Agilent Approaches for Amino Acid Analysis

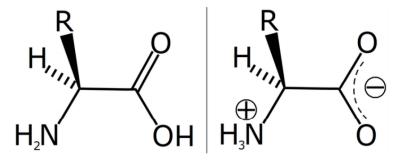
Mark Powell Columns and Supplies Technical Support October 1, 2020

Infinity Lab

Outline

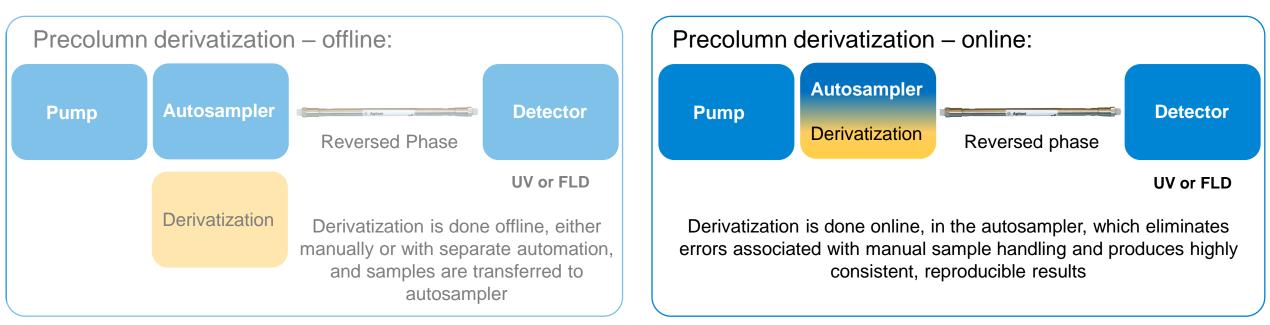
- History of Amino Acid Analysis at Agilent
- Reverse phase LC/UV analysis of derivatized amino acids
- HILIC LC/MS of underivatized amino acids and other metabolites
- Ion pairing analysis of underivatized amino acids
- Chiral analysis of amino acids

Why is Amino acid analysis important?



- Important for protein and peptide identification and quantitation
- Part of reverse-phase characterization in biopharma
- Important for monitoring cell culture media
- Used for the analysis of metabolic intermediates
- Flavor analysis

- Detection by UV or FL of amino acids is improved by derivatization
 OPA/FMOC, Ninhydrin, Dansyl chloride, and PITC are common reagents used
- Derivatization can be done precolumn or post column
 - OPA/FMOC, Dansyl chloride, and PITC are common reagents used for precolumn
 - Ninhydrin is common for post column methods
- The are multiple methods to perform amino acid analysis:
 - GC, CE, HPAE-PAD
 - LC/UV/FL, LC/MS



Precolumn and Postcolumn Derivatization

History of AAA at Agilent

AminoQuant (c. 1990)

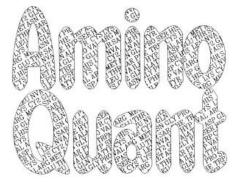
- Extensive guide for HP 1090
- Hypersil AA ODS column

ZORBAX Eclipse AAA (c. 2000)

• User guide pub no. 5980-3088EN

ZORBAX Eclipse Plus C18 (c. 2010)


- Improved Amino Acid Methods using Agilent ZORBAX Eclipse Plus C18 Columns for a Variety of Agilent LC Instrumentation and Separation Goals
- Pub no. 5990-4547EN


AdvanceBio AAA (c. 2017)

- Amino Acid Analysis "How-To" Guide
- Poroshell particle
- Pub no. 5991-7694EN

AdvanceBio MS Spent Media (c. 2018)


- HILIC, MS compatible
- Pub no. 5991-8816EN

HP Part No. 01090-90025 Printed in Federal Republic of Germany July 1990

Agilent AdvanceBio AAA

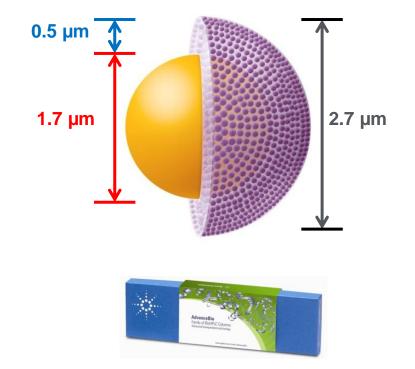
Previous Agilent AAA method

Agilent has a well-established solution for Amino Acid Analysis

- Based on automated precolumn derivatization capabilities of Agilent autosamplers
- Uses ZORBAX Eclipse AAA column
- Well established method using reagents and standards from Agilent

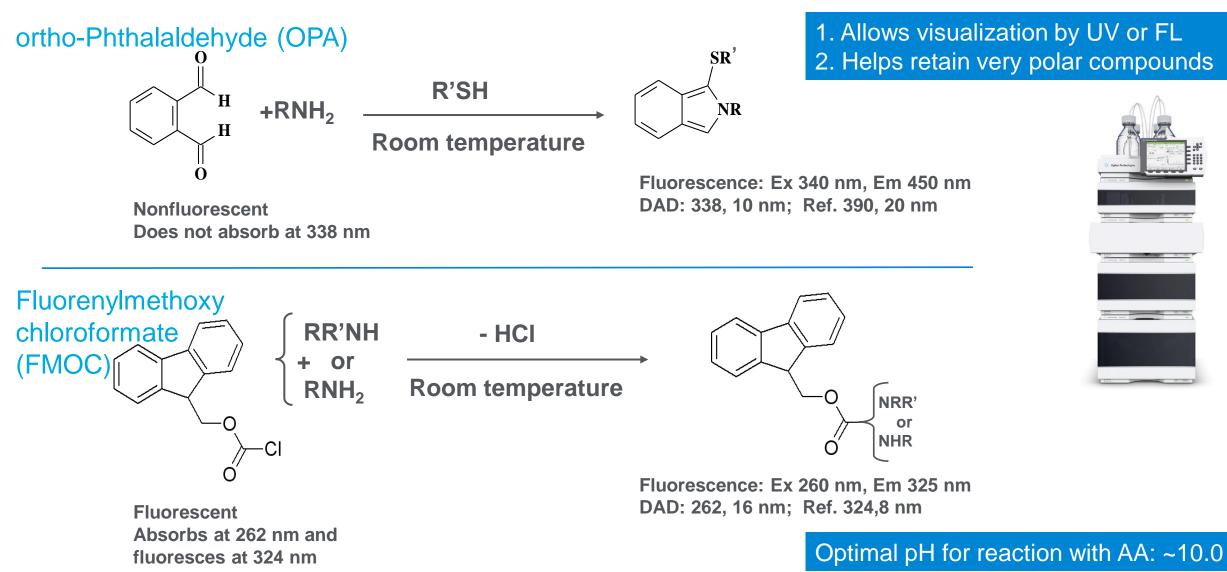
What's updated?

