

Getting Off to a Good Start

Isocratic method development

Paul Altiero Applications Chemist, CSD February 13, 2020

1 February 13. 2020

Isocratic Method Design and Development

Introduction: What and Why Resolution: Equations and Impacts Column and Sample Chemistries: Choose Your Bonded Phase Wisely

Scouting Gradients: Mobile Phases and Mechanics

Isocratic Method Design and Development

Introduction: What and Why Resolution: Equations and Impacts Column and Sample Chemistries: Choose Your Bonded Phase Wisely

Scouting Gradients: Mobile Phases and Mechanics

What is an Isocratic HPLC Method and Why Do I Want to Use One (or not)?

- An isocratic separation is: (one where) "the composition of the solvent remains constant throughout the separation"¹.
- Benefits of an Isocratic Method
 - Simple to adjust
 - No baseline drift
 - No Re-equilibration time
 - Not impacted by delay volume easily transferrable
- Drawbacks
 - Time
 - Peak Shape
 - Column Cleaning

¹L.R. Synder, J.J. Kirkland, J.W. Dolan. Introduction to Modern Liquid Chromatography, -3rd Ed., John Wiley & Sons, 2010

Getting Started

- Define the objective
 - What are the goals of the separation? Resolving multiple, critical pairs or just one component from matrix?
 - Is speed/throughput important?
 - What are the requirements around LoQ, accuracy, and precision?
 - How do we assess system/method performance?
- Gather sample information
 - List the analytes and their physical/chemical properties; for example, LogP, pKa, and solubility
 - Matrix and Sample Preparation
 - What is the sample in? (diluent)
 - What else is in the sample? (matrix)
 - List resources available
 - Instrumentation, capabilities, and limitations; for example, flowrates, pressure ratings, and types of detectors
 - What columns are available? Choices of bonded phase? New or used?
 - Literature references or subject matter experts

Getting Started (Continued)

- List Known Challenges examples include:
 - Analytes with very similar structures/properties
 - Compatibility of analytes and detector lack of chromophores, poor ionization
 - Additives/buffers solubility of buffers, interference from additives, for example, TFA
- Plan out an approach
 - What sample preparation/cleanup do we need and why?
 - What columns/bonded phases do we want to try, and why?
 - Based upon pKas what pHs do we want to look at
 - What organic mobile phases do we want to use
 - What do we expect a scouting gradient to look like

Examples of Common Separation Goals and Method Performance Criteria

Good system suitability parameters

- Resolution: ≥ 2
- Peak shape: USP T_f close to 1 (<2)
- Injection repeatability: areas, T_f, (RSD 0.1 - 0.25%)
- Absolute retention factors: 1< k<10
- Relative retention: α or k_2/k_1
- Signal-to-noise ratio: >10

Method performance criteria

- Accuracy
- Precision
 - Ruggedness
 - Robustness
- Selectivity/specificity
- Linearity
- Range
- Quantitation limit (LOQ, 10x S/N)
- Detection limit (LOD, 3x S/N)

<u>Avoid these for System Suitability</u> Criteria: Column efficiency (theoretical plates) and absolute retention time

These inhibit the ability to speed up your method in the future

Isocratic Method Design and Development

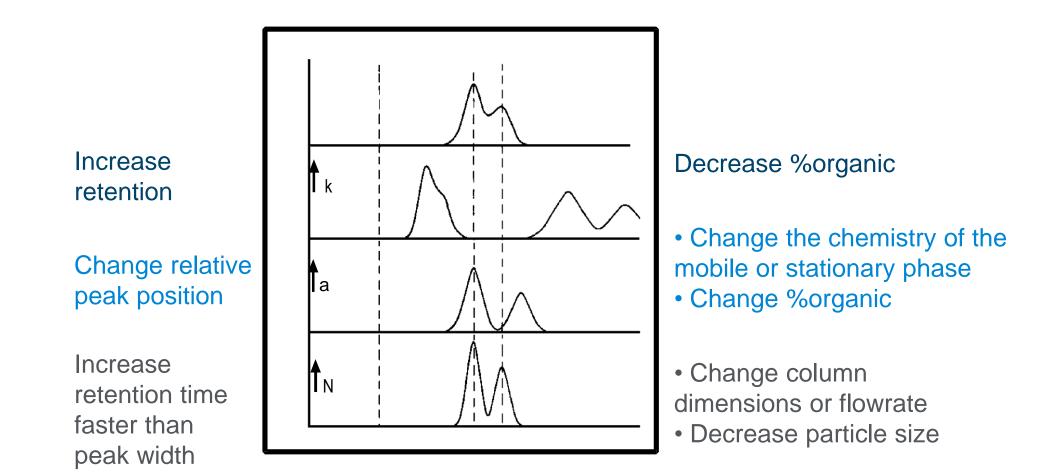
Introduction: What and Why Resolution: Equations and Impacts Column and Sample Chemistries: Choose Your Bonded Phase Wisely

