### Application Note Food Testing &

Agriculture



# Quantitation of Paraquat Residue in Milk Using the Agilent 6470 Triple Quadrupole LC/MS

Chromatographic separation of paraquat residue from milk matrix using HILIC-Z column chemistry



**Figure 1.** Agilent 1290 Infinity II LC coupled to an Agilent 6470 triple quadrupole LC/MS.

# Abstract

Paraguat (1,1'-dimethyl-4,4'-bipyridylium ion) is a guaternary amine extensively used as a non-selective contact herbicide. Having moderate toxicity, paraguat run-off from application areas and its presence in food products have been major concerns for human health. The presence of paraguat residue is reported in agricultural consumer products such as milk. Using mass spectrometry for the detection of this residue provides enhanced sensitivity and shortened sample preparation compared to other analytical methods. However, the linearity, accuracy, and reproducibility of the result in matrix is heavily dependent on the chromatographic separation of paraguat from the sample matrix components. This study describes a high-performance LC/MS method for sensitive and selective quantitation of paraguat in milk matrix. Chromatography was set in such a way that paraquat was well retained yet well resolved from endogenous sample matrix by using Agilent InfinityLab Poroshell 120 HILIC-Z column chemistry. This approach avoids the use of strong ion pair agents, drastically simplifying the analysis. The method is demonstrated to be highly sensitive, reproducible, and shows good and consistent recoveries over multiple batches.

### Authors

Prasanth Joseph, Saikat Banerjee, and Samir Vyas Agilent Technologies, Inc.

# Introduction

Milk is regarded as a complete food because of its rich nutrient density, containing a good mix of protein, fat, carbohydrates, vitamins, and essential minerals for maintaining good health. Due to the widespread consumption of milk, pesticides such as paraquat in agricultural consumer products are a concern because of their moderate toxicity levels (Figure 2).



Figure 2. Chemical structure of paraquat.

A QuEChERS-based extraction of pesticide residue from milk matrix is found to be a very easy sample preparation to adopt. A highly selective multiple reaction monitoring (MRM)-based LC/MS/MS method was developed using an Agilent 6470 triple quadrupole LC/MS (LC/TQ).

Zwitterionic chemistry with a proprietary bonding technique in HILIC-Z columns offers powerful separation, stability across a wide pH range, and excellent peak shape compared to traditional bare silica phase HILIC columns.

# Experimental

### **Chemicals and reagents**

LC/MS pesticide standard was purchased from Sigma-Aldrich. This standard was used for method development and analysis of milk samples. Agilent Bond Elut QuEChERS extraction kit (part number 5982-5650) and dispersive kit (part number 5982-5156CH) were used for sample preparation. LC/MS-grade solvents such as acetonitrile and water were purchased from Honeywell (Charlotte, NC, USA). Ammonium formate was purchased from Sigma-Aldrich (now of Merck). Formic acid, MS grade was purchased from Fluka (now of Honeywell).

### Instrument configuration

- Agilent 1290 Infinity II high-speed pump (G7120A)
- Agilent 1290 Infinity II multisampler (G7167B)
- Agilent 1290 Infinity II multicolumn thermostat (G7116B)
- Agilent 6470 triple quadrupole LC/MS (G6470B)

Table 1. Chromatography conditions.

| Parameter          | Value                                                                            |
|--------------------|----------------------------------------------------------------------------------|
| Mobile Phase A     | 20 mM ammonium formate in water at pH = 3 (pH adjusted with formic acid)         |
| Mobile Phase B     | 20 mM ammonium formate in water/acetonitrile (10/90)                             |
| Flow Rate          | 0.1 mL/min                                                                       |
| Injection Volume   | 20 µL                                                                            |
| Column Temperature | 35 °C                                                                            |
| Sample Diluent     | Acetonitrile/water (60/40)                                                       |
| Needle Wash        | MeOH/acetonitrile/water (25/50/25)                                               |
| Column             | Agilent InfinityLab Poroshell 120 HILIC-Z, 2.1 × 100 mm, 2.7 μm (p/n 685775-924) |

Table 2. Gradient.

| Time (min) | %A        | %В |  |  |  |
|------------|-----------|----|--|--|--|
| 0          | 20        | 80 |  |  |  |
| 1          | 20        | 80 |  |  |  |
| 5          | 27        | 73 |  |  |  |
| б          | 20        | 80 |  |  |  |
| 8          | 20        | 80 |  |  |  |
| Postrun    | 2 minutes |    |  |  |  |
|            |           |    |  |  |  |

