


APPLICATION OF TARGETED LIPIDOMICS TO DETERMINE CHANGES IN THE PLASMA LIPIDOME OF MALE RATS FOLLOWING REPEAT ORAL ADMINISTRATION OF METHAPYRILENE

Authors: Roy Martin¹, Anthony Midey¹, Ian D Wilson², Robert S Plumb¹

Affiliations: 1 Waters Corporation, Milford, MA, USA, 2 Imperial College London, London, UK

INTRODUCTION

Omics-based biomarker technologies including metabolic profiling and lipidomics are making a significant impact on disease understanding, drug development, and translational research. A wide range of pathophysiological processes involve lipids and monitoring changes in lipid concentration can give valuable insights into drug toxicity and off target pharmacology. Methapyrilene, an antihistamine and anticholinergic, has been shown to cause cancer following chronic administration [1]. Here we report changes detected by targeted HILIC-MS/MS in the plasma lipidome of male Wistar rats following the oral administration of methapyrilene over 5 days at 0, 50 and 150 mg/kg/day.

Blood was collected via vena cava 24, 72 and 120 h post dose (D1, D3, D5). A study QC was constructed by pooling 10 μ L of plasma from each sample. Plasma samples and QCs (25 μ L) were protein precipitated with 125 μ L IPA/ACN (1:1, v/v) containing Avanti EQUISPLASH lipid stable label isotope mix diluted 1:500, then vortex mixed and incubated at 2°C 2 h (shaken every 30 min) then centrifuged for 10 min. The supernatant was transferred to sample vials (Waters Total Recovery) for analysis.

A panel of 435 unique lipids were measured using an 8 min HILIC UPLC method (Waters ACQUITY Premier UPLC system™ with Premier BEH Amide Column, 1.7 μ m, 2.1 mm X 100 mm) coupled to a tandem quadrupole MS (Waters Xevo™ TQ-Absolute) operating in successive positive, then negative ion MRM mode [2]. The MRM provide lipid IDs. The LC peak areas were determined using Skyline (MacCoss lab [3]) and exported to MetaboAnalyst 6.0 [4] for statistical analysis.

Figure 1. LipidQuan™ complete targeted lipidomics workflow used for preparing and analyzing the plasma extracts [2]

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS

Figure 2. Pooled Plasma QC HILIC extracted ion chromatograms in A) positive and B) negative ion modes showing separation by lipid class.

Figure 4. Coefficient of Variation (%CV) of EQUISPLASH internal standard total peak areas in batch pooled QCs

Figure 6. Variable Importance Plot (VIP) obtained from the statistical analysis of the (A) +ve ESI mode; and (B) -ve ESI mode HILIC-MS/MS analysis of rat plasma over the time course of methapyrilene administration

Figure 9: Variation in free fatty acid (FFA) abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 10: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 11: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 12: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 13: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 14: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 15: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 16: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 17: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 18: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 19: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 20: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 21: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 22: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 23: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 24: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 25: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 26: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 27: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 28: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 29: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 30: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 31: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 32: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 33: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 34: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 35: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 36: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 37: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 38: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 39: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 40: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 41: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 42: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 43: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 44: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 45: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 46: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 47: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 48: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 49: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 50: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 51: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 52: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 53: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 54: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 55: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 56: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 57: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 58: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 59: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 60: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 61: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 62: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 63: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 64: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 65: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 66: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 67: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 68: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 69: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 70: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 71: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 72: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 73: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 74: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 75: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 76: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 77: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 78: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 79: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 80: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 81: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 82: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 83: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 84: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 85: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 86: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 87: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 88: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 89: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 90: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 91: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 92: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 93: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 94: Variation in Bile Acid abundance following dosing with methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

Figure 95: Variation in Ceramide and GlcCer abundance following dosing with methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Figure 96: Variation in Carnitine abundance following dosing with methapyrilene at 150 mg/kg over 5 days (pos. ion).

Figure 97: Variation in FFA abundance following dosing with methapyrilene at 150 mg/kg (neg. ion).

Figure 98: Variation in Bile Acid abundance following