Extraction and analysis of poly- and perfluoroalkyl substances (PFAS) from soil

Authors: Matthew S. MacLennan^{1,2}, Daniel Ng¹, David Hope^{1,3} ¹Pacific Rim Laboratories, #103, 19575-55A Avenue, Surrey, B. C. Canada V3S 8P8 ²Matthew@pacificrimlabs.com ³Dave@pacificrimlabs.com

Introduction

Recent studies suggest that toxic and highly persistent polyand perfluorinated alkyl substances (PFAS) are much more prevalent in tissue and soil than in water. The increasing length of perfluoroalkyl chain in PFAS is correlated strongly to lower water solubility/higher adsorption behavior of a particular PFAS molecule in the environment (i.e., migration of PFAS at soil/water/air interfaces) and in remediation/ filtration (i.e., choice of filtration media or sorbents). There are over 6,000 PFAS commercially available, many of which have high environmental persistence and have been found in water and soils globally. This poses a significant challenge to developing analytical methods, especially for the extraction of a variety of PFAS from solid matrices such as soil. Previously, we reported unsatisfactory (0–50%) recovery of long-chain PFAS from soil using vortex/sonication.¹

In the present study, soil was spiked with 24 PFAS (C4-C14 acids, C4-C10 sulfonates, 4:2, 6:2 and 8:2 fluorotelomers, C8 sulfonamide) at 1 ng/g, which were allowed to absorb overnight into the soil samples.

The soil samples were extracted using the Thermo Scientific[™] Dionex[™] ASE[™] 350 Accelerated Solvent Extractor, which produced 70–130% recovery of all PFAS target compounds. Accelerated solvent extraction has outperformed commonly used, manual "shaking" extraction methods under the same conditions.

After ASE extraction, the solution from the ASE sample collection vials underwent clean-up using solid-phase extraction (SPE) and were analyzed on an LC/MS/MS in a 15-min run. Blanks contained no significant amounts of PFAS. Accelerated solvent extraction is demonstrated to be acceptable for the extraction of short- and long-chain PFAS, with a variety of polarities and head-groups, from soil in the range of 1 ng/g to 400 ng/g.

73937

Experimental

Sample information

A 10 g soil sample was in 250 mL polypropylene or polyethylene bottles with no PTFE or other fluorinated polymers. Two grams were taken for analysis.

Spiking

Sample preparation: Weigh out 2 g of soil sample in a 250 mL glass beaker.

- Add 10 g diatomaceous earth to the beaker and mix with the soil sample.
- Transfer the sample mixture into a 100 mL stainless steel ASE cell with cellulose filter at the bottom of the cell.
- Top up the cell with diatomaceous earth.
 - Spike extraction surrogate and native standard.
 - Place a 250 mL bottle with septa cap in the bottle tray of the Dionex ASE 350 system.

Accelerated solvent extraction (Dionex ASE 350 setup)

Rinse settings					
Solvent	100% acetone				
Volume	13 mL				
Cycles	3				
Extraction settings					
Cell type	Stainless steel				
Oven temperature	100 °C				
	Time	300 s			
Static cycle	Solvent	80:20 methanol/ acetonitrile			
	Volume	50 mL			
Cycles	3				
Purge time	120 s				

Clean-up

Sample clean-up used a styrene-divinylbenzene (SDVB) polymer SPE cartridge (500 mg, 6 mL), on a vacuum-controlled manifold, under the following sequential conditions:

- Condition cartridges with 15 mL methanol.
- Run 20 mL of reagent water through the cartridge.
- Transfer the extracted sample solution from the Dionex ASE 350 system to the SPE cartridge using a large-volume sampler.
- Rinse the sample bottle with 10 mL reagent water and transfer to the cartridge.
- Vacuum dry the SPE cartridge.

Elution phase

- Rinse the sample bottle with 10 mL methanol and transfer to the SPE cartridge.
- Elute all methanol extracts into a polypropylene centrifuge tube.

LC parameters

A Thermo Scientific[™] Vanquish[™] LC, with all Teflon[™] lines replaced by PEEK tubing, coupled to a Thermo Scientific[™] TSQ Quantis[™] triple quadrupole mass spectrometer, was used for sample analysis.

