.com lc-column-support@agilent.com spp-support@agilent.com spectro-supplies-support@agilent.com

Equilibrate from high aqueous to low Critical factor when changing mobile phases



Sugar Analysis on Agilent InfinityLab Poroshell 120 HILIC-Z using ELSD