Table 3. MS source parameters.

| Parameter         | Value        |
|-------------------|--------------|
| Ionization Source | AJS ESI      |
| Ionization Mode   | ESI Positive |
| Gas Temperature   | 250 °C       |
| Gas Flow          | 7 L/min      |
| Nebulizer         | 30 psi       |
| Sheath Gas        | 390 °C       |
| Sheath Gas Flow   | 11 L/min     |
| Capillary Voltage | 3,500 V      |
| Nozzle Voltage    | 0 V          |

#### Table 4. MRM parameters.

| Compound ID | Precursor m/z | Product m/z | Fragmentor (V) | CE | CAV | Ionization   |
|-------------|---------------|-------------|----------------|----|-----|--------------|
|             | 171           | 155         | 158            | 36 | 4   | ESI Positive |
| Derequet    | 171           | 103         | 158            | 32 | 4   | ESI Positive |
| Falaquat    | 171           | 77.1        | 158            | 44 | 4   | ESI Positive |
|             | 171           | 51.2        | 158            | 60 | 4   | ESI Positive |

#### Sample preparation



Figure 3. Flowchart for sample preparation.

#### Data acquisition and data analysis

All samples were acquired using the Agilent MassHunter data acquisition software version 10.1. Chromatograms were viewed through Agilent MassHunter qualitative analysis software version 10.0. Quantitation of each batch was carried out using Agilent MassHunter quantitative analysis software version 10.1.

### **Results and discussion**

Individual stock solutions were made and mixed to appropriate volumes of stock solutions to make working standards. Working standards prepared were of concentrations 10 and 1 ppm. Individual volumes of working standards are spiked in 10 mL of milk samples and followed the sample preparation to generate procedural standard calibration (prespike) points.

#### Table 5. Dilution chart for prespike calibration curve.

| Working Standard<br>Concentration (ppm) | Volume<br>Taken (µL) | Volume of<br>Milk (mL) | Obtained<br>Concentration<br>(ng/mL) |
|-----------------------------------------|----------------------|------------------------|--------------------------------------|
| 1                                       | 50                   | 10                     | 5                                    |
| 1                                       | 100                  | 10                     | 10                                   |
| 1                                       | 200                  | 10                     | 20                                   |
| 10                                      | 50                   | 10                     | 50                                   |
| 10                                      | 100                  | 10                     | 100                                  |
| 10                                      | 200                  | 10                     | 200                                  |



Figure 4. Extracted ion chromatogram (EIC) from blank milk matrix. Chromatograms showing matrix interference between 2 to 3 minutes.

Procedural standard calibration curves were made and found to be linear from 5 to 200 ng/mL with both linear regression and 1/x (Figure 6). Regression coefficient values were above 0.9950.

Spike levels were determined as per the maximum residue limits mentioned in BIS (Bureau of Indian Standards) regulation. Recovery% was calculated based on this experiment. Four spike samples were prepared at 10 ng/mL and injected in six replicates.

10 ppb = 10 ng/mL of milk sample pesticide residue absolute in 10 mL would be 100 ng. Therefore, 100  $\mu$ L from 1 ppm needs to be spiked in 10 mL of milk sample.



Figure 5. Extracted ion chromatogram (EIC) from procedural calibration standard at 10 ng/mL in milk matrix. Chromatograms showing a clear separation between matrix components and analyte.



Figure 6. Procedural standard calibration curves from 5 to 200 ng/mL.

