

Application News

Ion Chromatograph, High Performance Liquid Chromatograph

Analysis of Inorganic Halogens, Formic Acid, Ammonia, and Formaldehyde as Impurities in Fuel Cell Grade Hydrogen Based on ISO14687 Grade D

Hiroyuki Aikawa, Jiang Yujing, Ayano Tanabe

User Benefits

- ◆ This analysis meets the standard values of ISO14687 Grade D.
- ◆ Simultaneous analysis of inorganic halogens and formic acid is possible.
- ◆ Since organic solvents are not used for extraction during pretreatment, environmental impact is reduced.

■ Introduction

Hydrogen is expected to be a new power and heat source to reduce greenhouse gases. Hydrogen is an easily available substance that can be produced from the electrolysis of water in our daily lives. However, when used in fuel cells, it is necessary to control impurities in hydrogen gas because certain impurities introduced during the manufacturing process deteriorate the electrode and electrolyte membrane, reducing the performance of the fuel cell or shortening its life. This section presents an example of analysis of inorganic halogens, formic acid, ammonia, and formaldehyde in hydrogen based on the standard values described in ISO 14687 Grade D¹⁾.

■ Hydrogen Impurity Specifications in ISO14687 Grade D

ISO14687 Grade D specifies impurities in hydrogen that affect the quality of fuel cell vehicles. Table 1 lists the applicable ingredients, standard values, concentrations ($\mu\text{g/L}$) converted by ion chromatograph (IC)/high-performance liquid chromatograph (HPLC), and equipment used.

Table 1 Substances and specifications in ISO14687 Grade D

Ingredients of interest	Specified value ($\mu\text{mol/mol}$)	IC/HPLC Converted concentration ($\mu\text{g/L}$)	Equipment used
Inorganic halogen (hydrogen chloride) ¹⁾	0.05	28	
Formic acid ²⁾	0.2	92	Suppressor IC
Ammonia	0.1	26	Non-suppressor IC
Formaldehyde	0.2	141	HPLC

*1 The value of hydrogen chloride is shown as a representative value.

*2 Deleted in the 2025 edition

■ Analysis of Inorganic Halogens, Formic Acid, and Ammonia by IC

A suppressor IC (Fig.1, left) was used for inorganic halogen analysis. Since IC can selectively measure ions in a sample, it is less affected by contaminants than other methods, and inorganic halogens can be measured with high accuracy. Three components of inorganic halogens were simultaneously measured: chloride ion (Cl) as hydrochloric acid, bromide ion (Br) as hydrogen bromide, and formic acid (HCOOH). Table 2 shows the analytical conditions, Fig. 2 shows the chromatograms of each 50 $\mu\text{g/L}$ standard sample, and Fig. 3 shows the calibration curves for the concentration range of 25 $\mu\text{g/L}$ to 1000 $\mu\text{g/L}$. As shown in Fig. 3, the linearity was greater than 0.9999 in all cases. Table 3 shows the repeatability for 7 replicates at concentrations near the lower limit of quantification.

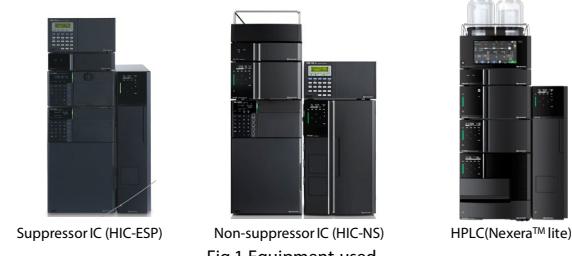


Fig.1 Equipment used

Table 2 Analysis conditions (inorganic halogens)

System	: HIC-ESP
Column	: Shim-pack™ IC-SA2 (250 mm \times 4.0 mm I.D., 9 μm) ^{*1}
Guard Column	: Shim-pack IC-SA2(G) (10 mm \times 4.6 mm I.D., 9 μm) ^{*2}
Mobile Phase	: 12 mM NaHCO ₃ + 0.6 mM Na ₂ CO ₃
Flow Rate	: 0.8 mL/min
Column Temp.	: 30 °C
Injection Vol.	: 100 μL
Vial	: 4 mL, Polypropylene ^{*3}
Detection	: Conductivity