Scouting Gradients: Mobile Phases and Mechanics

8

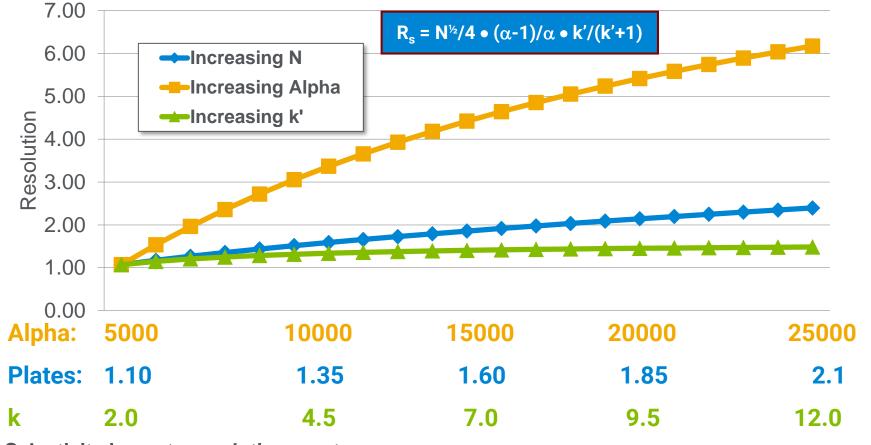
Fundamental Resolution Equation – Isocratic Separations

$$R_{s} = \frac{1}{4} (N)^{1/2} \left[\frac{(\alpha - 1)}{\alpha} \right] \left[\frac{k}{1 + k} \right]$$


 α = Selectivity – increase by changing bonded phase and mobile phase N = Plates – increase by using longer column or reducing particle size k = Retention – increase by changing bonded phase and mobile

phase

Does not improve Rs above $k \approx 10$



Factors that Maximize Isocratic Resolution Between Peaks

Selectivity Impacts Resolution the Most

Selectivity impacts resolution most

Change bonded phase

Typical method development parameters

- Change mobile phase
- Plates are easiest to increase

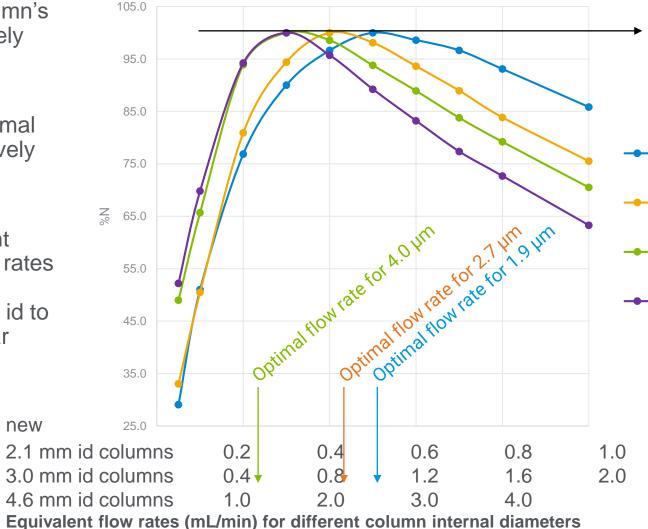
The Van Deemter Equation for Band Broadening

$$H = A + \frac{B}{u} + Cu$$

Where A, B, and C represent a different set of constants for a particular solute, column, and set of experimental conditions¹.

The A term is *eddy diffusion* and is independent of linear velocity.

The B term is the *longitudinal diffusion* term and we can see that the contribution to total band broadening goes down as linear velocity increases.


The C term is the *mass transfer* term. The impact on total band broadening increases as linear velocity increases.

¹L.R. Synder, J.J. Kirkland, J.W. Dolan. *Introduction to Modern Liquid Chromatography*, -3rd Ed., John Wiley & Sons, 2010

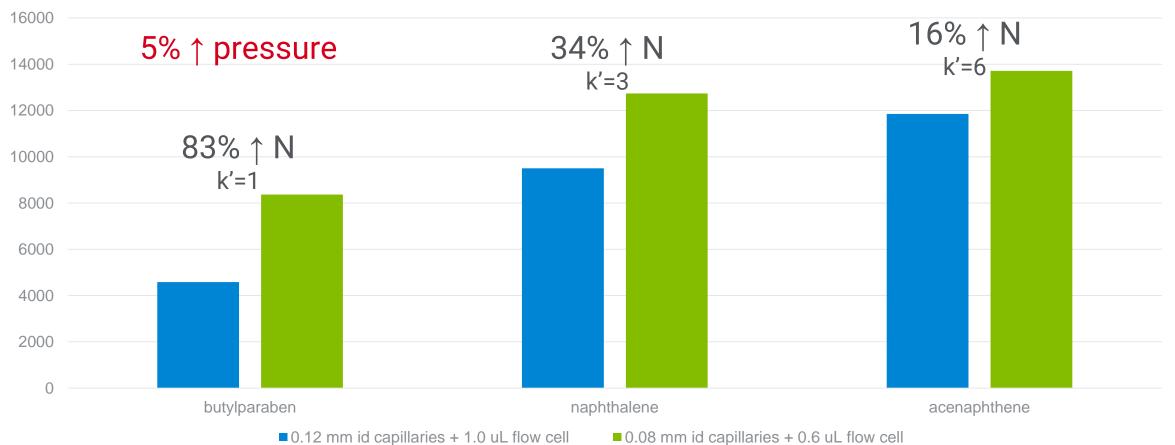
Optimal Flow Rates for Agilent InfinityLab Poroshell 120 Columns Smaller particles have higher optimal flow rates