- Reagents conveniently kitted together under a single part number
- Introduced an HPH chemistry on a Poroshell particle for improved column lifetime
 - Traditional silica columns dissolve above neutral pH, but HPH chemistry stabilizes column
 - AA derivatization and separation are most efficient at higher pH
 - Poroshell particle: high efficiency, fast separations, rugged



The Agilent Amino Acid Analysis Solution

Ready to use AdvanceBio AAA kit (standards and reagents) All Agilent LC systems, including Infinity II systems AdvanceBio AAA columns Poroshell particles Fast and rugged



October 2, 2020

Automated Derivatization in the Autosampler

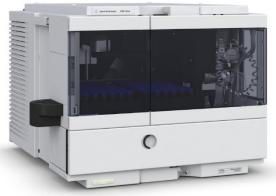
AdvanceBio AAA Reagent Kit

Material	Part Number
Borate buffer, 100 mL	5061-3339
FMOC reagent, 10 ampoules, 1 mL each	5061-3337
OPA reagent/3-mercaptopropionic acid, 6 ampoules, 10 mg/mL	5061-3335
Dithiodipropionic acid (DTDPA)	5062-2479
AA standards, 1 nmol, 10/pk	5061-3330
AA standards, 250 pmol, 10/pk	5061-3331
AA standards, 100 pmol, 10/pk	5061-3332
AA standards, 25 pmol, 10/pk	5061-3333
AA standards, 10 pmol, 10/pk	5061-3334
Amino acids supplement kit, 1 g each of norvaline, sarcosine, asparagine, glutamine, tryptophan, and 4-hydroxyproline	5062-2478

Order components individually, or together as part of a kit with a single part number: **5190-9426**

Online Derivatization/Injection Program

- Draw 2.5 µL from borate vial (Agilent p/n 5061-3339)
- Draw 1.0 µL from sample vial
- Mix 3.5 µL in wash port five times
- Wait 0.2 min
- Draw 0.5 µL from OPA vial (Agilent p/n 5061-3335)
- Mix 4.0 µL in wash port 10 times default speed
- Draw 0.4 µL from FMOC vial (Agilent p/n 5061-3337)
- Mix 4.4 µL in wash port 10 times default speed
- Draw 32 µL from injection diluent vial
- Mix 20 µL in wash port eight times
- Inject
- Wait 0.1 min
- Valve bypass


Method can be programmed into any Agilent autosampler:

- Eliminates manual labor and variability

00

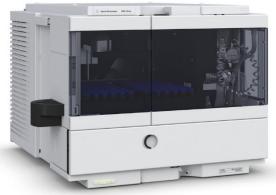
 \odot

- Enables highly precise data

1260 Infinity II Vialsampler

Online Derivatization/Injection Program

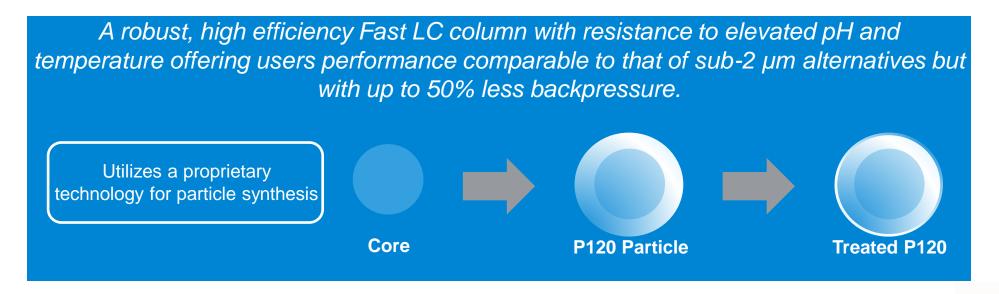
OpenLab ChemStation C.01


Use Injector Pro	 ✓ Parame ✓ Draw 2. ✓ Draw 1 ✓ Mix 3.5 ✓ Wait 0.2 ✓ Draw 0. 	5 μL from location "P1-D-1" with default speed using default offset μL from sample with default speed using default offset μL from air with default speed for 5 times 2 min				
Draw Draw Mix Wait Draw Mix Draw	 Draw 2. Draw 1 Mix 3.5 Wait 0.2 Draw 0. 	5 μL from location "P1-D-1" with default speed using default offset μL from sample with default speed using default offset μL from air with default speed for 5 times 2 min				
Draw Mix Wait Draw Mix Draw	 Draw 1 Mix 3.5 Wait 0.2 Draw 0. 	μL from sample with default speed using default offset μL from air with default speed for 5 times 2 min				
Mix Wait Draw Mix Draw	 Mix 3.5 Wait 0.2 Draw 0. 	μL from air with default speed for 5 times 2 min				
Wait Draw Mix Draw	✓ Wait 0.2✓ Draw 0.	2 min				
Draw Mix Draw	✓ Draw 0.					
Mix Draw						
Draw		5 μL from location "P1-D-2" with default speed using default offset				
	 Mix 4 μl 	L from air with default speed for 10 times				
Mix	 Draw 0. 	Draw 0.4 µL from location "P1-D-3" with default speed using default offset				
	✓ Mix 4.4	Mix 4.4 µL from air with default speed for 10 times				
Draw	 Draw 32 	Draw 32 µL from location "P1-D-4" with default speed using default offset				
Mix	👻 Mix 20 j	Mix 20 µL from air with default speed for 8 times				
Inject	 Inject 	Inject				
Wait		l min				
Valve	 Switch v 	valve to "Bypass"				

1290 Infinity II Multisampler

Method can be programmed into any Agilent autosampler:

- Eliminates manual labor and variability
- Enables highly precise data



¹²⁶⁰ Infinity II Vialsampler

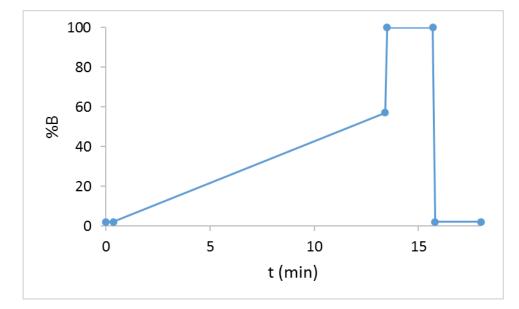
Robust Columns for AAA

- 2.7 µm particles, 100 Å pore size
- Two dimensions available: 3.0 x 100 mm, 4.6 x 100 mm
 - Guard columns also available in each id
- Each individual column is tested for efficiency
- Each batch is tested with amino acid standards to ensure performance

Bonded Phase	id (mm)	Particle size (µm)	Length (mm)	Pore Size (Å)	Temp Limit	pH Range	Endcapping	Part Number
C18	3.0	2.7	100	100	65 °C	3.0 - 11.0	Double	695975-322
C18	4.6	2.7	100	100	65 °C	3.0 - 11.0	Double	655950-802
C18	3.0	2.7	5	100	65 °C	3.0 - 11.0	Double	823750-946 (3/pk guards)
C18	4.6	2.7	5	100	65 °C	3.0 - 11.0	Double	820750-931 (3/pk guards)

Derivatization Kit – How Many Samples?