Solvent B	10 mM ammonium acetate in 19% v/v acetonitrile/81% methanol
Solvent A	10 mM ammonium acetate in 19% v/v acetonitrile in water
Column temperature	25 °C
Gradient	Solvent ramps from 40% Solvent B to 90% Solvent B over 15 min
LC flow rate	0.300 mL/min

MS parameters

The H-ESI source was used in the negative ionization mode and the optimized MS parameters were as follows:

Q1 resolution	0.7 Da
Q3 resolution	1.2 Da
Use cycle time	True
Cycle time	0.5 s
CID gas	2 mTorr
Source fragmentation	0 V

Chromatographic peak width	6 s
ESI negative voltage	1,500 V
Sheath gas	57.6 arb
Aux gas	2.4 arb
Sweep gas	0.4 arb
lon transfer tube temperature	325 °C
Vaporizer temperature	350 °C

Table 1. Monitored SRM transitions

Compound	Retention time (min)	Precursor (<i>m/z</i>)	Product (<i>m/z</i>)	Collision energy (V)	RF lens (V)
PFBA	1.38	212.979	168.97	10.23	56
¹³ C ₄ -PFBA	1.38	216.979	171.97	12.81	71
PFPeA	1.89	262.976	219.042	10.23	79
¹³ C ₅ -PFPeA	1.89	268	223	10.23	64
PFHxA	3.00	312.9	268.8	10.23	73
¹³ C ₅ -PFHxA	3.00	318	273	10.23	76
4:2 FTS	2.70	326.974	307.042	19	129
¹³ C ₂ -4:2 FTS	2.70	328.974	81.040	19	147
PFPeS	3.76	307.042	80.042	35	151
PFBS	2.33	298.912	79.946	32	152
¹³ C ₂ -PFBS	2.33	302	79.946	32	152
PFHpA	4.74	362.97	319	10.23	81
¹³ C ₄ -PFHpA	4.74	367	322	10.23	82
PFHxS	5.56	398.912	79.929	37.2	154
¹³ C ₃ -PFHxS	5.56	401.947	79.957	37.3	171
PFOA	6.75	412.966	369	10.23	91
¹³ C ₈ -PFOA	6.75	421	376	10.23	92
6:2 FTS	6.36	426.968	406.988	22.43	164
¹³ C ₂ -6:2 FTS	6.36	428.968	81.040	23.6	164
PFHpS	7.43	448.933	80.012	39.67	184
PFNA	8.68	462.963	418.946	10.23	99
¹³ C ₉ -PFNA	8.68	472	427	10.23	97
PFOS	9.19	498.862	79.946	40.78	164
¹³ C ₈ -PFOS	9.19	507	79.917	40.63	169
PFDA	10.39	512.96	469	10.23	108
¹³ C ₆ -PFDA	10.39	519	474	10.23	109
8:2 FTS	10.17	526.962	506.97	25.73	190
¹³ C ₂ -8:2FTS	10.17	528.962	81.010	25.27	190
PFNS	10.73	548.927	80.071	44.4	177
PFUdA	11.87	562.957	519	10.23	117
¹³ C ₇ -PFUdA	11.87	570	525	10.23	117
NMeFOSAA	11.13	569.925	418.926	19.36	200

Table 1. Monitored SRM transitions (cont.)

Compound	Retention time (min)	Precursor (<i>m/z</i>)	Product (<i>m/z</i>)	Collision energy (V)	RF lens (V)
d3-N-MeFOSAA	11.13	572.912	418.958	20.39	167
PFOSA	9.47	497.946	78.071	30.24	175
¹³ C ₈ -PFOSA	9.47	505.946 78.071 31.57		186	
NEtFOSAA	11.89	583.983	526	19.02	187
d5-N-EtFOSAA	11.89	588.962	530.97	18.96	144
PFDS	12.06	598.924	80.042	44.92	192
PFDoA	13.11	612.9	612.9 569 10.23		126
¹³ C ₂ -PFDoA	13.11	615	570	10.23	122
PFTrDA	14.16	662.95	619	10.23	134
PFTeDA	15.06	712.95	668.97	11.782	143
¹³ C ₂ -PFTeDA	15.06	714.95	670 10.23		142
PFOA and PFOS Alte	rnatives				
HFPO-DA	3.52	284.96	168.887	17.35	68
¹³ C ₃ -HFPO-DA	3.52	286.912	168.833	10.23	67
ADONA	5.09	376.912	250.988	10.23	91
°CI-PF ₃ ONS	10.21	530.825	350.917	24.67	167
¹¹ CI-PF ₃ OUdS	12.80	630.825	450.887	27.17	254

All PFAS compounds analyzed in this method are shown in Figure 1.