*1 P/N : 228-38983-91, *2 P/N : 228-38983-92, *3 P/N : 228-31537-91

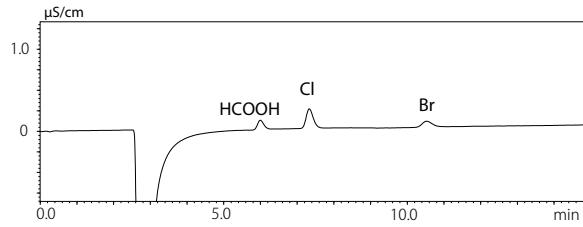
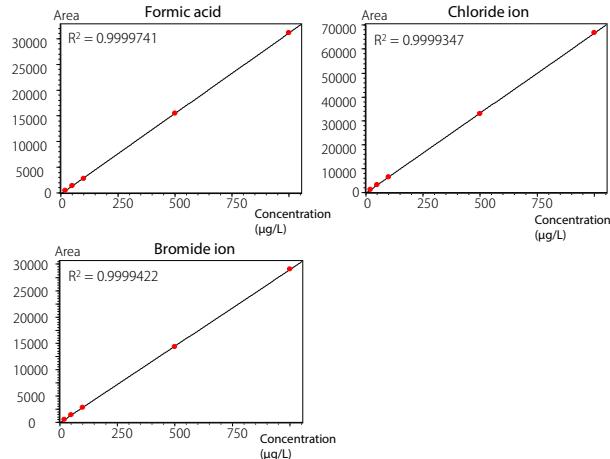



 Fig.2 Chromatogram of inorganic halogens (50 $\mu\text{g/L}$ each)

Fig.3 Calibration curves for inorganic halogens

 Table 3 Repeatability of Inorganic Halogens (10 $\mu\text{g/L}$, n=7)

	Formic acid Concentration ($\mu\text{g/L}$)	Chloride ion Concentration ($\mu\text{g/L}$)	Bromide ion Concentration ($\mu\text{g/L}$)
1	10.1	9.48	9.12
2	10.4	9.66	9.33
3	10.6	9.56	8.47
4	10.6	9.48	9.11
5	10.7	9.89	9.90
6	10.8	9.74	8.77
7	11.1	9.68	9.84
Average	10.6	9.60	9.20
%RSD	2.91	1.55	5.68

Ammonia was determined as ammonium ion (NH_4^+) using a non-suppressor IC (Fig.1, center). Table 4 shows the analytical conditions, Fig. 4 shows the chromatogram of a standard sample at a concentration near the specified value (25 $\mu\text{g/L}$), Fig. 5 shows the calibration curve prepared in the concentration range of 2.5 $\mu\text{g/L}$ to 200 $\mu\text{g/L}$, and Table 5 shows the reproducibility at a concentration near the detection limit (10 $\mu\text{g/L}$). Both inorganic halogens and ammonia can be analyzed in the same apparatus by switching the mobile phase and column.

Table 4 Analysis Conditions (Ammonium ion)

System	: HIC-NS
Column	: Shim-pack IC-C4 (150 mm \times 4.6 mm I.D., 7 μm) ^{*1}
Guard Column	: Shim-pack IC-GC4 (10 mm \times 4.6 mm I.D., 7 μm) ^{*2}
Mobile Phase	: 2.5 mM Methane sulfonic acid
Flow Rate	: 1.0 mL/min
Column Temp.	: 40 °C
Injection Vol.	: 100 μL
Vial	: 4 mL, Polypropylene ^{*3}
Detection	Conductivity

^{*1}P/N: 228-41616-91, ^{*2}P/N: 228-59900-91, ^{*3}P/N: 228-31537-91

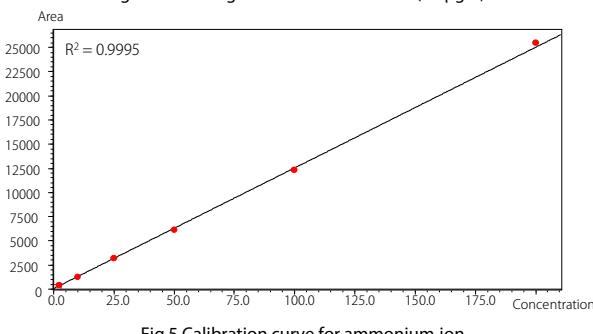
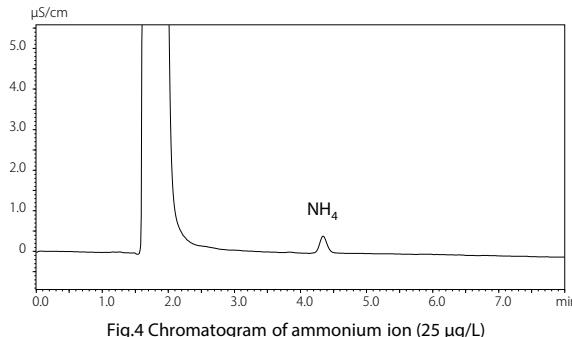



Table 5 Repeatability of ammonium ion (10 $\mu\text{g/L}$, n=7)