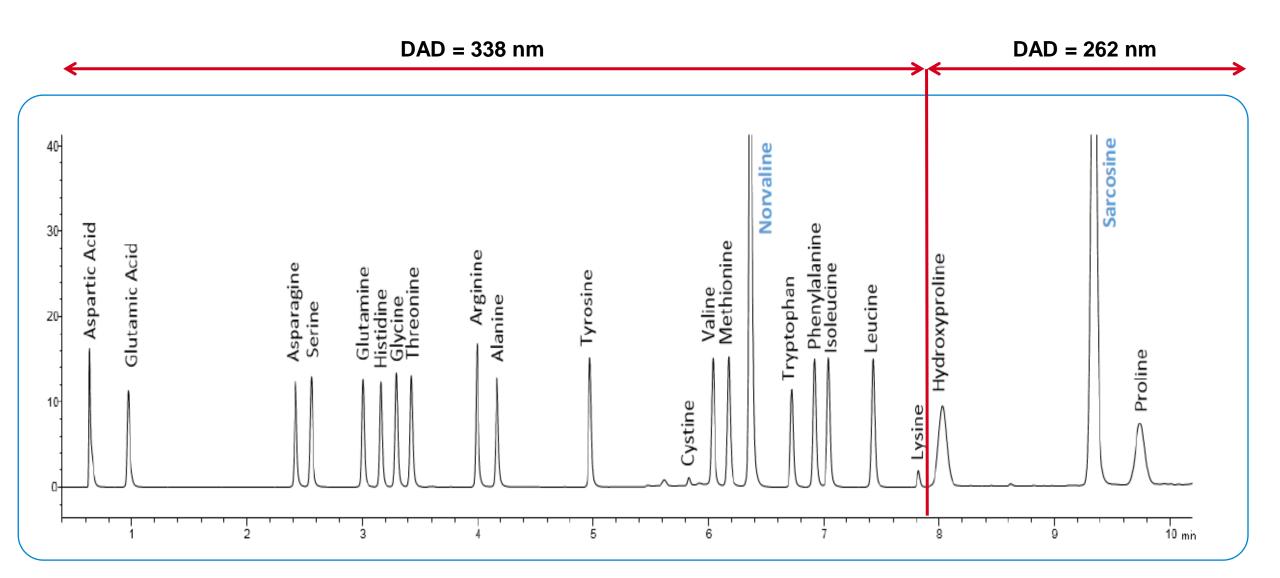
- Once opened, the OPA and FMOC ampoules need to be used in about a week
- Typically, the OPA and FMOC reagents are opened on Monday and used for five days
- I would estimate 50 samples a day is easily accomplished, so 250 samples in a week
- The OPA comes as a pack of six ampoules (so let's estimate it's good for roughly 1500 samples)
- The FMOC comes as a pack of 10 (so roughly 2500 samples)



Chromatographic Method

AdvanceBig	o Amino Acid Analysis			
Column	Agilent AdvanceBio Amino Acid Analysis			
Column Temp	40 °C			
Mobile Phase	A = 10 mM Na ₂ HPO ₄ and 10 mM Na ₂ B ₄ O ₇ , pH 8.2 B = Acetonitrile:methanol:water (45:45:10, v:v:v)			
Flow Rate	1.5 mL/min for 4.6 mm i.d. 0.62 mL/min for 3.0 mm i.d.			
Gradient Program	Time % B 0 2 0.35 2 13.4 57 13.5 100 15.7 100 15.8 2 18 stop			
Injection volume	1 μ L, with 7s needle wash at wash port			
Detection	UV – 338 and 262 nm FLD – Ex λ 340 nm, Em λ 450 nm; Ex λ 260 nm, Em λ 325 nm			

Order of Elution for OPA and FMOC derivatives



Peak #	AA Name	AA Abbreviation	Derivative Type	
1	Aspartic Acid	Asp	OPA]
2	Glutamic Acid	Glu	OPA	
3	Asparagine	Asn	OPA	
4	Serine	Ser	OPA	
5	Glutamine	Gln	OPA	
6	Histidine	His	OPA	
7	Glycine	Gly	OPA	
8	Threonine	Thr	OPA	
9	Arginine	Arg	OPA	
10	Alanine	Ala	OPA	Drimony AA
11	Tyrosine	Tyr	OPA	Primary AA
12	Cysteine	Cys-Cys	OPA	
13	Valine	Val	OPA	
14	Methionine	Met	OPA	
15	Norvaline	Nva	OPA	
16	Tryptophan	Trp	OPA	
17	Phenylalanine	Phe	OPA	
18	Isoleucine	lle	OPA	
19	Leucine	Leu	OPA	
20	Lysine	Lys	OPA	
21	Hydroxyproline	Нур	FMOC	
22	Sarcosine (IS)	Sar	FMOC	Secondary AA
23	Proline	Pro	FMOC	J

Fast and Rugged Amino Acids Separation

18

Amino Acids Area RSD (%) **RT RSD Reproducible Separations** (%) 1. Aspartic acid 1.066 1.270 2. Glutamic acid 0.973 mAU 1.85 1 nmol amino acid standards 3. Asparagine 1.79 0.605 400 4.6 x 100 mm column 4. Serine 0.629 1.82 DAD1 A, Sig=338,10 Ref=390,20, 350-5. Glutamine 0.470 1.56 DAD = 338 nm6. Histidine 1.22 DAD = 262 nm0.430 300 1.92 7. Glycine 0.477 Aspartic acid 8. Threonine 0.440 1.95 250 9. Arginine 0.251 2.15 Arginine Cystine 10. Alanine 0.280 3.06 200 ЫG Histidine Glycine Threonine Serine 11. Tyrosine 0.128 1.65 **Fyrosine** Alanine Hydroxyproline Methionir -Phenylalanii Isoleucine **Fryptophan** tamic acid Valine 150 -eucine 12. Cystine 0.067 1.9 Norvaline 13. Valine 0.084 2.47 100 14. Methionine 0.073 1.82 Proline 15. Norvaline 0.073 1.72 50 16. Tryptophan 0.054 1.57 17. Phenylalanine 0.051 1.66 0 18. Isoleucine 0.047 1.72