- Operating below the column's optimal flow rate negatively impacts efficiency (and resolution)
- Operating above the optimal flow rate also can negatively affect efficiency, but to a lesser extent.
- When comparing different column dimensions, flow rates should be geometrically scaled relative to column id to maintain a constant linear velocity.
 - $F_2 = F_1^* (id_2/id_1)^2$
 - F₁ and F₂: Original and new flow rate
 2.1 m
 - id₁ and id₂: Original new column id

Maximum efficiency for each column

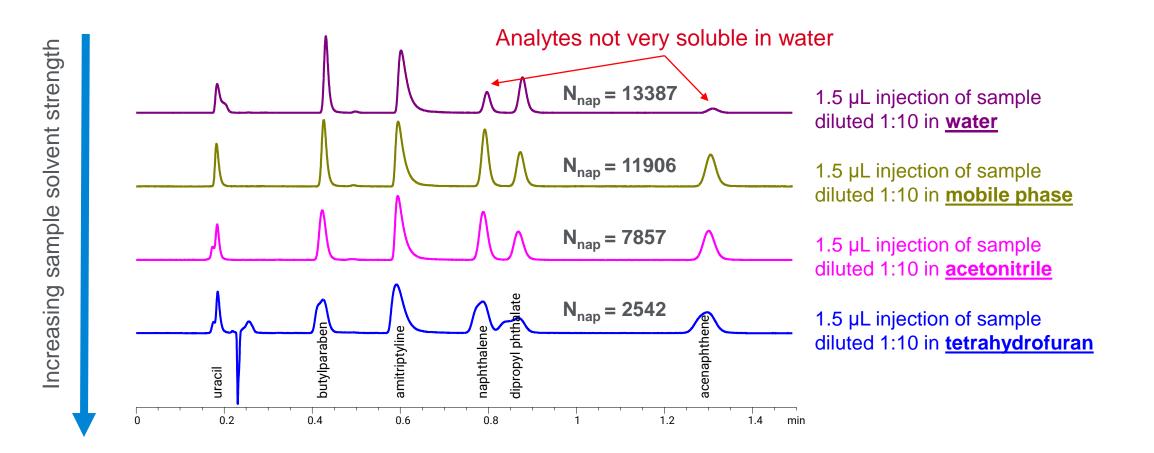
- ← 2.1 x 50 mm, 1.9 µm Poroshell 120 EC-C18
- -4.6 x 100 mm, 4.0 μm Poroshell 120 EC-C18
- →4.6 x 150 mm, 5.0 µm ZORBAX Eclipse Plus C18

A: Water B: Acetonitrile Flow rate: Variable Elution: Isocratic 60% B Sample: 0.5μ L of phenones (5188-6529) for 2.1 x 50 mm, geometrically scaled for each column dimension Autosampler temperature: 5 °C Column temperature: 30 °C DAD: 254, 8 nm, Ref = Off, 80 Hz Analyte: Octanophenone

