

Automation of Sample Preparation using a GERSTEL MPS2

Sean O'Connor

- 7 Years Flavour Industry
 - GC-FID, GCMS
- 11 ½ Years Unilever SEAC
 LC, GC, GCMS, LCMS, GCQQQ, LCQQQ MPS
- 1 Year Anatune
 - GC, GCMS, GCQQQ, GC/QTOF, MPS

Anatune

- Specialise in GC, MS and automation in many industries
- Agilent VAR
- UK Supplier of Gerstel MPS Autosampler
- Based in Girton, Cambridge
- 20 Years old next month !!

Applications Laboratory

- GC/MS
- GC/MS/MS
- GC/QTOF
- All have Dual head MPS2
 Autosamplers

• Growing Team - 2 to 6 people in 18 months

Sample preparation

Todays Talk

- Why Automate ?
- How do we automate ?
- Demo : Automated Extraction and analysis of Acid Herbicides

• Demo : Methanolic Extraction of Soil

WHY AUTOMATE ?

Why Automate ?

- We're too busy
- Automation means losing jobs
- I have done it this way for years and it works

Manual method

- Prepare IS solution (5 minutes)
- Prepare calibration stock solution (5 minutes)
- Prepare 5 standards + 2 AQC (30 minutes)
- Add 100 mL of sample to each extraction flask (1 minute per sample)
- Add 200 µL of IS solution to each sample (10 seconds per sample)
- Add 20 mL of extraction solvent (1 minute per sample)
- Shake for 1 hour and allow to separate 30 minutes
- Remove extract from extraction vessel and transfer to vial for analysis (30 seconds per sample)
- Injection and GC run (30 minutes)
- Dispose of waste and clean glassware for next analysis (30 minutes)

Why Automate ?

- Prepare IS solution (5 minutes)
- Prepare calibration stock solution (5 minutes)
- Add 5 mL of sample to each 10 mL vial (1 minute per sample)
- Prepare 5 standards + 2 AQC (30 minutes)
- Add 10 µL of IS solution to each sample (10 seconds)
- Add 1 mL of extraction solvent (20 seconds)
- Shake for 1 hour and allow to separate 30 minutes
- Directly inject from extract layer (30 minute run time)
- Dispose of vials (30 seconds)

Gerstel Maestro Software

No Prep Ahead

With Prep Ahead

Comparison of Analyst's Time

Analyst Time (hours)

Solvent Saving

Volume of Solvent (mL)

-----Manual Method (mL) ------Automated Method (mL)

Why automate ?

Manual Preparation

- Preparation restricted to working hours
- Different people have different ideas as to how things are done
- Samples and standards are prepared all at the same time
- Glassware clean up required before
 next use
- Exposure to solvents a potential hazard / safety risk

Automated Preparation

- Works 24/7
- Consistency
- Samples are prepared just in time for analysis
- Solvent (Cost) saving Every 132 extracts (on method shown) saving a 2.5 L bottle of solvent (£50-£100)
- Analysis done all in vial fewer losses
- Exposure to solvents reduced

HOW TO AUTOMATE ?

Simplest Dual Head MPS2

anatune What can we automate with the simplest MPS2 ?

- Standard preparation
- Simple derivatisation
- Dilution
- Basic liquid extraction of easily accessible compounds

add 2 mL HCI 1N

add 200 uL ISTD 1g/L

add 2g NaCl

add 4mL Hexane/DCM

mix for 20 min @ 400 rpm

recover org.Phase in GC vial

add 5mL sample

add 500 uL HCI 1N

add 300 uL ISTD

add 500 mg NaCl

add 1mL Hexane/DCM

mix for 20 mins @ 400 rpm recover org.Phase in GC vial

=> syringe: 2.5 mL

extr. vial w/ 500 mg NaCl Tray1,VT32-10 add 5mL sample AUTO add 300 uL ISTD (9) (17) 1 ISTD 10 18 HCI add 500 HCI 1N DCM/Hexane 12 20 add 1 mL Hexane/DCM 5 (13) 21 mix for 20 mins @ 400 rpm 6 22 15) (23) recover org. phase in GC vial

Action	MPS	Method / Value	Source	Vial	Destination	Vial	
PREP Vials 1-10		No Overlap					
🗟 ADD	Right MPS	Add 5 mL Sample to Extraction Vial	Tray1,VT32-10		Tray1,VT32-10	+16	
🗟 ADD	Right MPS	Add 300 uL ISTD	SolvRes1		Tray1,VT32-10	+16	
🗟 ADD	Right MPS	Add 500 uL HCI	SolvRes2		Tray1,VT32-10	+16	
🗟 ADD	Right MPS	Add 1000 uL DCM/Hexane	SolvRes3		Tray1,VT32-10	+16	
MOVE	Right MPS		Tray1,VT32-10	+16	Agitator,AgiTray		
O MIX	Right MPS	Mix 20 Min					
MOVE	Right MPS		Agitator, Agi Tray		Tray1,VT32-10	+16	
🕞 WAIT	Right MPS	Wait 3 min					
🗟 ADD	Right MPS	Transfer 600 uL @ 27.2 mm to GC Vial	Tray1,VT32-10	+16	Tray2,VT98		

8

(25)

26

27

28

29

30

(31)

(32)

(16)(24)

8

- Vortex Mixer
- Capable of vortexing 2, 4 or 10 mL vials
- Top vortex speed of 3000
 rpm

mVorx

What can we do with the addition of the mVorx ?