8

10

12 min

19. Leucine

20. Lysine

21. Hydroxyproline

22. Sarcosine

23. Proline

• Retention time %RSD mostly under 1%

4

6

• Peak area %RSD mostly under 3%

2

1.7

1.66

4.13

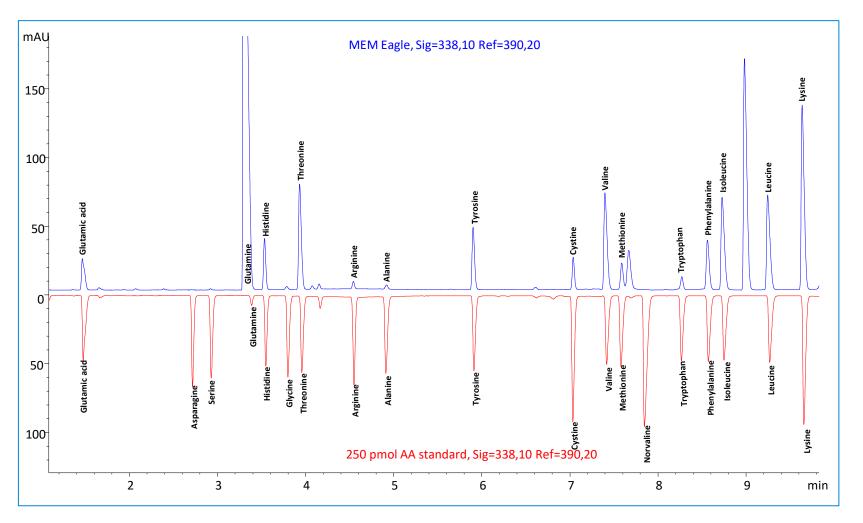
1.15

4.36

0.03

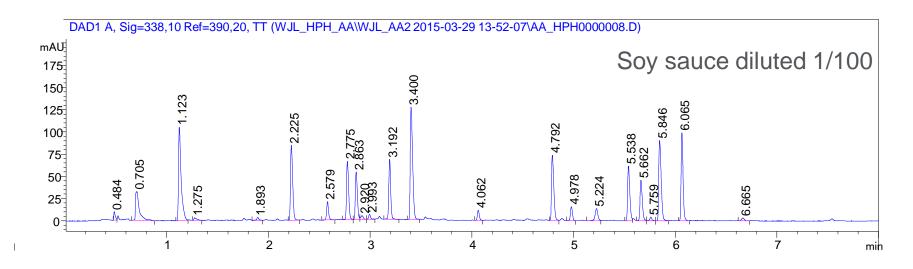
0.028

0.021

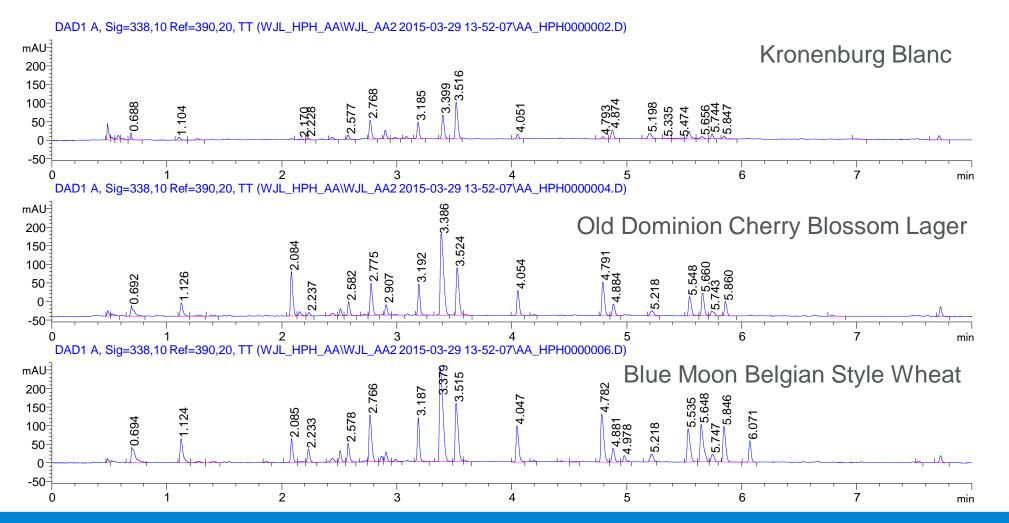

0.026

0.021

AAA of Cell Culture Media – MEM


L-Arginine, L-Cystine, L-Glutamine, L-Histidine, L-Isoleucine, L- Leucine, L-Lysine, L-Methionine, L- Phenylalanine, L-Threonine, L-Tryptophan, L- Tyrosine, L-Valine, L-Glutamic acid

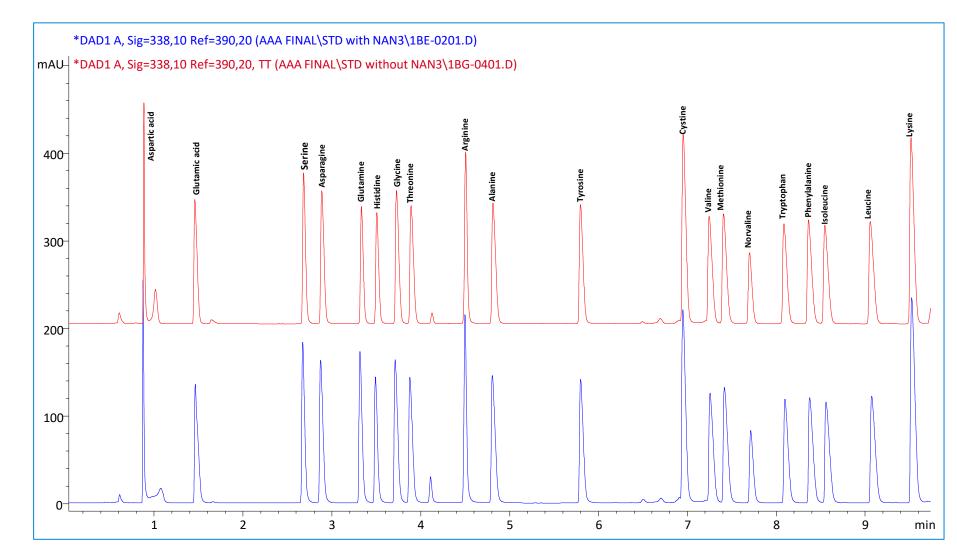
Amino Acid Analysis in Fermentation Applications



Many other foods (such as soy sauce) and pharmaceuticals that are produced using fermentation processes are monitored by AAA

Amino Acids Analysis for Batch Comparison

Quantity and diversity of amino acids is evident. Can be used to monitor and compare batches.