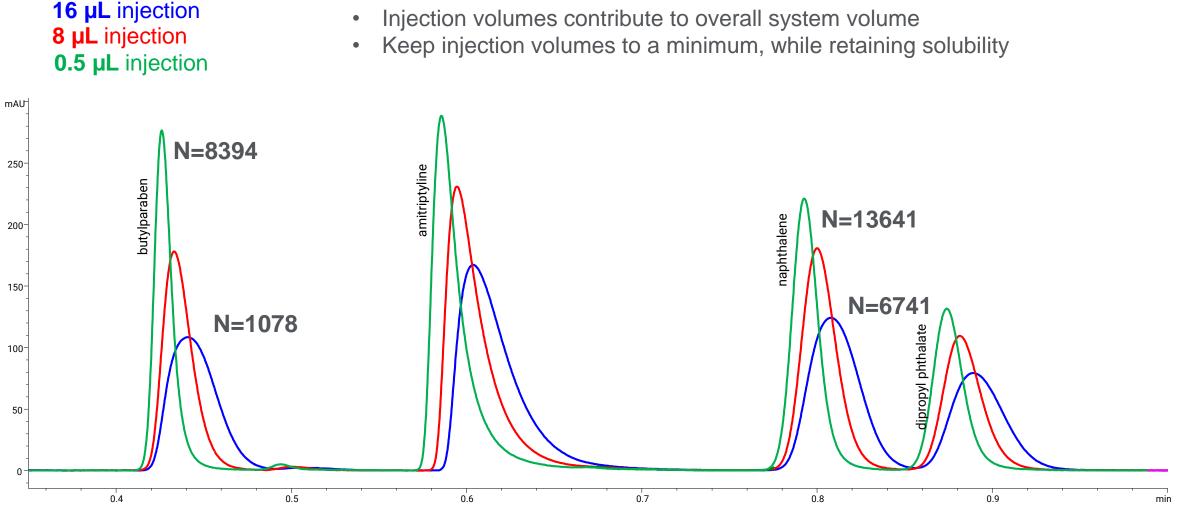

Improve Performance by Reducing LC System Volume

Agilent 1290 Infinity LC System: Agilent 1290 Infinity LC System: Default stacking and capillary tubing with LC System rack and ultra-low configurations dispersion optimizations Solvent tray Needle seat capillary: 0.12 x Needle seat capillary: 0.11 x Solvent tray **Binary pump** $100 \text{ mm} = 1.1 \mu \text{L}$ $100 \text{ mm} = 0.9 \mu \text{L}$ ALS→ TCC capillary: 0.08 x ALS \rightarrow TCC capillary: 0.12 x **Diode Array Detector** 340 mm = 3.8 µL220 mm = 1.1 µLTCC \rightarrow DAD capillary: 0.12 x TCC \rightarrow DAD capillary: 0.08 x Flow cell $220 \text{ mm} = 2.5 \mu \text{L}$ $220 \text{ mm} = 1.1 \mu \text{L}$ Flow cell V(σ)1.0 μ L = 2.3 μ L Flow cell V(σ)0.6 μ L = 0.8 μ L ← LC System rack Total extracolumn volume = Total extracolumn volume = Column compartment 9.7 µL 3.9 µL TCC DAD capillary Volume of 2.1 x 50 mm column Volume of 2.1 x 50 mm **Autosampler** column = = 172.3 uL 172.3 uL **Autosampler** Void volume of column = Void volume of column = Needle seat 103.9 µL 103.9 µL ALS→ ALS → TCC capillary 💶 TCC Capillary Percent extracolumn volume Percent extracolumn capillary Needle seat volume = = capillary Column compartment 9.3 % 3.7 % TCC → DAD **Binary pump** capillan 60% reduction in extracolumn Diode Array Detector volume Flow cell

Improve Performance by Reducing LC System Volume


Use smaller internal diameter capillaries and a smaller volume detector flow cell

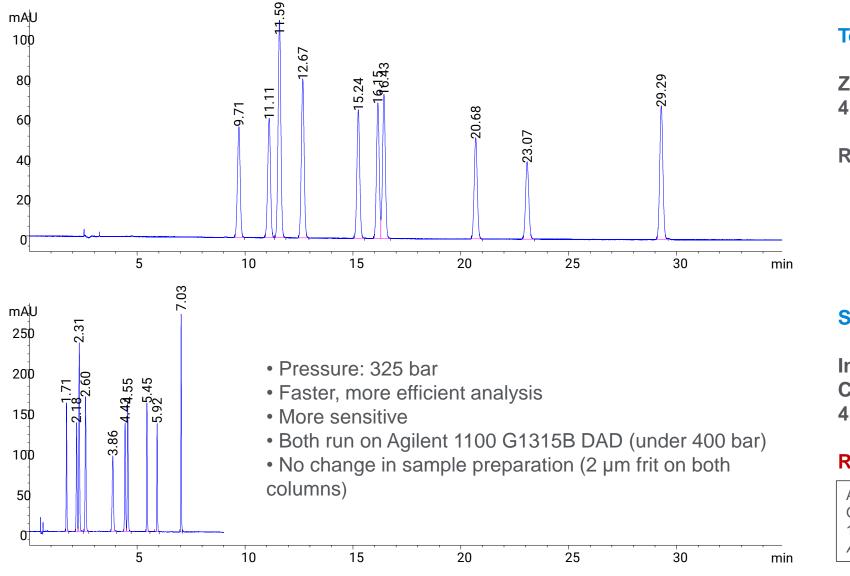
Effect of Capillary id + Flow Cell Volume on Efficiency


Sample Considerations – Mobile Phase Diluents and Solubility

Sample solvents should be of equal or lesser strength than the mobile phase, otherwise poor peak shape can occur, resulting in poor efficiency.

Sample Injection Volumes Can Affect Peak Shape and Resolution

Sample concentrations are adjusted to ensure the same sample load on the column, regardless of injection volume.


Isocratic Method Design and Development

Introduction: What and Why Resolution: Equations and Impacts Column and Sample Chemistries: Choose Your Bonded Phase Wisely

Scouting Gradients: Mobile Phases and Mechanics

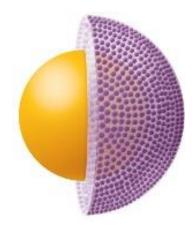
Column Choices – Which Particle Type to Choose?

Totally porous particle

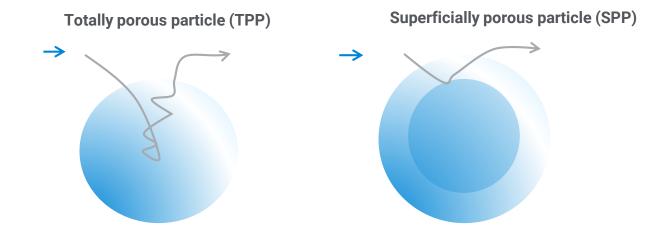
ZORBAX Eclipse Plus C18 4.6 x 250 mm, 5 μm