Figure 1. Chromatogram of PFAS compounds analyzed

Chromatogram of a soil sample

RT: 4.83

100-

Only native analytes found at appreciable levels in the soil sample are shown in Figure 2. These levels are between 1 and 5 ng/g, with the exception of PFOS at 50 ng/g. From top to bottom, the analytes are PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFHxS, and PFOS. The other 21 PFAS analytes were at or below detection limit.

PFAS background levels

The Dionex ASE 350 system, which was used to develop this method, contains Teflon lines. Due to the lines being exposed to a variety of solvents over several years, the PFAS background is at a minimum. Table 3 shows the levels of PFAS measured in the blanks processed within different spike batches (i.e., in a batch of soil samples spiked with PFAS, these are the PFAS levels in the blanks processed with that batch). These blanks contain diatomaceous earth and isotopically labeled PFAS internal standards (surrogates), but no spiked native PFAS and no soil. Table 4 shows the linearity for PFAS in soil.

Figure 2. Native analytes found at appreciable levels in a soil sample

Internal standard recoveries (spiked in at 10 ng/g or 5 ng/g) are as listed in Table 2.

Compound	Recovery (%)	Compound		Recovery (%)
¹³ C ₄ -PFBA	71	¹³ C ₃	-PFBS	98
¹³ C ₅ -PFPeA	93	¹³ C ₃	PFHxS	95
¹³ C ₅ -PFHxA	97	¹³ C ₈	-PFOS	91
¹³ C ₄ -PFHpA	96	¹³ C ₃	-HFPODA	56
¹³ C ₈ -PFOA	94	² H ₃ -	NMEFOSAA	93
¹³ C ₉ -PFNA	104	² H ₃ ·	NETFOSAA	90
¹³ C ₆ -PFDA	99	¹³ C ₈	-FOSA	92
¹³ C ₇ -PFUdA	95	¹³ C ₂	-4:2FTS	110
¹³ C ₂ -PFDoA	97	¹³ C ₂	-6:2FTS	93
¹³ C ₂ -PFTeDA	108	¹³ C ₂	-8:2FTS	98

Table 3. Measured PFAS levels in blanks

Spike level batch	1 ng/g	spike	20 ng/g spike	400 ng/g spike	Spike level batch	1 ng/g spike		20 ng/g spike	400 ng/g spike
Units	ng/g	ng/g	ng/g	ng/g	Units	ng/g	ng/g	ng/g	ng/g
PFBA	0.01	0.01	0.05	0.05	NETFOSAA	n.d.	n.d.	n.d.	n.d.
PFPeA	n.d.	n.d.	n.d.	n.d.	FOSA	n.d.	n.d.	n.d.	n.d.
PFHxA	0.01	0.01	0.03	0.04	PFBS	n.d.	n.d.	0.01	n.d.
PFHpA	n.d.	n.d.	0.02	0.01	PFPeS	n.d.	n.d.	n.d.	n.d.
PFOA	0.01	0.01	0.04	0.04	PFHxS	n.d.	n.d.	n.d.	n.d.
PFNA	n.d.	n.d.	n.d.	n.d.	PFHpS	n.d.	n.d.	n.d.	n.d.
PFDA	n.d.	n.d.	n.d.	n.d.	PFOS	n.d.	n.d.	n.d.	n.d.
PFUdA	n.d.	n.d.	n.d.	n.d.	PFNS	n.d.	n.d.	n.d.	n.d.
PFDoA	n.d.	n.d.	n.d.	n.d.	PFDS	n.d.	n.d.	n.d.	n.d.
PFTRDA	n.d.	n.d.	n.d.	n.d.	4:2FTS	n.d.	n.d.	n.d.	n.d.
PFTEDA	n.d.	n.d.	n.d.	n.d.	6:2FTS	n.d.	n.d.	n.d.	n.d.
NMEFOSAA	n.d.	n.d.	n.d.	n.d.	8:2FTS	n.d.	n.d.	n.d.	n.d.