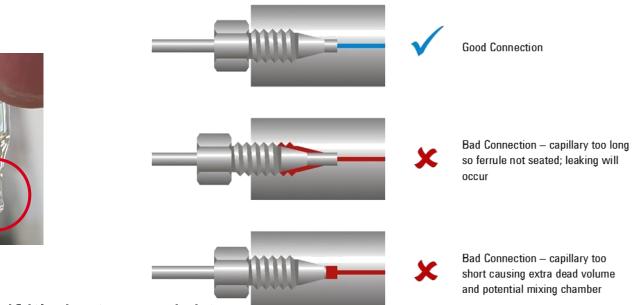
Elution Profile With and Without Sodium Azide

- Historically NaN₃ has been added to aqueous mobile phase to reduce bacterial growth
- NaN₃ is highly toxic
- No effect on the separation
- Highly recommend filtering mobile phases (0.45 or 0.2 µm) to reduce bacterial growth

Tips and Tricks – Maintenance

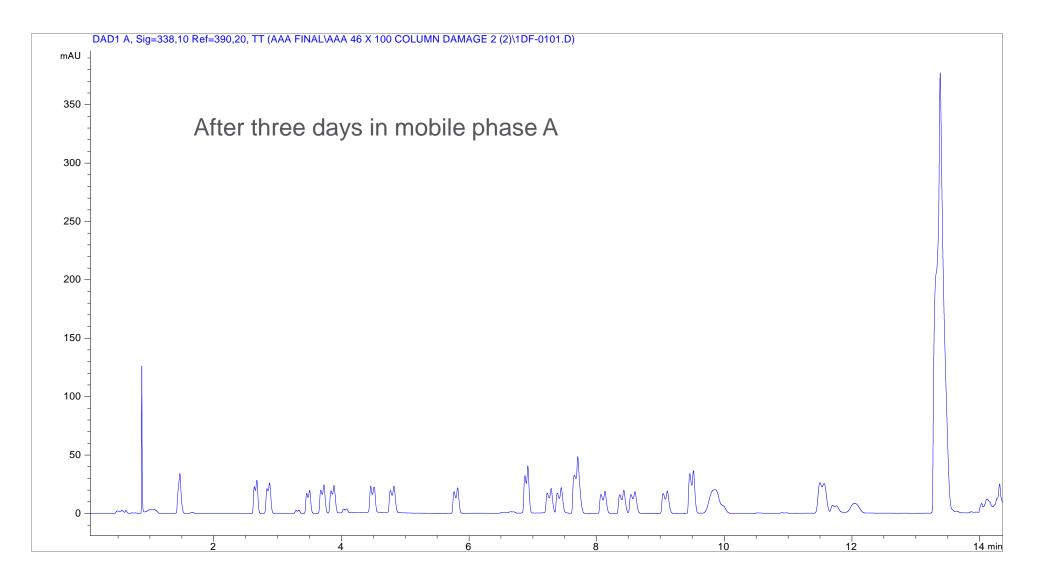
- Replace derivatization reagent, borate buffer, amino acid standard daily
- Recalibrate for retention times and response factors weekly
- Check column and guard column performance by following specs (Rs for two pairs of AA)
- Replace mobile phase A and B with fresh ones every other day
- Exchange guard column if high backpressure develops
- Avoid using max mixing speed during sample derivatization
 - The max speed on newer LCs is much faster than older LCs (1100/1200)
 - Can cause excessive wear on the autosampler

Tips and Tricks – Troubleshooting


Poor chromatographic resolution?

- Cell culture media does not require any sample preparation, however appropriate dilutions must be made to suit detector response
- In all cases, use the low-volume heat exchanger with short red tubing to minimize extra column volume
- Ensure proper connections
- Damaged guard or analytical column
- Low intensity chromatogram?
- OPA/FMOC reagent deteriorated
- Air bubble in vial insert

Column storage?


- Never leave the column in mobile phase A even if it's just overnight
- For short term always store the column in mobile phase B
- For long term, store column in 50/50 acetonitrile/H₂O

Damaged Column

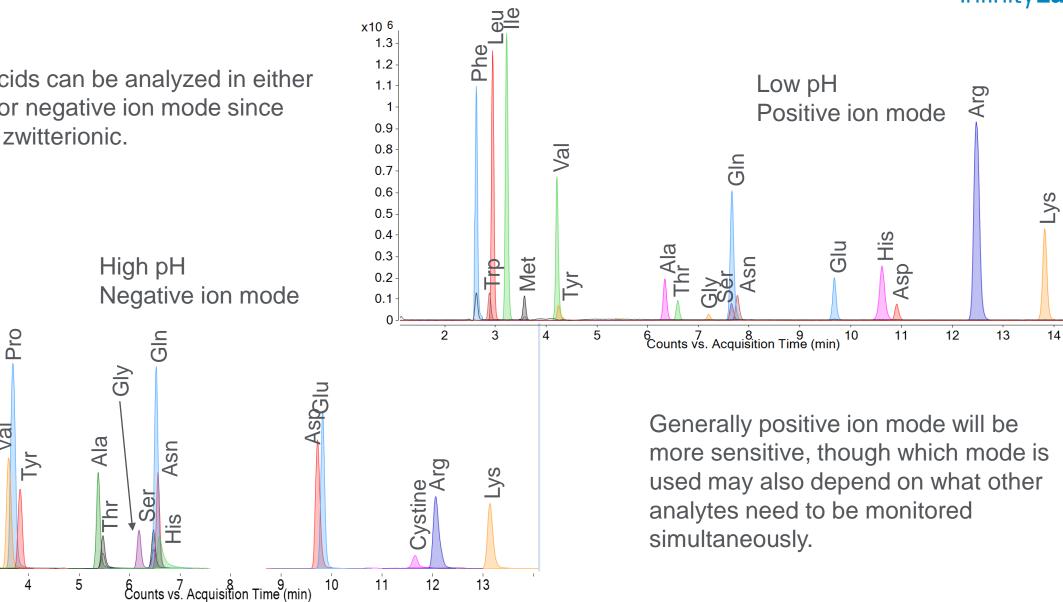
Infinity Lab

Outline

- History of Amino Acid Analysis at Agilent
- Reverse phase LC/UV analysis of derivatized amino acids
- HILIC LC/MS of underivatized amino acids and other metabolites
 - Hydrophobic Interaction Llquid Chromatography
 - Stationary phase is more polar than reversed phase
 - Acetonitrile is weak solvent, water is strong solvent (and typically a volatile buffer)
 - AdvanceBio MS Spent Media column
- Ion pairing analysis of underivatized amino acids
- Chiral analysis of amino acids

Method – Amino Acids by HILIC

Suggested S	starting Conditions – LC/MS		
Column	Agilent AdvanceBio MS Spent Media, 2.1 x 100 mm, p/n 675775-901		
Column Temp	30 °C		
	Low pH, Positive Ion Mode MS Detection: A = 10% 200 mM ammonium formate in water pH 3, 90% water B = 10% 200 mM ammonium formate in water pH 3, 90% acetonitrile <i>Final salt concentration is 20 mM.</i>		
Mobile Phase	High pH, Negative Ion Mode MS Detection: A = 10% 100 mM ammonium acetate in water pH 9, 90% water B = 10% 100 mM ammonium acetate in water pH 9, 90% acetonitrile <i>Final salt concentration is 10 mM.</i> <i>We recommend preparing mobile phases from a concentrated buffer stock to ensure</i>		
Flow Rate	robust and consistent mobile phases. 0.5 mL/min		
Gradient Program	Time % B 0 100 15 80 15.5 100 20 100		
Sample	Cell culture media, diluted 5-fold with Mobile Phase B		
Detection	Agilent 6230 TOF LC/MS		



28

Standard Amino Acids

Amino acids can be analyzed in either positive or negative ion mode since they are zwitterionic.