What can we do with the addition of the mVorx ?

- More rapid liquid-liquid and liquid-solid extraction
- Vortex mixing enable the break up of soils, food materials enabling more thorough extraction

mVap

- Solvent evaporation station
- Control temperature

 Range RT-120°C
- Control vacuum
 - Range Atmospheric 2 mTorr
- Control time

• Fully Automated

What can we do with the addition of the mVap

?

- Evaporate to dryness
- Solvent exchange

anatune

 Use as a second heated agitator for more complex derivatisation procedures • Use a catcher solvent to evaporate to volume

CF-200 Centrifuge

LAUNCHED AT AGILENTS FOOD AND ENVIRONMENTAL MEETING 2016 !!

- Capable of centrifuging 2
 and 10 mL vials
- Top speed 4500 rpm (2000g)
- 6 positions

Demonstration Kit

Cold Solvent Extraction

- Advantages of automation
 - Once the sample has been weighed no more sample prep required
 - Extracts are all extracted for the same amount of time
 - Reproducibility is better
 - Extracts injected as soon as prepared
- Advantages of LVI
 - Higher sensitivity
 - No need for evaporative techniques

anatune

Single extraction of washing liquid

Cold Solvent Extraction

anatune

Cold Solvent Extraction

Multiple extractions of washing liquid (n=5)

Multiple extractions of washing liquid (n=5) Close up

Reproducibility across the chromatogram

			Remove hexane								
Weigh 15(±0.5) g of sample into a beaker Slowly add 20 g of hexane	minutes for	layer and concentrate	Inject 1 µL into	Compound	Cintronellol		a-isomethyl ionone		Tetradecanoic acid		
	of hexane	hexane osmosis to occur	using rotary evaporator	GC	Run	Retention time	Peak Area	Retention time	Peak Area	Retention time	Peak Area
					1	12.7136	56045027	20.2816	97668611	34.2790	29016820
			2	12.7108	53148282	20.2816	91880261	34.2845	26519954		
			3	12.7136	53417358	20.2816	95410824	34.2846	28986281		
			4	12.7108	52473018	20.2816	92067951	34.2818	29156653		
			5	12.7108	53495398	20.2788	95516782	34.2789	28465086		
					Mean	12.7119	53715817	20.2810	94508885	34.2818	28428959
					Stdev	0.0015	1362858	0.0013	2484001	0.0028	1099015
Accurately weigh	Slowly add	J (100	Inj	ect 10 µL of	%RSD	0.0121	2.54	0.00617	2.63	0.00817	3.87
1.5 g of sample into a 10 mL headspace vial	μL/min) 3.3 hexane (inc RTL inte standar	3 mL of Leav Cluding m rnal rd)	ve for 90 hinutes GC volu	exane layer ectly into the using large ume injection							

ALS Coventry

Pesticide	Transition	Correlation coefficient (r2)	Fit
124-Trichlorobenzene	180.0 -> 145.0	0.9985	Linear
HCH-beta	181.0 -> 145.0	0.9982	Linear
Dichlobenil	171.0 -> 100.0	0.9998	Linear
Chlordane-#1-trans	372.8 -> 265.9	0.9952	Linear
Tecnazene	261.0 -> 203.0	0.9988	Quadratic
Cyfluthrin	163.0 -> 127.0	0.9987	Quadratic

Reproducibility

	D3 1,2,4 Trichlorobenzene	13C6-HCH-gamma	d14-Trifluralin	d10-Parathion-ethyl
Standard	Area	Area	Area	Area
1	299878	366733	579973	131833
2	313286	379972	580459	123728
3	313128	369943	552668	119763
4	312448	364992	549098	121595
5	309863	360063	559213	126399
6	314287	362141	529283	114059
Standard deviation	5404.3	7102.1	19595.0	6040.4
Mean	310481.7	367307.3	558449.0	122896.2
%RSD	1.7	1.9	3.5	4.9

Extraction of Solid Samples

Extraction of Solid Samples

Weigh approximately 5 mg of oregano

Add 500 uL of methanolic hydrochloride

Mix at 70 °C at 500 rpm

Wait 1 minute

Add 500 uL of hexane

Add 500 uL of water

Wait for 1 minute

Inject 10 uL of the hexane layer via LVI on the CIS4

Counts vs. Acquisition Time (min)

FAME	%CV (n=6)
Methyl tetradecanoate	6.9
Methyl hexadecanoate	4.7
Methyl octadecanoate	6.2
Methyl eicosanoate	5.8
Methyl docosanoate	3.9

The Beast of Norwich

The Beast of Norwich

- Start with freeze dried plant material
- A saponification
- A liquid-liquid extraction
- Evaporated of each extracts to dryness
- Derivatisation of the contents of the vial to give the final analysis solution

What tools do we have ?

- Automation of liquid extraction, derivatisation and other simple sample preparation is easily done using an GERSTEL MPS system
- Maestro software is fully integratable with Agilent's Chemstation and Masshunter software
- Automation can save you solvent and analyst time and make the lab safer
- The mVorx, mVap and the new CF200 centrifuge create a flexible system which can be applied to a number of techniques

Acknowledgements

Thank You Questions ?

METHANOLIC EXTRACTION OF SOILS