| Batch Table                                                                          |   |                |             |       |             |       |             |          |                  |          |                  |        |                  |         |       |    |
|--------------------------------------------------------------------------------------|---|----------------|-------------|-------|-------------|-------|-------------|----------|------------------|----------|------------------|--------|------------------|---------|-------|----|
| Sample: 🔨 MATRIX BLANK 🔹 🗸 Sample Type: <all> 🔹 Compound: 🔇 PARAQUAT 🔹 🕽 ISTD:</all> |   |                |             |       |             |       |             |          | × <b>×</b>       |          |                  |        |                  |         |       |    |
| Sample                                                                               |   |                | PARAQUAT    |       | PA          | RAQ   | UAT Results |          | Qualifier (171.0 | > 155    | Qualifier (171.0 | -> 103 | Qualifier (171.0 | -> 51.2 |       |    |
| •                                                                                    | 7 | Name           | Туре        | Level | Exp. Conc.  | RT    | Resp.       | MI       | Calc. Conc.      | Accuracy | Ratio            | MI     | Ratio            | MI      | Ratio | MI |
| •                                                                                    |   | SOLVENT BLANK  | Blank       |       |             | 3.576 | 8           |          | 1.12811532       |          | 62.7             |        | 57.6             |         |       |    |
| •                                                                                    |   | MATRIX BLANK   | MatrixBlank |       |             | 3.714 | 24          |          | 1.17023590       |          |                  |        | 60.8             |         |       |    |
| •                                                                                    |   | MATRIX BLANK   | MatrixBlank |       |             | 3.694 | 32          |          | 1.18887582       |          |                  |        |                  |         | 126.4 |    |
|                                                                                      |   | MB 5 PPB       | Cal         | 1     | 5.00000000  | 3.728 | 1616        |          | 5.16497360       | 103.3    | 51.1             |        | 23.0             |         | 70.7  |    |
|                                                                                      |   | MB 10 PPB      | Cal         | 2     | 10.00000000 | 3.732 | 3532        |          | 9.97397532       | 99.7     | 55.5             |        | 34.9             |         | 71.5  |    |
|                                                                                      |   | MB 10 PPB      | Cal         | 2     | 10.00000000 | 3.725 | 3574        |          | 10.07974127      | 100.8    | 51.5             |        | 34.9             |         | 68.1  |    |
|                                                                                      |   | MB 10 PPB      | Cal         | 2     | 10.00000000 | 3.728 | 3552        |          | 10.02425245      | 100.2    | 54.6             |        | 32.9             |         | 70.4  |    |
|                                                                                      |   | MB 10 PPB      | Cal         | 2     | 10.00000000 | 3.725 | 3630        |          | 10.21961238      | 102.2    | 52.3             |        | 34.2             |         | 66.9  |    |
|                                                                                      |   | MB 10 PPB      | Cal         | 2     | 10.00000000 | 3.728 | 3567        |          | 10.06315914      | 100.6    | 55.2             |        | 33.7             |         | 67.7  |    |
|                                                                                      |   | MB 10 PPB      | Cal         | 2     | 10.00000000 | 3.728 | 3577        |          | 10.08765126      | 100.9    | 52.2             |        | 31.8             |         | 64.4  |    |
|                                                                                      |   | MB 10 PPB      | Cal         | 2     | 10.00000000 | 3.728 | 3491        |          | 9.87230830       | 98.7     | 55.3             |        | 33.2             |         | 69.5  |    |
|                                                                                      |   | MB 10 PPB      | Cal         | 2     | 10.00000000 | 3.728 | 3529        |          | 9.96707273       | 99.7     | 53.9             |        | 31.7             |         | 68.7  |    |
|                                                                                      |   | MB 20 PPB      | Cal         | 3     | 20.00000000 | 3.732 | 6843        |          | 18.28420486      | 91.4     | 55.8             |        | 33.4             |         | 69.2  |    |
|                                                                                      |   | MB 50 PPB      | Cal         | 4     | 50.00000000 | 3.725 | 20971       |          | 53.74810549      | 107.5    | 52.8             |        | 33.1             |         | 68.0  |    |
|                                                                                      |   | MB 100 PPB     | Cal         | 5     | 100.000000  | 3.728 | 36329       |          | 92.29618552      | 92.3     | 52.3             |        | 32.7             |         | 68.4  |    |
|                                                                                      |   | MB 200 PPB     | Cal         | 6     | 200.000000  | 3.728 | 81316       |          | 205.218757       | 102.6    | 52.0             |        | 31.7             |         | 67.8  |    |
| •                                                                                    |   | SOLVENT BLANK  | Blank       |       |             | 3.770 | 24          |          | 1.16948037       |          |                  |        | 12.9             |         | 180.3 |    |
| •                                                                                    |   | SOLVENT BLANK  | Blank       |       |             | 3.628 | 8           |          | 1.12829932       |          |                  |        | 13.4             |         |       |    |
|                                                                                      |   | MATRIX BLANK   | MatrixBlank |       |             | 3.721 | 20          |          | 1.15959948       |          | 150.3            |        | 41.4             |         | 144.3 |    |
| ۲ و                                                                                  |   | MATRIX BLANK   | MatrixBlank | ~     |             | 3.718 | 15          |          | 1.14695631       |          | 48.2             |        | 297.6            |         |       |    |
|                                                                                      |   | BRACKETING STD | QC          | 1     | 5.00000000  | 3.728 | 1543        |          | 4.98309177       | 99.7     | 56.5             |        | 35.7             |         | 72.5  |    |