3

Vlet

x10 ⁵

3.5

3

2.5

2

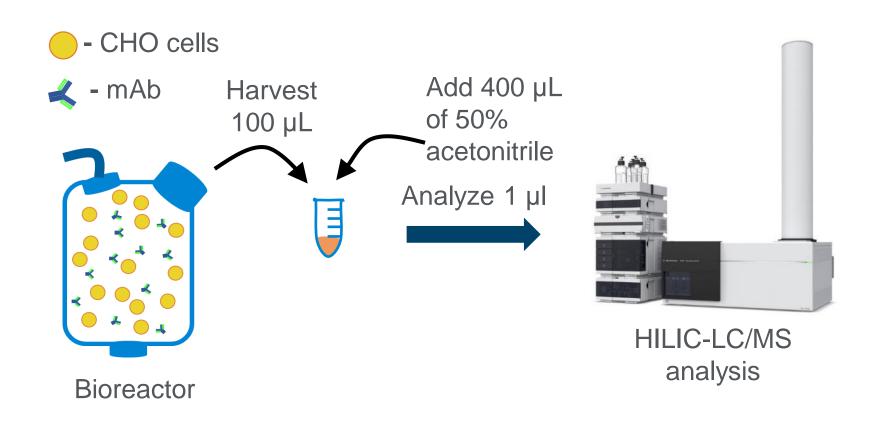
1.5

1

0.5

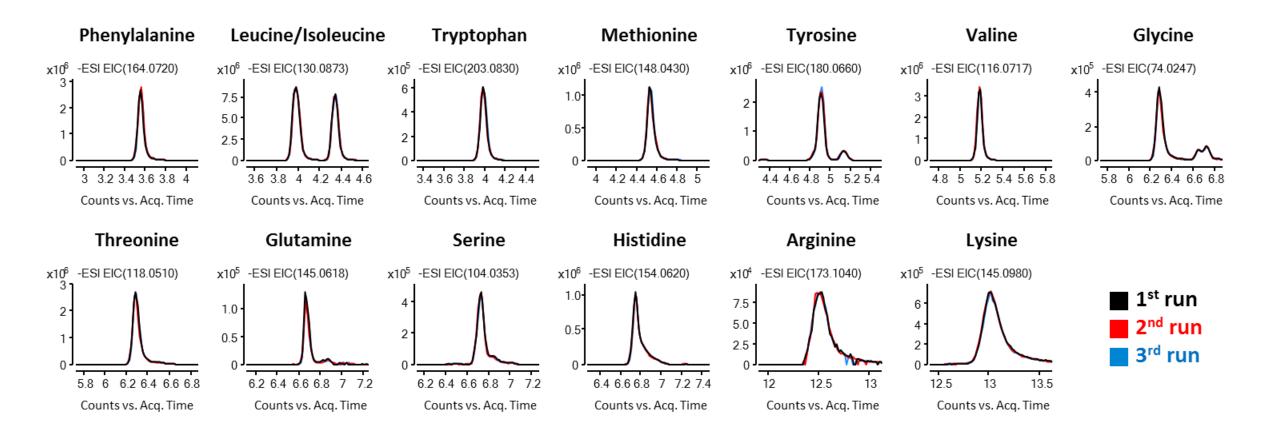
Phe

2

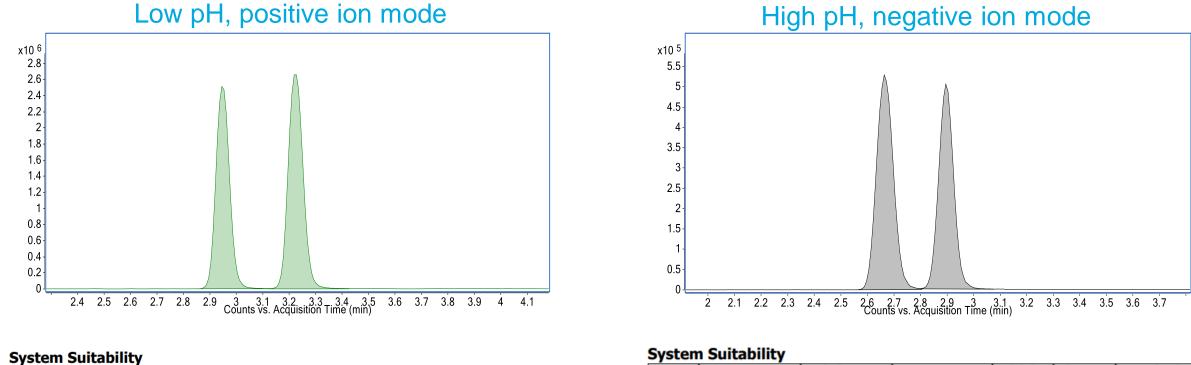

Val

Agilent

A Fast and Simple Approach to Profiling Cell Culture Media

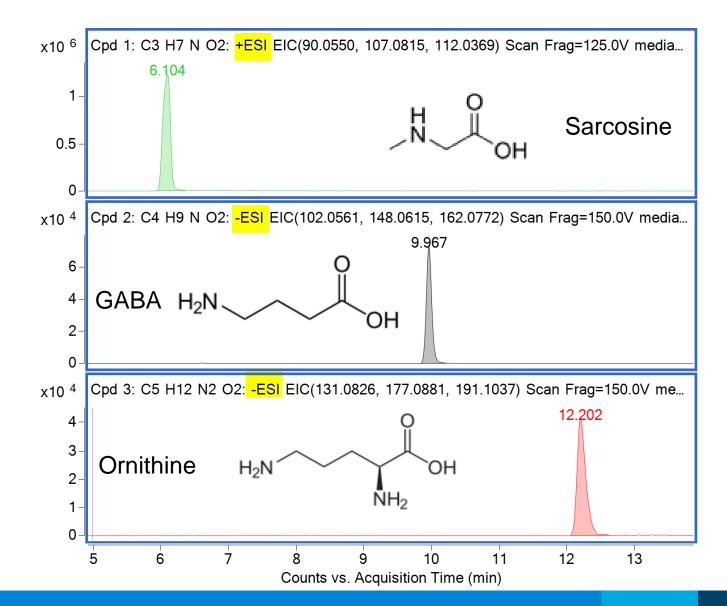


Reproducibility Test



Leu/IIe Resolution

RT	Area	Height	Symmetry	Width	Plates	Resolution
2.946	9080018.68	2511695.61	0.71	0.265	17910	66.9
3.224	10510201.33	2657458.46	1	0.306	16575	3


RT		Area	Height	Symmetry	Width	Plates	Resolution
2.6	64	2371609.84	529034.04	0.88	0.24	8347	45.7
2.8	96	1997455.1	504458.71	1	0.273	14420	2.2