	Retention time (min)	Peak area	Concentration ($\mu\text{g/L}$)
1	4.36	1315	9.99
2	4.36	1355	10.3
3	4.37	1380	10.5
4	4.37	1284	9.74
5	4.37	1292	9.80
6	4.37	1246	9.43
7	4.36	1318	10.0
Average	4.36	1313	9.97
%RSD	0.04	3.41	3.61

■ Analysis of Formaldehyde by HPLC

Formaldehyde (HCHO) may adsorb on the catalyst of a fuel cell and interfere with hydrogen generation. We used HPLC (right side of Figure 1) to measure formaldehyde. DNPH derivatization was performed according to the pretreatment protocol shown in Figure 6 and measured by HPLC. Table 6 shows the analytical conditions, Fig.7 shows the chromatogram of a standard sample at a concentration near the specified value (100 $\mu\text{g/L}$), Figure 8 shows the calibration curve prepared at a concentration range of 10 $\mu\text{g/L}$ to 200 $\mu\text{g/L}$, and Table 6 shows the repeatability at a concentration near the lower limit of quantification (10 $\mu\text{g/L}$).

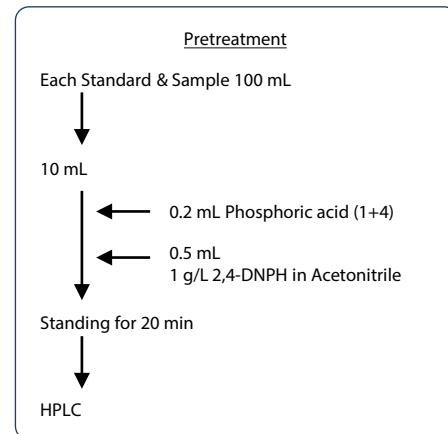


Fig.6 Pretreatment protocol for DNPH derivatization

Table 6 Analytical conditions (formaldehyde)

System	: Nexera™ lite
Column	: Shim-pack GIST-HP-C18-HP (150 mm \times 3.0mm I.D., 3 μm) ^{*1}
Mobile Phase	: Water/Acetonitrile = 1 : 1
Flow Rate	: 1.0 mL/min
Column Temp.	: 40 °C
Injection Vol.	: 10 μL
Vial	: 1.5 mL, Glass ^{*2}
Detector	: UV 360 nm

^{*1}P/N: 227-30040-05, ^{*2}P/N: 227-34500-02

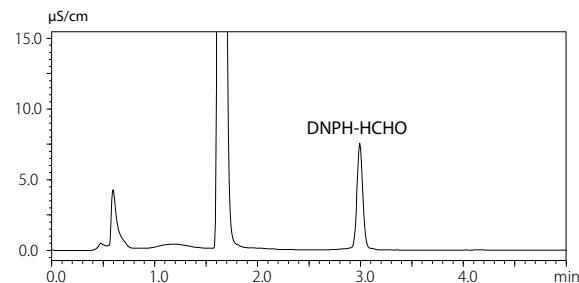


Fig.8 Calibration curve for formaldehyde

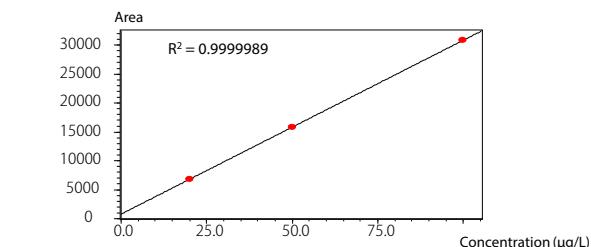


Table 7 Repeatability of formaldehyde (10 $\mu\text{g/L}$, n=7)

	Retention time (min)	Peak area	Concentration ($\mu\text{g/L}$)
1	3.23	2792	8.53
2	3.23	2865	8.98
3	3.23	2888	9.12
4	3.23	2877	9.05
5	3.23	2810	8.64
6	3.23	2894	9.15
7	3.23	2901	9.20
Average	3.23	2861	8.95
%RSD	0.00	1.50	2.92

■ Measurement of Hydrogen Gas

As shown in Fig.9, hydrogen from a G2 grade hydrogen cylinder was bubbled with ultrapure water in an impinger to absorb impurities. Two impingers were installed in the order of 1st impinger and 2nd impinger, and dissolved inorganic halogen, formic acid, ammonia, and formaldehyde were analyzed by analyzing water from each impinger. Table 8 shows the collection conditions.

Fig.10 shows the chromatogram of anions (Formic acid, chloride, and bromide), Fig.11 shows the chromatogram of cations (ammonia), and Fig.12 shows the chromatogram of formaldehyde. No impurities were detected from either 1st impinger or 2nd impinger.