Run time: 35 min

Superficially porous particle


InfinityLab Poroshell 120 EC-C18 4.6 x 100 mm, 2.7 µm

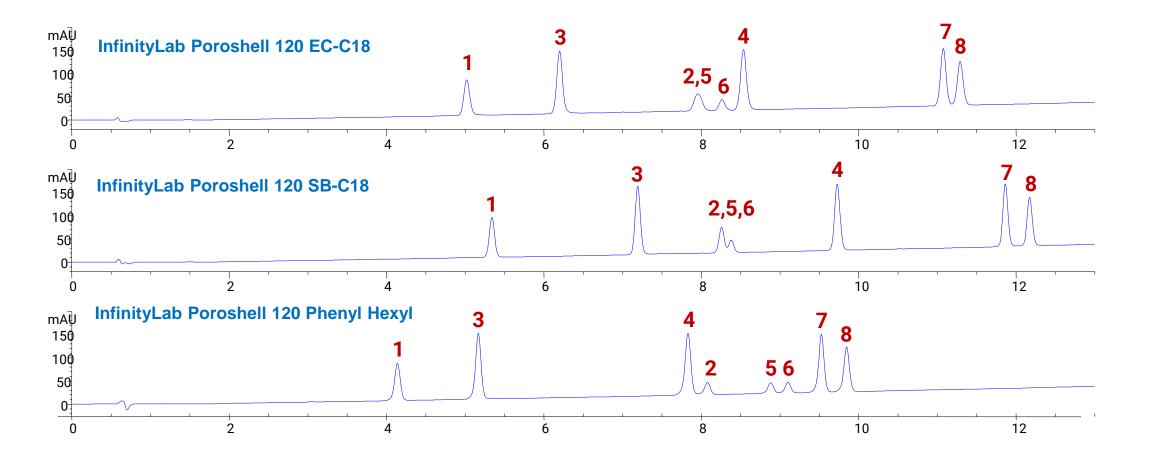
Run time: 9 min


A: 0.1% formic acid in water, B: ACN Gradient: 8-33% ACN in 30 or 8 min 1 or 2 mL/min, 25 °C, 254 nm Agilent application note, 5990-5572EN

Poroshell Technology – What Makes it Better?

Poroshell is made of a solid core with a porous outer layer.

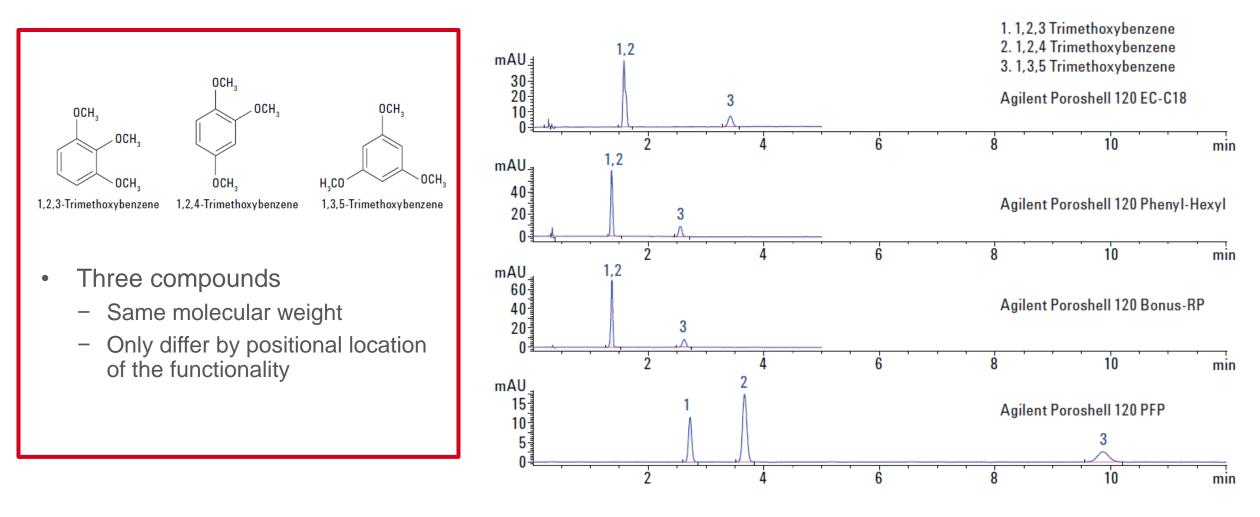
- Analytes travel though the particle more efficiently, improving peak shape and resulting in faster run times.
- High efficiency allows you to use a larger SPP (2.7 μ m) for nearly equivalent performance to a smaller TPP column (sub-2 μ m).
- Using a larger particle allows for lower backpressure than comparable TPP columns, and flexible use on HPLC or UHPLC systems.


Column Choice: Evaluate Different Bonded Phases

- Bonded phase affects selectivity (alpha)
- Different interactions for polar and nonpolar compounds
- Exploit other interactions with bonded phase
- Changing the bonded phase can improve selectivity/resolution, and reduce analysis time.
- Having different bonded phases available on the same particle makes development easier.