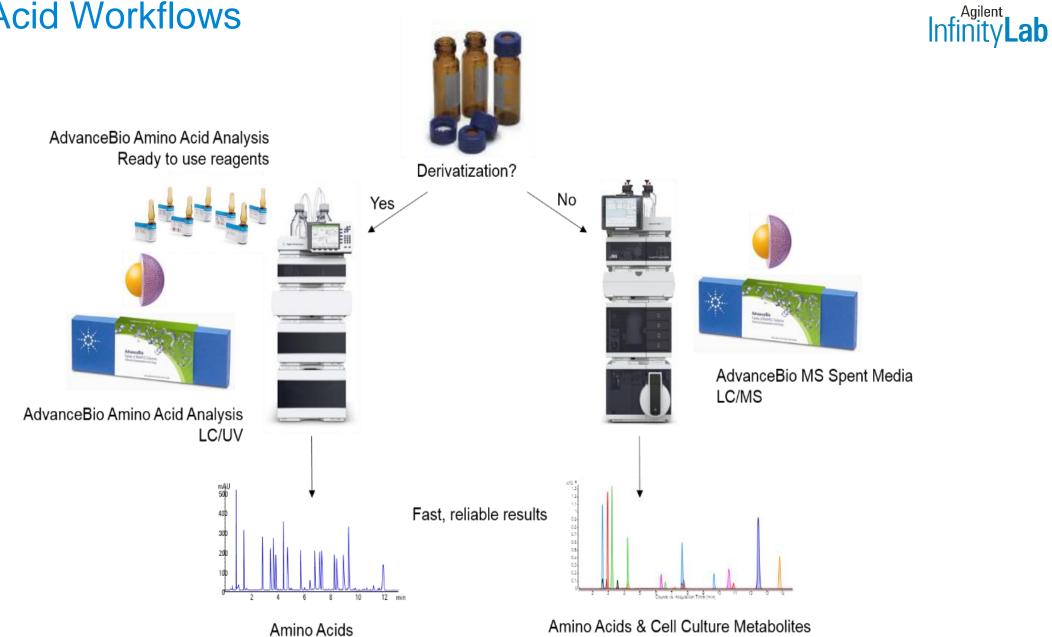
Resolution > 1.5 (European Pharmacopeia requirement)

Nonstandard Amino Acids in Cell Culture Media

Application Note – Experimental Details and Results

Analysis of Underivatized Amino Acids by LC/MS for Bioreactor Cell Culture Monitoring

Pub no. 5991-8816EN


Authors

Jordy Hsiao, Te-Wei Chu, Andrew Kennedy, Adam Bivens, and Anne Blackwell

Abstract

This Application Note presents a solution for LC/MS analysis of amino acids in fermentation media. The polar nature of amino acids makes analysis by reversed-phase liquid chromatography challenging, so derivatization is often used to improve retention. However, hydrophilic interaction chromatography (HILIC) is capable of retaining and separating complex amino acid mixtures without derivatization, while still offering a similar workflow to traditional reversed-phase. The combination of HILIC and mass spectrometry offers a particularly simple and powerful solution for underivatized amino acid analysis. Infinity Lab

Amino Acid Workflows

Cell Culture Media Analysis – Choosing an Approach

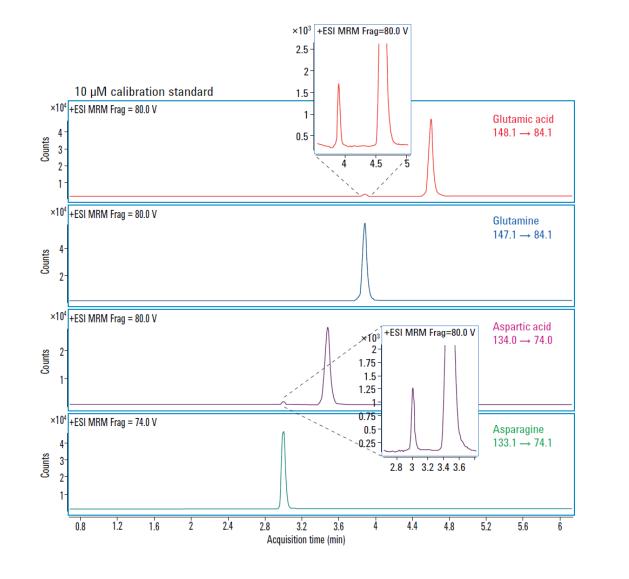
Infinity Lab

Derivatized amino acid analysis: LC/UV

- Industry standard, widely used
- Any Agilent LC
- Minimal instrumentation and expertise investment
- Reverse phase separation very robust

Underivatized amino acid analysis: LC/MS

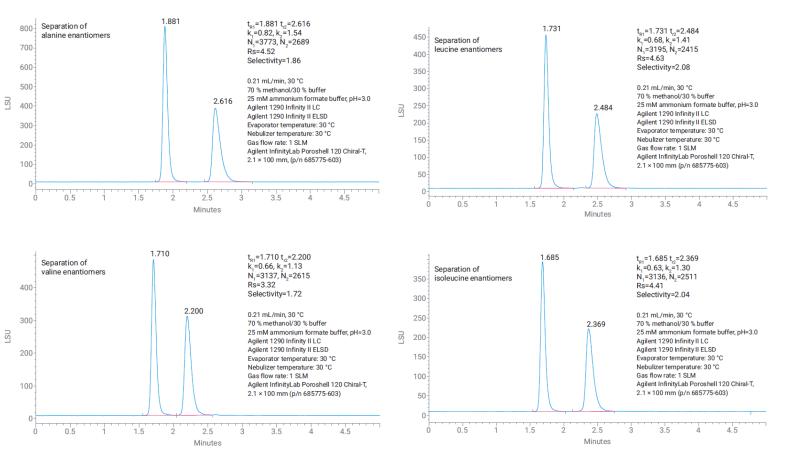
- Any LC/MS
- More expertise required, at least initially
- HILIC separations less familiar
- Higher sensitivity
- Savings:
 - No time spent derivatizing
 - No reagents to purchase
 - Combine assays for amino acids and other metabolites into a single method
 - Possibly faster method since baseline chromatographic resolution isn't necessary with MS
 - Must still resolve isomers (Leu/IIe)


Outline

- History of Amino Acid Analysis at Agilent
- Reverse phase LC/UV analysis of derivatized amino acids
- HILIC LC/MS of underivatized amino acids and other metabolites
- Ion pairing analysis of underivatized amino acids
- Chiral analysis of amino acids

Amino Acids by Ion Pairing

Column	Agilent ZORE part number		8 RRHT column, 3.0 x 150 mm, 1.8 μm, 2
Column temperature	25 °C		
njection volume	1 µL		
Autosampler temperature	4 °C		
Veedle wash	10 seconds in	ı wash port	
Nobile phase			d 0.3 % HFBA in water
	B = 0.5 % for	mic acid an	d 0.3 % HFBA in acetonitrile
low rate	0.4 mL/min		
Gradient program	Time (min)	A (%)	B (%)
	Initial	100	0
	5.00	95	5
	5.01	10	90
	6.00	10	90
	6.01	100	0
Post time	1 min		
Friple quadrupole MS sourc	e conditions		
on mode	Positive		
Drying gas temperature	275 °C		
Drying gas flow	9 L/min		
Sheath gas temperature	325 °C		
Sheath gas flow	12 L/min		
Vebulizer pressure	40 psi		
Capillary voltage	3750 V		
Vozzle voltage	0 V		
)elta EMV	0 V		