Table 4. PFAS in soil linearity

Spike level	1 ng/g	5 ng/g	20 ng/g	100 ng/g	400 ng/g	Slope	r²
PFBA	0.979	5.05	21.7	101.0	408	1.020	1.000
PFPeA	1.035	5.22	22.0	101.4	423	1.058	1.000
PFHxA	1.024	5.15	22.1	102.4	429	1.073	1.000
PFHpA	0.985	5.28	22.4	99.2	423	1.056	1.000
PFOA	1.02	5.02	22.1	100.7	425	1.062	1.000
PFNA	1.032	5.21	21.8	102.6	426	1.064	1.000
PFDA	1.000	5.06	21.5	100.5	428	1.071	1.000
PFUdA	0.982	5.01	22.6	96.8	418	1.044	1.000
PFDoA	1.05	5.43	23.5	77.3	339	0.841	0.999
PFTRDA	0.567	3.65	15.5	45.4	200	0.496	0.998
PFTEDA	1.076	5.57	23.9	76.6	317	0.786	0.999
NMEFOSAA	1.13	4.86	22.8	97.2	368	0.915	1.000
NETFOSAA	1.097	5.18	19.5	117.0	424	1.061	0.999
FOSA	0.991	5.16	21.7	93.0	438	1.097	0.998
PFBS	0.966	5.14	22.4	104.6	453	1.133	1.000
PFPeS	0.915	4.93	21.1	99.6	433	1.084	1.000
PFHxS	0.945	4.98	21.6	110.6	451	1.129	1.000
PFHpS	0.976	4.55	22.8	111.4	467	1.169	1.000
PFOS	1.076	6.14	20.3	108.2	468	1.172	1.000
PFNS	0.893	5.51	21.4	107.1	462	1.156	1.000
PFDS	0.999	5.54	20.8	104.4	447	1.119	1.000
4:2FTS	1.129	5.89	22.2	57.8	272	0.672	0.997
6:2FTS	1.128	6.19	21.8	89.2	430	1.074	0.998
8:2FTS	1.149	5.43	21.0	79.8	384	0.958	0.998

thermo scientific

Conclusion

Accelerated solvent extraction can extract a variety of PFAS from soil including acids, sulfonates, fluorotelomer sulfonates, and sulfonamide compounds. Although the Dionex ASE 350 system utilized in this method contained Teflon lines, the lines had been used under a variety of different solvent conditions, effectively reducing the PFAS background contamination to a minimum. Isotopic dilution quantification was utilized for most analytes and demonstrated linearity for all PFAS studied in soil over the range of 1 ppb to 400 ppb. PFTrDA linearity is biased low which is partially due to PFTrDA being quantified via the internal standard method against ¹³C₂-PFTeDA and not an isotopically labeled analog of PFTrDA, but more strongly due to the effects of naturally abundant ¹³C₂-PFTeDA (from the native spiked levels) artificially increasing the recoveries of internal standard, thus underestimating the native levels of PFTrDA.

Previously experienced difficulties recovering long-chain PFAS from soil using sonication/vortex methods were surmounted by using ASE, demonstrating that the absence of long-chain PFAS is a true absence and not simply low recovery. The approach described here was applied to a soil sample and it was found to contain between 1 and 50 ng/g of several PFAS. Accelerated solvent extraction is an acceptable method for extracting a wide selection of PFAS, from 4-carbon to 14-carbon fluoroalkyl chain lengths and five different polar head-groups, from soil over a wide range of concentrations. Accelerated solvent extraction shows high potential for effective extraction of the growing list of PFAS from solid samples.

Reference

 MacLennan, Matthew S.; Ng, Daniel; Hope, David (2019): Extraction of poly-and perfluorinatedalkyl substances (PFAS) from solid matrices. Society of Ecotoxicology and Chemistry (SETAC) North America, 40th Annual Meeting, Toronto, Poster. https://doi. org/10.6084/m9.figshare.13557185.v1

Find out more at thermofisher.com

For Research Use Only. © 2021 Thermo Fisher Scientific Inc. All rights reserved. Teflon is a trademark of the Chemours Company FC, LLC. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. CAN73937-EN 0121S

