
Extraction of THC and its Metabolites from Human Nail Samples Using ISOLUTE[®] SLE+ Prior to UPLC-MS/MS Analysis

Figure 1. Structure of Δ^9 -tetrahydrocannabinol (THC).

Introduction

The testing of alternative matrices in forensic and/or clinical toxicology is gaining popularity, partly due to less invasive means of collection. Matrices such as hair or nail can provide a more rounded picture of abstinence or abuse and associated timeframes.

This application note describes a procedure for sample pre-treatment and extraction of THC and its metabolites from human nail samples, using the Biotage[®] Lysera for matrix pulverisation, and pre-concentration of the sample prior to clean up using ISOLUTE[®] SLE+ supported liquid extraction.

Manual processing protocols were developed using the Biotage® Pressure+ 96 (plate format) or 48 (column format) Positive Pressure Manifolds.

This application note contains procedures optimized for both individual column format and 96-well plate format for higher throughput applications. The methodology delivers clean extracts with analyte recoveries > 70% (plate format) or > 75% (column format) with %RSD < 10% for all analytes and LLOQ as low as 20 fg/mg of nail.

ISOLUTE SLE+ Supported Liquid Extraction columns and plates offer an efficient alternative to traditional liquid-liquid extraction (LLE) for bioanalytical sample preparation, providing high analyte recoveries, no emulsion formation and significantly reduced preparation time.

Analytes

Tetrahydrocannabinol (THC), 11-Nor-9-carboxy- Δ^{9-} tetrahydrocannabinol (THC-COOH), 11-Hydroxy- Δ^{9-} tetrahydrocannabinol (THC-OH), Δ 9-tetrahydrocannabinolic acid-A (THCAA), cannabidiol (CBD), and cannabinol (CBN)

Internal Standards

Tetrahydrocannabinol $-D_3$ (THC- D_3), 11-Nor-9-carboxy- Δ^9 -tetrahydrocannabinol- D_3 (THC- COOH- D_3) and 11-Hydroxy- Δ^9 -tetrahydrocannabinol- D_3 (THC-OH- D_3)

These were used during the calibration process and recovery work was also done alongside the standards.

Sample Preparation Procedure

Format

ISOLUTE° SLE+ 400 µL capacity columns (p/n 820-0055-B) or

ISOLUTE[®] SLE+ 400 µL capacity 96-well plate (p/n 820-0400-P01)

Matrix Preparation

Weigh 10 mg of nail into 2 mL Biotage^{\circ} Lysera tubes (p/n 19-620) containing 4 x 2.4 mm stainless steel beads (p/n 19-640).

Micropulverisation Procedure

Grind to a fine powder using Biotage[®] Lysera (Conditions - 8 x 6.95 m/sec for 45 seconds with a 45 second dwell.)

Add 1 mL 0.1% formic acid in methanol to each nail sample. Also add 10 μL of a 10 ng/mL ISTD making a 10 pg/mg spike. Mix.

Centrifuge tubes for 10 minutes at 13,300 rpm (Heraeus Pico 17 Microcentrifuge (Thermo Scientific) with 24 position, 2 mL rotor).

Post Micropulverisartion

Transfer a 250 μ L aliquot of supernatant into 12 x 75 mm evaporation tubes and evaporate extracts to dryness using a TurboVap[®] LV at 40 °C. Reconstitute in methanol:water (80:20, v/v, 250 μ L).

Supported Liquid Extraction Conditions

	ISOLUTE® SLE+ 400 µL Columns Part Number 820-0055-B	ISOLUTE [®] SLE+ 400 μL Plate Part number 820-0400-P01
Sample loading	Load up to 250 µL of reconstituted extract onto each ISOLUTE® SLE+ column. A pulse of pressure is not needed as the methanolic extract flows straight onto the bed. Allow the sample to absorb for 5 minutes.	Load up to 250 μ L of reconstituted extract onto each ISOLUTE [*] SLE+ well. A pulse of pressure is not needed as the methanolic extract flows straight onto the bed. Allow the sample to absorb for 5 minutes.
Analyte Extraction	Apply MTBE (600 μ L) allow to flow under gravity for 5 minutes. Apply a further aliquot of MTBE (600 μ L) and allow to flow under gravity for 5 minutes. For complete removal apply a pulse of positive pressure at 10 psi (10–20 seconds).	Apply MTBE (600 μ L) allow to flow under gravity for 5 minutes. Apply a further aliquot of MTBE (600 μ L) and allow to flow under gravity for 5 minutes. For complete removal apply a pulse of positive pressure at 10 psi (10–20 seconds).
Collection Vessels	Collect extract in 12 x 75 mm glass tubes.	Collect extract in 96-well collection plates.
Post Elution	Evaporate extracts at 40 °C, for 30 mins at a flow rate of 1.5 L/min using a Turbovap [®] LV.	Evaporate extracts at 40 °C, for 30 mins at a flow rate of 20-40 L/min using the Biotage [®] SPE Dry-96.
Reconstitute	Reconstitute extracts in a mix of mobile phase A/mobile phase B (80:20, v/v, 200 μ L). Vortex mix, transfer into a 96-well format plate and cover with a sealing mat prior to injection.	Reconstitute extracts in a mix of mobile phase A/mobile phase B (80:20, v/v, 200 μ L). Vortex mix. Cover plate with a sealing mat prior to injection.