|                                                                                      |   | BRACKETING STD | QC          | 1     | 5.00000000  | 3.728 | 1505        |          | 4.88575379       | 97.7     | 58.9             |        | 34.4             |         | 73.9  |    |
|                                                                                      |   |                | -           | -     |             |       |             |          |                  |          |                  | _      |                  | _       |       |    |
|                                                                                      | _ | SPIKE 1-1      | QC          | 2     | 10.00000000 | 3.725 | 3506        |          | 9.90841182       | 99.1     | 51.0             |        | 34.6             |         | 68.9  |    |
|                                                                                      | _ | SPIKE 1-1      | QC          | 2     | 10.00000000 | 3.725 | 3744        |          | 10.50758374      | 105.1    | 52.6             |        | 33.9             |         | 66.1  |    |
|                                                                                      | _ | SPIKE 1-1      | QC          | 2     | 10.00000000 | 3.725 | 3641        |          | 10.24684913      | 102.5    | 52.7             |        | 32.6             |         | 67.5  |    |
|                                                                                      | _ | SPIKE 1-1      | QC          | 2     | 10.0000000  | 3.728 | 3542        |          | 10.00009885      | 100.0    | 55.9             |        | 32.4             |         | 67.8  |    |
|                                                                                      | _ | SPIKE 1-1      | QC          | 2     | 10.00000000 | 3.728 | 3560        | <u> </u> | 10.04435924      | 100.4    | 51.2             |        | 36.2             |         | /2.2  |    |
|                                                                                      | _ | SPIKE 1-1      | QC          | 2     | 10.00000000 | 3.725 | 3617        |          | 10.18/4351/      | 101.9    | 51.8             |        | 34.4             |         | 65.8  |    |
|                                                                                      | _ | SPIKE 1-2      | QC          | 2     | 10.0000000  | 3.728 | 3/10        |          | 10.42198936      | 104.2    | 53.5             |        | 33.7             |         | 68.9  |    |
|                                                                                      | _ | SPIKE 1-2      | QC          | 2     | 10.00000000 | 3.725 | 3577        |          | 10.08806116      | 100.9    | 54.2             |        | 37.6             |         | 69.9  |    |
|                                                                                      | _ | SPIKE 1-2      | QC          | 2     | 10.00000000 | 3.728 | 3518        |          | 9.94033772       | 99.4     | 57.8             |        | 32.8             |         | /0.5  |    |
|                                                                                      | _ | SPIKE 1-2      | QC          | 2     | 10.0000000  | 3.728 | 3660        | <u> </u> | 10.29570883      | 103.0    | 55.0             |        | 34.5             |         | 68.3  |    |
|                                                                                      | _ | SPIKE 1-2      | QC          | 2     | 10.0000000  | 3.728 | 3566        |          | 10.06056524      | 100.6    | 54.3             |        | 33.3             |         | 68.7  |    |
|                                                                                      | _ | SPIKE 1-2      | QC          | 2     | 10.00000000 | 3.725 | 3551        | <u> </u> | 10.02289310      | 100.2    | 52.8             |        | 33.6             |         | /1.0  |    |
|                                                                                      | _ | SPIKE 1-3      | QC          | 2     | 10.0000000  | 3.718 | 4027        |          | 11.2180/930      | 112.2    | 50.9             |        | 32.8             |         | /0.3  |    |
|                                                                                      | _ | SPIKE 1-3      | QC          | 2     | 10.00000000 | 3.718 | 3817        |          | 10.69052749      | 106.9    | 52.8             |        | 32.2             |         | 67.4  |    |
|                                                                                      | _ | SPIKE 1-3      | QC          | 2     | 10.00000000 | 3.718 | 3622        |          | 10.19949171      | 102.0    | 55.4             |        | 35.5             |         | 70.4  |    |
|                                                                                      | _ | SPIKE 1-3      | QC          | 2     | 10.00000000 | 3.718 | 3784        |          | 10.60788915      | 106.1    | 55.4             |        | 34.6             |         | 67.3  |    |
|                                                                                      |   | SPIKE 1-3      | QC          | 2     | 10.00000000 | 3.721 | 3846        |          | 10.76191930      | 107.6    | 52.5             |        | 34.3             |         | 69.7  |    |
|                                                                                      | _ | SPIKE 1-3      | QC .        | 2     | 10.0000000  | 3.721 | 3600        |          | 10.14402026      | 101.4    | 52.3             |        | 35.1             |         | 73.5  |    |
|                                                                                      |   | SPIKE 1-4      | QC          | 2     | 10.00000000 | 3.721 | 3732        |          | 10.47674266      | 104.8    | 50.9             |        | 32.5             |         | 70.1  |    |
|                                                                                      | _ | SPIKE 1-4      | QC .        | 2     | 10.0000000  | 3.718 | 3724        |          | 10.45714244      | 104.6    | 58.1             |        | 36.7             |         | 69.6  |    |
|                                                                                      |   | SPIKE 1-4      | QC          | 2     | 10.00000000 | 3.714 | 3770        |          | 10.57094762      | 105.7    | 55.6             |        | 35.1             |         | 67.9  |    |
|                                                                                      | _ | SPIKE 1-4      | QC          | 2     | 10.00000000 | 3.718 | 3667        |          | 10.31215809      | 103.1    | 53.7             |        | 35.9             |         | 70.0  |    |
|                                                                                      |   | SPIKE 1-4      | QC          | 2     | 10.00000000 | 3.714 | 3435        |          | 9.73073688       | 97.3     | 59.7             |        | 39.4             |         | 73.1  |    |
|                                                                                      |   | SPIKE 1-4      | QC          | 2     | 10.00000000 | 3.718 | 3700        |          | 10.39485800      | 103.9    | 58.9             |        | 35.2             |         | 72.4  |    |