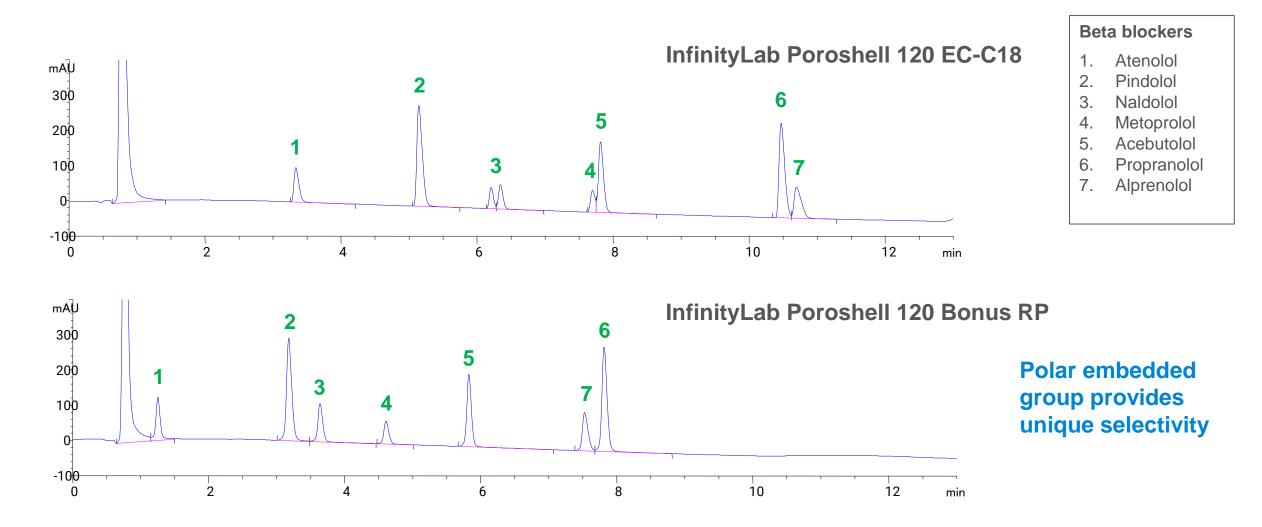
Evaluating different bonded phase chemistries early can save time in optimization and generate a more robust method.

Selectivity Differences Across InfinityLab Poroshell Bonded Phases



Hydrocortisone 2. B Estradiole, 3. Andostadiene 3. 17 dione, 4. Testosterone
 Ethyestradione 6. Estrone 7. Norethindone acetate 8. Progestreone

40 to 80% methanol in 14 min, DAD 260, 80 nm 0.4 mL/min, 2.1 x 100 mm column, 40 C, 0.1% formic acid in water and methanol, Agilent 1260 Method Development Solution


Importance of Alternate Selectivity Chemistries

InfinityLab Poroshell 120 columns 4.6 x 50 mm, 2.7 μm 70:30 – MeOH/H2O, 1.5 mL/min, 40° C, 254 nm

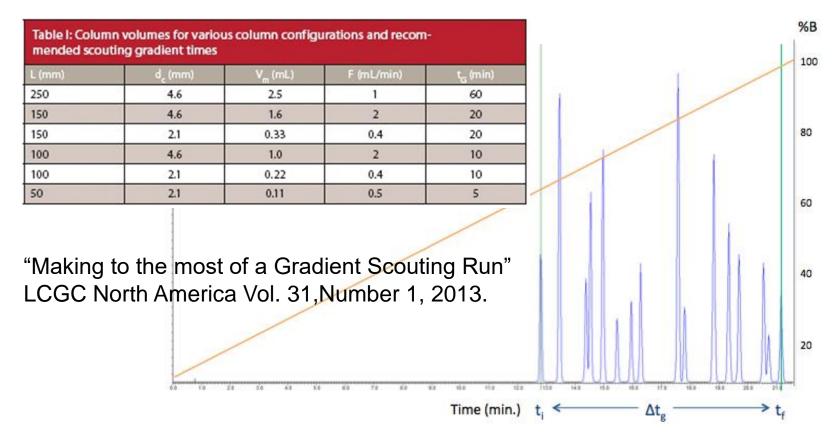
Polar Embedded Phase for Alternate Selectivity

10 to 70% methanol/12 min, DAD 260 nm 0.35 mL/min, 2.1 x 100 mm 40 °C 10 mM pH 3.8 ammonium formate buffer and methanol

Agilent InfinityLab Poroshell 120 Portfolio

start here	Best All Round	Best for low pH Mobile Phases	Best for High pH Mobile Phases	Best for Alternative Selectivity	Best for Polar Analytes	Best for Chiral
	InfinityLab Poroshell EC-C18 1.9 μm, 2.7 μm, 4 μm	InfinityLab Poroshell SB-C18 2.7 μm	InfinityLab Poroshell HPH-C18 1.9 μm, 2.7 μm, 4 μm	InfinityLab Poroshell Bonus-RP 2.7 µm	InfinityLab Poroshell HILIC 1.9 µm, 2.7 µm, 4 µm	InfinityLab Poroshell Chiral-V 2.7 μm
	InfinityLab Poroshell EC-C8 1.9 µm, 2.7 µm, 4 µm	InfinityLab Poroshell SB-C8 2.7 μm	InfinityLab Poroshell HPH-C8 2.7 μm, 4 μm	InfinityLab Poroshell PFP 1.9 µm, 2.7 µm, 4 µm	InfinityLab Poroshell HILIC-Z 2.7 μm	InfinityLab Poroshell Chiral-T 2.7 μm
	4μm 2.7μm 1.9μm			InfinityLab Poroshell Phenyl-Hexyl 1.9 μm, 2.7 μm, 4 μm	InfinityLab Poroshell HILIC-OH5 2.7 μm	InfinityLab Poroshell Chiral-CD 2.7 μm
			Ψ 1.9μm	InfinityLab Poroshell SB-Aq 2.7 μm		InfinityLab Poroshell Chiral-CF 2.7 μm
	Reversed-pha	se chemistries		InfinityLab Poroshell EC-CN 2.7 μm		

Isocratic Method Design and Development


Introduction: What and Why Resolution: Equations and Impacts Column and Sample Chemistries: Choose Your Bonded Phase Wisely

Scouting Gradients: Mobile Phases and Mechanics

Starting Point Scouting Gradient

- A good starting point for work is a scouting gradient.
- The conditions recommended by John Dolan are 5–95% acetonitrile, low pH, and are dependent on the column length.
- Where 10 cm columns are chosen, use a 10 minute gradient.
- This example shows a 150 mm column.