UHPLC Conditions

Instrument

Shimadzu Nexera X2 UHPLC

Column

Restek Pinnacle DB Biphenyl 1.9um 50 x 2.1 mm combined with a Restek EXP guard holder and biphenyl guard

Mobile Phase

A: 0.01% Formic Acid (aq)

B: 0.01% Formic Acid in MeCN

Flow Rate

0.7 mL/min

Table 1. UHPLC Gradient.

Time (min)	%A	%В
0	60	40
2.5	5	95
2.6	60	40
4.1	60	40

Injection Volume

5 µL

Column Temperature

50 °C

MS/MS Conditions

Instrument

Shimadzu 8060 Triple Quadrupole MS using ES interface

Nebulizing Gas Flow 3 L/min

Drying Gas Flow 5 L/min

Heating Gas Flow

Interface Temperature

400 °C

DL Temperature

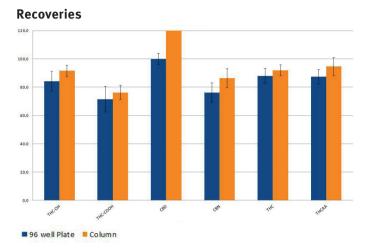
300 °C

Heat Block Temperature

500 °C

CID Gas Flow

270 kPa



Analytes	MRM Transition	Collision Energy
THC-D₃	318.0 > 196.15 318.0 > 123.2	-24 -32
ТНС	315.0 > 193.10 315.0 > 123.2	-23 -32
OH-THC-D₃	334.0 > 316.15 334.0 > 196.25	-15 -25
OH-THC	331.0 > 313.3 331.0 > 193.25	-15 -26
THC-COOH-D₃	346.3 > 302.3 346.3 > 248.30	22 28
ТНС-СООН	343.3 > 299.3 343.3 > 245.25	22 30
CBN	309.3 > 279.1 309.3 > 222.05	32 47
CBD	315.1 > 193.1 315.1 > 123.25	-23 -35
THCAA	357.3 > 313.3 357.3 > 245.25	26 33

Table 2. MS conditions for target analytes in positive mode.

Results

This simple sample preparation method delivers clean extracts and analyte recoveries mostly greater than 75% with RSDs lower than 10% for all analytes (see fig 2). LLOQs are below 10 pg/mg and as low as 20 fg/mg for THCA-A (see table 3) for ISOLUTE® SLE+ column formats used.

Figure 2. Representative analyte recoveries.

Calibration Curves

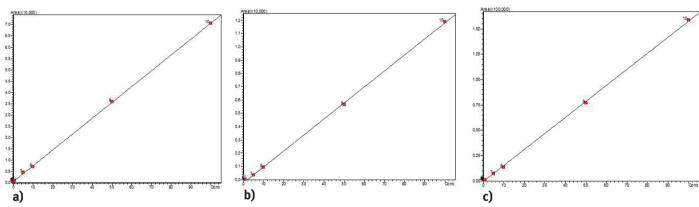


Figure 5. Calibration curves for THC (a), CBN (b) and THCA-A (c) using human nail with 400 μ L capacity column format (loading 250 μ L of extracted sample as described).

Calibration curve performance was investigated from nails spiked between 0.01–100 pg/mg. Good linearity was observed for all analytes typically delivering r² values greater than 0.999. Table 3. details linearity performance and associated LOQ for each analyte using both ISOLUTE[®] SLE+ formats.

Table 3. Analyte calibration curve r² and LOQ performance.