Infinity Lab

Chiral Analysis of Amino Acids (Chiral Column)

Parameter	Value
Column	Agilent InfinityLab Poroshell 120 Chiral-T, 2.1 × 100 mm, 2.7 μm (p/n 685775-603)
Mobile phase	Premix 70/30 methanol/ammonium formate, pH 3.0, 25 mM
Flow rate 0.21 m/min	
Temperature (column)	30 °C
Injection volume	1 µL
Sample concentration	2 mg/mL in water

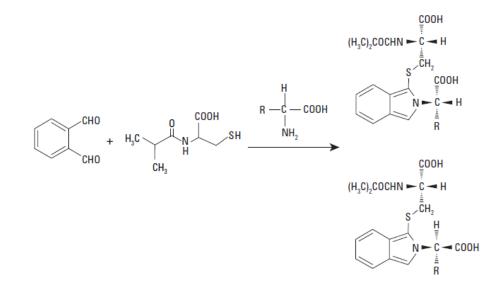
Application Note	Agilent	
Pharma & Biopharma		

Abstract

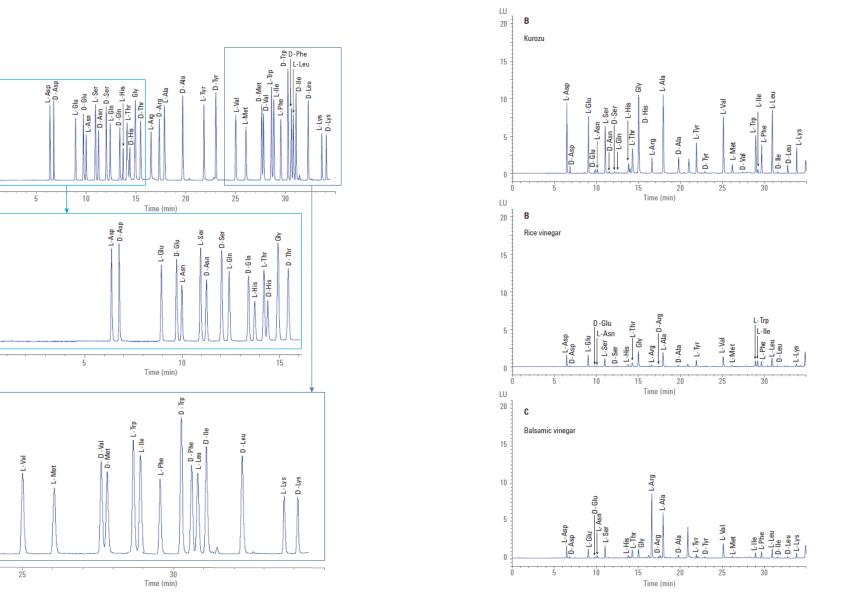
Chiral Analysis of Hydrophobic Amino Acids with Agilent InfinityLab Poroshell 120 Chiral-T Column

Author

William J. Long Agilent Technologies, Inc.


The chiral separation of a series of underivatized aliphatic amino acids was performed using an Agilent InfinityLab Poroshell 120 Chiral-T column using a methanol/ammonium formate buffer mobile phase. The separation of these D- and L-enantiomers is monitored using an ELSD detector. The L-enantiomer elutes first in all four cases.

Chiral Analysis of Amino Acids (By Derivatization)


- Diastereomers can often be analyzed by reversed phase on a C18 column
- Derivatized with OPA and N-isobutyryl-Lcysteine in borate buffer
- Similar program for the online derivatization

Parameter	Value
Column	Agilent Poroshell HPH-C18, 3.0 × 150 mm, 2.7 μm (p/n 693975-502)
Mobile phase	A) 50 mM sodium acetate (pH 6.0)
	B) Acetonitrile/methanol/water 45/45/10
Flow rate	0.7 mL/min
Gradient Pump	0 to 2.0 minutes, 4 %B
	2.0 to 4.0 minutes, 10 %B
	4.0 to 15 minutes, 20 %B
	15 to 27 minutes, 35 %B
	27 to 35 minutes, 50 %B
	35 to 37 minutes, 100 %B
	37 to 42 minutes, 100 %B
Post time	10 minutes at 4 %B
Column temperature	30 °C
Injection	See injector program
Needle wash	40 °C
Detection	Ex. 230 nm, Ex. 450 nm

Step	Mode	Action
1	Draw	Draw 2.5 µL from location 1 with default speed
2	Draw	Draw 0.5 µL from sample
3	Wash	Wash needle in flush port with S1 for 3 seconds with 100 μL /min
4	Mix	Mix 3.0 µL from air at maximum speed 10 times
5	Wait	Wait 0.5 minutes
6	Draw	Draw 0.25 from location 2 with 100 µL/min speed
7	Mix	Mix 3.25 µL from air at maximum speed 20 times
8	Wait	Wait 0.5 minutes
9	Draw	Draw 15 µL from location 3 with default speed
10	Mix	Mix 20 µL from air at maximum speed 10 times
11	Wait	Wait 0.1 minutes
12	Inject	Injection
13	Wait	Wait 0.5 minutes
14	Valve	Switch valve to Bypass

Chiral Analysis of Amino Acids (By Derivatization)

LU 5 -

4

3

2

LU

3-

LU

3

Π

Agilent Resources for Support

- Resource page http://www.agilent.com/chem/agilentresources
 - Quick reference guides, product catalogs
 - Online selection tools, "How-to" videos
 - Column user guides <u>https://www.agilent.com/en-us/support/liquid-</u> <u>chromatography/kb005965</u>
 - Biocolumn user guides <u>https://www.agilent.com/en/support/liquid-</u> <u>chromatography/kb005960</u>
- Tech support: <u>http://www.agilent.com/chem/techsupport</u>
- InfinityLab LC Supplies catalog (<u>5991-8031EN</u>)
- Agilent University http://www.agilent.com/crosslab/university
- YouTube <u>Agilent Channel</u>
- Your local product specialists
- Subscribe to Agilent Peak Tales podcasts at peaktales.libsyn.com

Contact Agilent Chemistries and Supplies Technical Support

Available in the USA & Canada 8-5 all time zones

1-800-227-9770 Option 3, Option 3:
Option 1 for GC and GC/MS columns and supplies
Option 2 for LC and LC/MS columns and supplies
Option 3 for sample preparation, filtration and QuEChERS
Option 4 for spectroscopy supplies
Option 5 for chemical standards

gc-column-support@agilent.com lc-column-support@agilent.com spp-support@agilent.com spectro-supplies-support@agilent.com chem-standards-support@agilent.com