Estimating Isocratic Conditions from Our Scouting Gradient Results

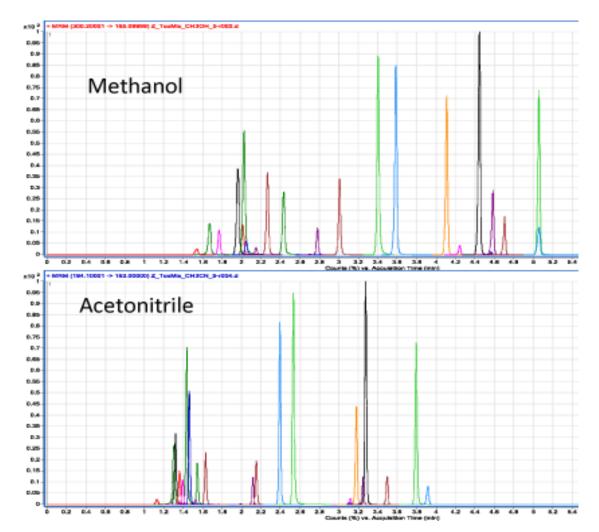
For a scouting gradient on a 4.6 x 100 mm column, from the previous table. Where the run time is 10 minutes and the gradient goes from 5% to 95%. The starting percentage of organic can be estimated as:

$$\%B = 9.5(t_{avg} - t_{void}) - 2^{1}$$

Where:

 t_{avg} is the average of the first and last retention times t_{void} is the void time of the column

¹L.R. Synder, J.J. Kirkland, J.W. Dolant *Introduction to Modern Liquid Chromatography*, -3rd Ed., John Wiley & Sons, 2010


Exploring Organic Modifiers

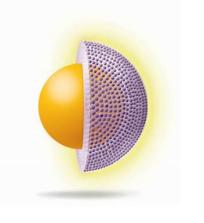
Why?

- It's easy ACN and MeOH are readily available
- Works on any bonded phase optimize separation no matter the column choice

MeOH – Higher pressure, generally better peak shape with bases, protic solvent

Acetonitrile – Aprotic, wider UV window, stronger than MeOH

"Fast Analysis of Illicit Drug Residues on Currency using Agilent Poroshell 120", Anne E. Mack, James R. Evans and William J. Long, September 2010, 5990-6345EN.

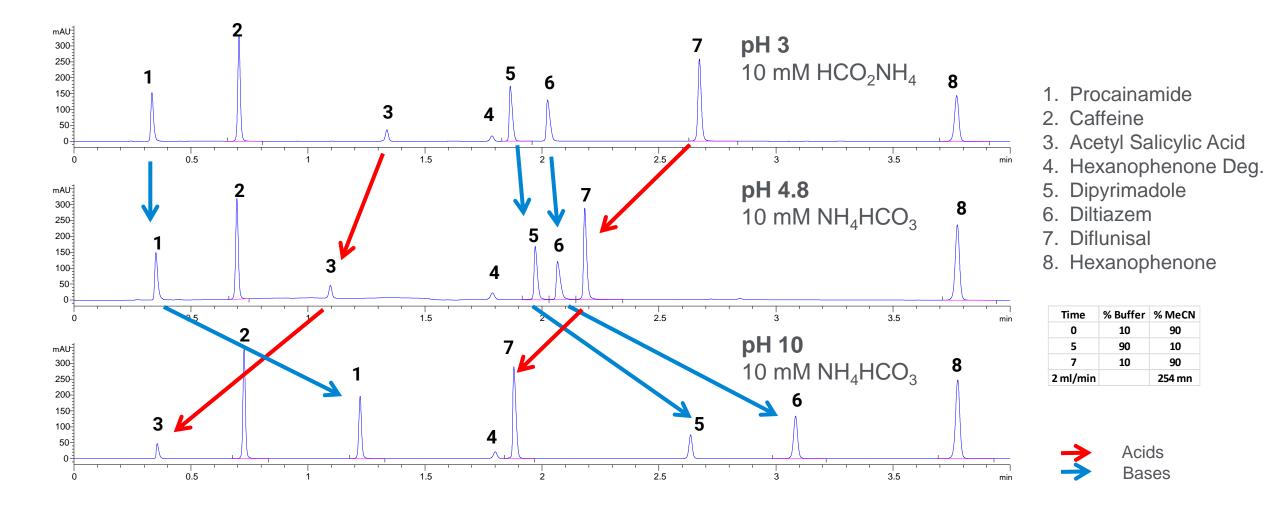


pH – A Method Development Tool for Ionizable Compounds

- Ionizable compounds will be in a charged or uncharged state, based on pH.
- Choose a mobile phase pH that will help optimize retention and selectivity.
- Noncharged analytes have better retention
 - For example, acids at low pH and bases at mid or high pH
- Silanols on silica ionize at mid-pH, with possible ion-exchange interaction of basic analytes
- Ensure that your column is compatible with and stable in the mobile phase pH you select.