Analyte	r²	LLOQ (pg/mg)	r ²	LLOQ (pg/mg)
	Column Format		Plate Format	
тнс	0.9997	5	0.9998	10
OH-THC	0.9997	5	0.9998	10
тнс-соон	0.9995	1	0.9997	1
CBN	0.9995	1	0.9992	1
CBD	0.9992	1	0.9992	1
THCAA	0.9995	0.02	0.9997	0.05

Chemicals and Reagents

- » Methanol (LC-MS grade), Acetonitrile (Gradient MS) were purchased from Honeywell Research Chemicals (Bucharest, Romania).
- » All analyte standards and deuterated internal standards, and acetic acid (99.7%) (LC-MS grade) were purchased from Sigma-Aldrich Company Ltd. (Gillingham, UK).
- Water used was 18.2 MOhm-cm, drawn daily from a Direct-Q5 water purifier.
- » Mobile phase A (0.01% Formic acid aq) was prepared by adding 50 μL acid to 500 mL of purified water.
- » Mobile phase B (0.01% Formic acid in acetonitrile) was prepared by adding 50 µL acid to 500 mL of HPLC grade acetonitrile.
- Internal standards (10 pg/mg) were prepared from a 1 ng/µL stock solution by adding 10 µL of each of to 970 µL of MeOH. This makes a 10 ng/mL stock and then 10 µL of this solution was added to each calibration sample.

Additional Information

- » All data shown in this application note was generated using various fingernail samples, provided by healthy human volunteers.
- THC and some of its metabolites bind to plastic, so in order to increase recoveries and reduce RSDs the pre-concentration evaporation steps should always be performed in glass tubes.
- » Biotage[®]Lysera hints and tips
 - » A minimum of four tubes must be loaded in the tube carriage to ensure balance during processing.
 - » Ensure vial caps are firmly tightened and Lysera locking mechanism is fully engaged.
 - » To minimize sample transfer and manipulation steps, 2 mL Lysera tubes were placed directly into the centrifuge (Heraeus Pico 17 Microcentrifuge (Thermo Scientific) with 24 position, 2 mL rotor).

Conclusion

This application note demonstrates that ISOLUTE®SLE+ columns or plates can be used in conjunction with Biotage® Lysera to provide a simple but effective sample preparation procedure for determination of THC and metabolites from human nail samples.

Ordering Information

Part Number	Description	Quantity
19-060 19-649	Biotage [®] Lysera 2 mL Reinforced Tubes with Screw Caps (Bulk pack)	1 1000
19-640	2.4 mm Metal Beads 500 grams	1
820-0055-B	ISOLUTE 400 µL Sample Volume Columns	50
820-0400-P01	ISOLUTE SLE+ 400 µL Capacity Plate	1
PPM-96	Biotage [®] PRESSURE+ 96 Positive Pressure Manifold	1
PPM-48	Biotage [®] PRESSURE+ 48 Positive Pressure Manifold	1
415000	TurboVap® LV	1
SD-9600-DHS-EU	Biotage® SPE Dry 96 Sample Concentrator system 220/240V	1
SD-9600-DHS-NA	Biotage® SPE Dry 96 Sample Concentrator system 100/120V	1
121-5203	Collection Plate, 2 mL Square	50
121-5204	Piercable Sealing Mat	50
C44651	Test Tubes (12 x 75 mm, Uncap)	1000

EUROPE

Main Office: +46 18 565900 Toll Free: +800 18 565710 Fax: +46 18 591922 Order Tel: +46 18 565710 Order Fax: +46 18 565705 order@biotage.com Support Tel: +46 18 56 59 11 Support Fax: +46 18 56 57 11 eu-1-pointsupport@biotage.com

NORTH & LATIN AMERICA

Main Office: +1 704 654 4900 Toll Free: +1 800 446 4752 Fax: +1 704 654 4917 Order Tel: +1 704 654 4900 Order Fax: +1 434 296 8217 ordermailbox@biotage.com Support Tel: +1 800 446 4752 Outside US: +1 704 654 4900 us-1-pointsupport@biotage.com

JAPAN

Tel: +81 3 5627 3123 Fax: +81 3 5627 3121 jp_order@biotage.com jp-1-pointsupport@biotage.com

CHINA

Tel: +86 21 68162810 Fax: +86 21 68162829 cn_order@biotage.com cn-1-pointsupport@biotage.com KOREA Tel: +82 31 706 8500 Fax: +82 31 706 8510 korea_info@biotage.com kr-1-pointsupport@biotage.com

INDIA Tel: +91 22 4005 3712 india@biotage.com

Distributors in other regions are listed on www.biotage.com

Ø Biotage

Literature Number: AN929

© 2020 Biotage. All rights reserved. No material may be reproduced or published without the written permission of Biotage. Information in this document is subject to change without notice and does not represent any commitment from Biotage. E&OE. A list of all trademarks owned by Biotage AB is available at www.biotage.com/legal. Other product and company names mentioned herein may be trademarks or registered trademarks and/or service marks of their respective owners, and are used only for explanation and to the owners' benefit, without intent to infringe.