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INTRODUCTION

Omics-based biomarker technologies including metabolic
profiling and lipidomics are making a significant impact on
disease understanding, drug development, and translational
research. A wide range of pathophysiological processes
involve lipids and monitoring changes in lipid concentration
can give valuable insights into drug toxicity and off target
pharmacology. Methapyrilene, an antihistamine and
anticholinergic, has been shown to cause cancer following
chronic administration [1]. Here we report changes detected
by targeted HILIC-MS/MS in the plasma lipidome of male
Wistar rats following the oral administration of methapyrilene
over 5 days at 0, 50 and 150 mg/kg/day.
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Blood was collected via vena cava 24, 72 and 120 h post dose (D1, D3,
D5). A study QC was constructed by pooling 10 pL of plasma from
each sample. Plasma samples and QCs (25 pL) were protein
precipitated with 125 uL IPA/ACN (1:2, v/v) containing Avanti
EQUISPLASH™ lipid stable label isotope mix diluted 1:500, then vortex
mixed and incubated at 2°C 2 h (shaken every 30 min) then centrifuged
for 10 min. The supernatant was transferred to sample vials (Waters
Total Recovery) for analysis.

A panel of 435 unique lipids were measured using an 8 min HILIC UPLC
method (Waters ACQUITY Premier UPLC system™ with Premier BEH
Amide Column, 1.7 um, 2.1 mm X 100 mm) coupled to a tandem
quadrupole MS (Waters Xevo™ TQ-Absolute) operating in successive
positive, then negative ion MRM mode [2]. The MRM provide lipid IDs.
The LC peak areas were determined using Skyline (MacCoss lab [3])
and exported to MetaboAnalyst 6.0 [4] for statistical analysis.
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Figure 1. LipidQuan™ complete targeted lipidomics workflow used for prepar-
ing and analyzing the plasma extracts [2]

TARGETED UPLC-MS/MS

The rat plasma extracts (n = 2) from the three dose groups over the 5
day period were analyzed with HILIC chromatography that separates
the lipids classes by head group [2]. MS/MS detection in +ve and -ve
ESI mode using 450 MRM transitions (see ref [2]) quantified 430 lipid
species using single-point calibration to the corresponding deuterated
lipid internal standard in the same class. Batch QC samples were
evenly distributed throughout the analysis, and each sample was
analyzed in duplicate. Representative extracted ion chromatograms
from the pool QC are shown in Figures 2A and 2B, respectively.

The rapid MRM data acquisition capability of the TQ-Absolute MS gave
accurate, reproducible acquisition of the 430 MRM channels (+ve/-ve)
ESI modes, consistent assay performance. The method showed
excellent stability and reproducibility over the course of the batch, with
%CYV for the EQUISPLASH mix in the batch QC ranging from 1.5 to

12%, for the 16:1 d7 LPC and 15:0_18:1 d7 PS respectively in Figure 3.
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Figure 2. Pooled Plasma QC HILIC extracted ion chromatograms in A) posi-
tive and B) negative ion modes showing separation by lipid class.
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Figure 4. % Coefficient of Variation (%CV) of EQUISPLASH internal stand-
ard total peak areas in batch pooled QCs
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STATISTICAL ANALYSIS OF TARGETED LIPIDOMICS DATA

Principle Component Analysis (PCA) of the chromatographic peak areas from the 3 groups showed no observable difference in the vehicle only rat
on all three sampling days (D1, 3 & 5; 24h post dose). The D1 24h samples from both the 50 and 150 mg/kg methapyrilene dosed group
clustered with the vehicle only samples as did the D3 50 mg/kg dosed samples. However, the D3 150 mg/kg samples were separated from the
vehicle samples. The D5 50 and 150 mg/kg dose group samples were both separated from the vehicle samples and from the D3 50 mg/kg rats.
These two D5 groups did not cluster together either, suggesting differences in the lipid profiles of the 50 and 150 mg/kg dose group samples on
D5 as seen in Figures 5A and 5B.
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Figure 5: PCA scores plots from the statistical analysis of the (A) +ve mode; and (B) -ve mode ESI HILIC-MS/MS analysis of rat plasma for
vehicle (control), 50 mg/kg dose, and 150 mg/kg dose taken on Day 1 (D1), Day 3 (D3), and Day 5 (D5)