Figure 7. Calibration table showing the accuracy, recovery, and MRM ion ratio of paraquat in procedural calibration standards, bracketing standards, and spike samples.

All four spike samples and their six replicate injections showed a recovery% that varies between 97% and 112% (Figure 8).



Figure 8. Compounds-at-a-glance feature showing chromatograms of quantifier and qualifiers of calibration standards used in matrix-based linearity.



Figure 9. Matrix plot of recovery% of four spike samples prepared and injected in six replicates.



Figure 10. Overlaid total ion chromatogram of paraquat in procedural calibration standard at 10 ng/mL in milk sample showing %RSD of 1.1% (n = 8).

# Conclusion

A highly sensitive, selective, and reproducible method based on MRM was developed to quantify paraquat residue in milk matrix. QuEChERS-based extraction and dSPE-based sample cleanup were adopted for sample preparation. Chromatography based on HILIC-Z chemistry gave good separation of matrix components from the analyte, which is critical to achieve the method performance. Acceptable recovery was obtained, with consistent results at the maximum residue limit. This method can be adopted for routine analysis of milk samples for the quantitation of paraquat residue.

### References

- Paraquat, Diquat, and Mepiquat Analysis in Environmental Water. Agilent Technologies application note, publication number 5994-1307EN, 2019.
- 2. Rapid Separation of Paraquat and Diquat Using Hydrophilic Interaction Chromatography (HILIC) with LC/MS Detection. Agilent Technologies application note, publication number 5991-8830EN, **2017**.
- Comprehensive LC/MS/MS Workflow of Pesticide Residues in Food Using the Agilent 6470 Triple Quadrupole LC/MS System. Agilent Technologies application note, publication number 5994-2370EN, 2020.
- Bedi, J. S. *et al.* Pesticide Residues in Milk and their Relationship with Pesticide Contamination of Feedstuffs Supplied to Dairy Cattle in Punjab (India). *J. Anim. Feed Sci.* **2019**, *27*, 18–25.
- Paraquat and Diquat Analysis in Tea. Agilent Technologies application note, publication number 5994-1453EN, 2019.

### www.agilent.com/chem

DE44314.5761574074

This information is subject to change without notice.

© Agilent Technologies, Inc. 2021 Printed in the USA, June 21, 2021 5994-3596EN