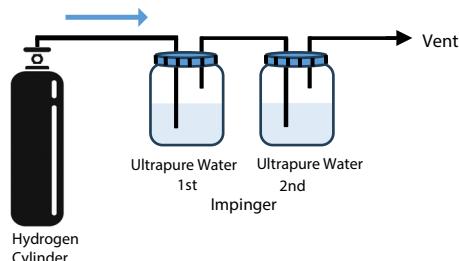


Fig.9 Collection of hydrogen gas impurities

Table 8 Conditions for collecting hydrogen gas impurities

Flow Rate	: 500 mL/min
Sampling Time	: 30 min
Water Amount in Impinger	: 40 mL for each
Material of Impinger	: Perfluoroalkoxy alkanes 100mL volume

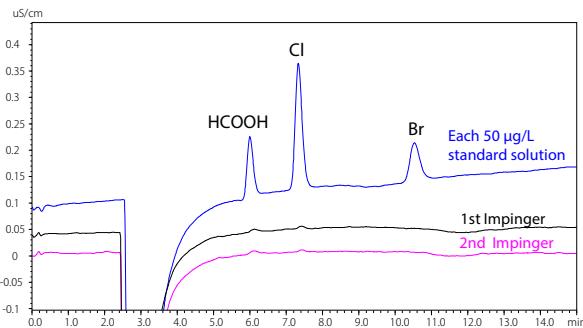


Fig.10 Chromatograms of hydrogen gas sample (inorganic halogen)

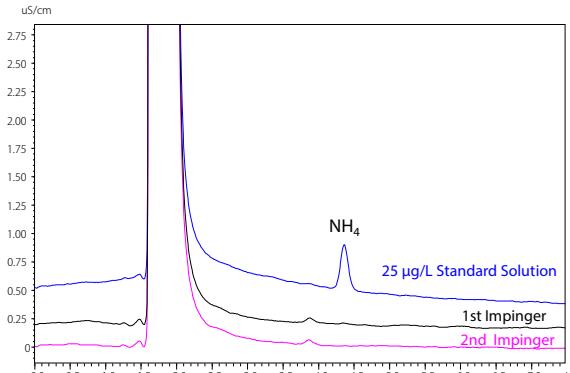


Fig.11 Chromatograms of hydrogen gas sample (ammonium ion)

Nexera and Shim-pack are trademarks of Shimadzu Corporation or its affiliated companies in Japan and/or other countries.

Shimadzu Corporation

www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. See <https://www.shimadzu.com/about/trademarks/index.html> for details.

Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "®".

Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

01-01071-EN

First Edition: Dec. 2025

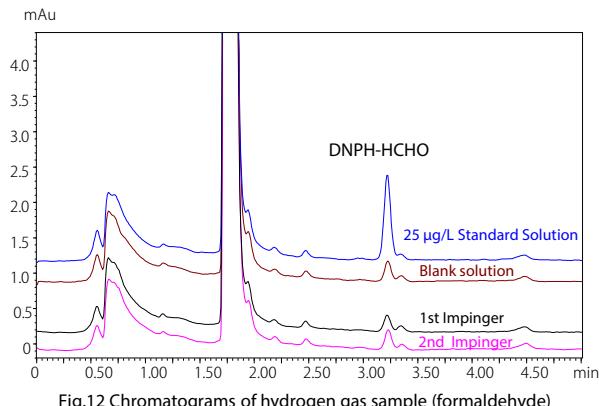


Fig.12 Chromatograms of hydrogen gas sample (formaldehyde)

■ Conclusion

Using an ion chromatograph and HPLC, we analyzed inorganic halogens, formic acid, ammonia, and formaldehyde, which are impurities in hydrogen, and confirmed that the results meet ISO 14687 Grade D standards. Inorganic halogens, formic acid, and ammonia can be analyzed using the same equipment by switching the analysis conditions. Simple pretreatment and a unified analysis procedure allow measurement without hesitation.

<References>

- 1) ISO 14687 Hydrogen fuel quality-product specification (2025)

<Related Applications>

1. Analysis of Ammonia as An Impurity in Fuel Cell Grade Hydrogen According to ISO 14687 Grade D Using A Gas Generator, [Application News No. 01-01070](#)

➤ Please fill out the survey

Related Products

Some products may be updated to newer models.

➤ Anion Suppressor
Ion Chromatograph

➤ Nexera Series Ultra
High Performance
Liquid C...

Ultra High Performance Liquid
Chromatograph

Related Solutions

➤ Clean Energy

➤ Fuel Cells

➤ Price Inquiry

➤ Product Inquiry

➤ Technical Service /
Support Inquiry

➤ Other Inquiry