VARIABLE IMPORTANCE PLOT OF LIPID MARKERS

Variable Important Plots (VIP) provide heat maps of highest varying specific lipid chromatograph peak areas amongst the three conditions
(vehicle, 50 mg/kg dose, and 150 mg/kg dose. In +ve ESI mode, ceramides (Cer), glucosyl ceramides (GlcCer). and carnitines contributed most
significantly to the observed variance in the data. While in -ve ESI mode, free fatty acids (FFA), bile acids, PI, PE, and LPEs all showed some
degree of dysregulation, contributing to the observed variation in the statistical analysis in Figures 6 A and B, most significantly for 50 mg/kg and
150 mg/kg methapyrilene doses on day 5 (D5).
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Figure 6: Variable Importance Plot (VIP) obtained from the statistical analysis of the (A) +ve ESI mode; and (B) -ve ESI mode HILIC-
MS/MS analysis of rat plasma over the time course of methapyrilene administration

DISCUSSION

Changes the in the abundance of Glucosyl ceramides (GlcCer) and
Carnitines were compared between the dose groups by sample time as
shown in Fig. 6A. The data in Figure 7 illustrate the increase in GlcCer
(d18:1/22:1) and GlcCer(d18:1/16:0) relative to the other GlcCer for the
150 mg/kg dose group.
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Figure 7: Variation in Ceramide and GlcCer abundance following dosing with
methapyrilene at 150 mg/kg sampled over five days (pos. ion).

Similarly, the relative abundances of Hexadecanoyl-L-carnitine (C16:0)
and Oleoyl-L-carnitine (C18:1) significantly increased on day 5 at the
150 m/g kg dose relative to D1 and D3, and relative to the other
carnitines as in Figure 8.
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Figure 8: Variation in Carnitine abundance following dosing with metha-
pyrilene at 150 mg/kg over 5 days (pos. ion).

Changes in lipid abundance were also observed in the -ve ESI data.
Free fatty acid (FFA) (C20:0) decreased over the entire five day dosing
period at 150 mg/kg dose vs. other FFAs, such as C22:3. The
downward trend was consistent over all 150 mg/kg dosed rats,
illustrated in Figure 9.
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Figure 9: Variation in free fatty acid (FFA) abundance following dosing
with methapyrilene at 150 mg/kg (neg. ion).
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Glycochendexoycholic acid (GCDCA), glycoursodeoxycholic acid
(GUDCA), and glycodeoxycholic acid were most upregulated bile acids
All three significantly increased on D5 in both the 50 mg/kg and 150 mg/
kg samples vs. the vehicle. The 150 mg/kg dosed samples also showed
greater increase in these bile acids relative to the 50 mg/kg samples on
day 5, seen below in Figure 10.
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Figure 10: Variation in Bile Acid abundance following dosing with
methapyrilene at 50 mg/kg and 150 mg/kg seen on day 5 (D5)

CONCLUSIONS

e The dysregulation of the plasma lipidome following oral
administration of methapyrilene in male Wistar rats was studied
using a rapid (8 min.) UPLC HILIC-MS/MS assay on a tandem
quad MS with MRM for lipid identification.

e A broad range of lipid classes, including mono-, di-,
triglycerides, FFA'’s, and cholesterol esters ceramides, hexosyl
ceramides, PG, PC, SM, LPC, LPE, PS, PA, PI, LPA, and LPI
were quantified using stable labelled isotopes.

e The HILIC-MRM method displayed excellent reproducibility and
accuracy through the course of the analytical batch with CV
ranging from 1.5 — 12% for internal standards.

« Selected bile acids, carnitines, LPEs and GlcCer lipids
increased following dosing with methapyrilene, while selected
FFA and PE lipids decreased post dose, with biggest changes
seen at Day 5 (D5) using statistical analyses of LC-MSMS data.
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