Agilent InfinityLab Poroshell HPH particles

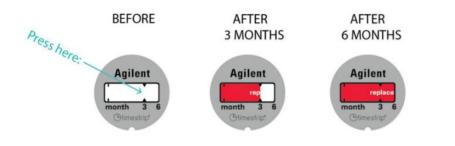
Hybridized Poroshell 120 silica offers more rugged silica particle and enhanced stability up to pH 11



Selectivity Can be Controlled by Changing pH

Agilent InfinityLab Poroshell HPH-C18 4.6 x 50 mm, 2.7 µm

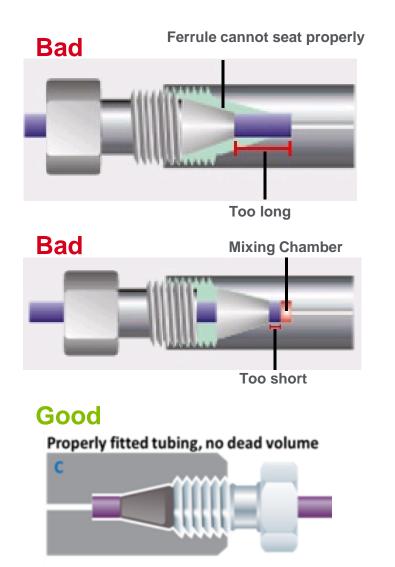
DE322025463


Simplify Solvent Handling

- Keep solvent concentrations constant and solvent vapors out of the lab.
- Venting valve for mobile phase, time strip
- Safer handling, easier to grab
- Prevents tubing from twisting
- Can be used on any system

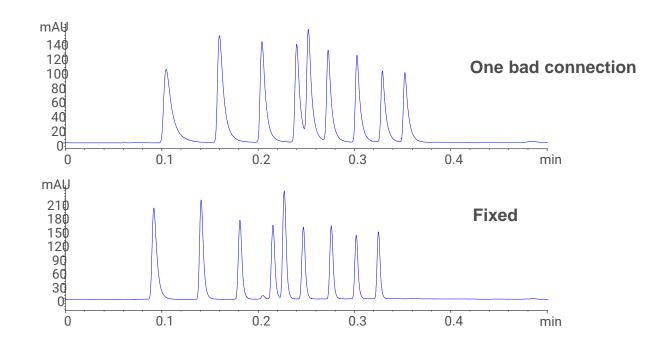
Tips for Robust Methods

- Always start method development with a new column
- Select columns with robust properties at the pH of the method
- Choose a high-quality column with a long lifetime
- Consider batch-to-batch reproducibility
- Consider scalability of particle sizes and chemistries for downstream method transfer



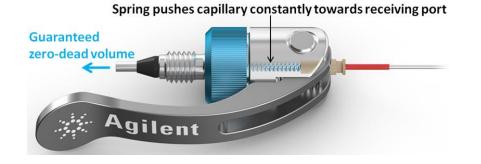
Agilent employs end-to-end process control for quality LC columns

www.agilent.com/chem/qualitylc



Ensure Proper Column Connections

Poor fitting connections


- Will broaden or split peaks, or cause tailing
- Will typically affect all peaks, but especially early eluting peaks
- Can cause of carryover

InfinityLab Quick Connect and Quick Turn Fittings

- Spring loaded design
- Easy, no tools needed
- Works for all column types
- Reusable
- Consistent ZDV connection

Quick Connect fitting

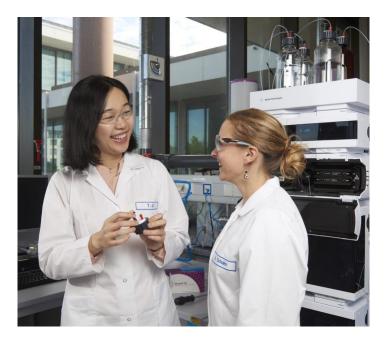
- Finger tight up to 1300 bar
- Hand tighten the nut, then depress the lever

Quick Turn fitting

- Finger tight up to 400 bar
- Up to 1300 bar with a wrench
- Compact design

Resources for Support

- Agilent University http://www.agilent.com/crosslab/university
- Tech support http://www.agilent.com/chem/techsupport
- Resource page http://www.agilent.com/chem/agilentresources
 - Quick reference guides
 - Catalogs, column user guides
 - Online selection tools, how-to videos
- InfinityLab Supplies catalog (<u>5991-8031EN</u>)
- Your local FSE and specialists
- YouTube Agilent channel
- Agilent service contracts



Conclusions

- Resolution is a common method development goal
 - Selectivity is a main driver of resolution
- Column choices
 - Superficially porous particles speed up analysis
 - Explore alternate selectivity to increase resolution
- Method conditions
 - Consider the selectivity effects of mobile phases
 - Final tips
 - Adequately prepare samples
 - Be sure your system is optimized to maximize resolution

Contact Agilent Chemistries and Supplies Technical Support

1-800-227-9770 option 3, option 3:
Option 1 for GC and GC/MS columns and supplies
Option 2 for LC and LC/MS columns and supplies
Option 3 for sample preparation, filtration and QuEChERS
Option 4 for spectroscopy supplies
Available in the USA and Canada 8-5 all time zones

gc-column-support@Agilent.com lc-column-support@agilent.com spp-support@agilent.com spectro-supplies-support@agilent.com

