
Helpful 'Hints' for Protein SEC Success

Jean Lane Applications Engineer LC columns and consumables technical support May 27, 20201

Outline for Talk

Infinity Lab

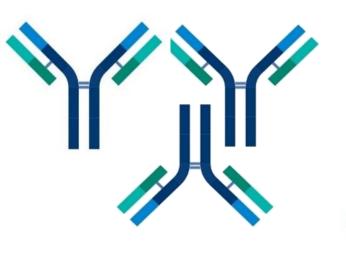
Getting started

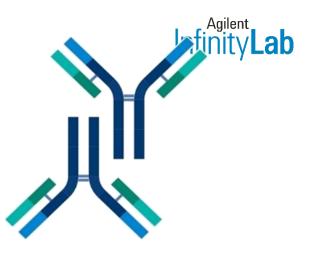
- SEC definition, common terminology, and why use it?
- Considerations for selecting an SEC column
 - Pain Points/Challenges for SEC
 - Importance of Pore Size and Particle Size Selection
- Mobile Phases and Buffer Considerations
- Common Detectors
- Considerations for the LC instrument

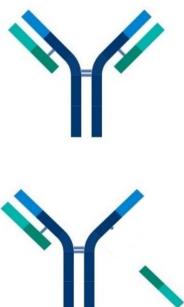
Helpful Hints for Protein SEC Success

Protein Characterization

Testing Importance of Aggregates & Fragments


Aggregation is not only highly risky – possibly triggering an immunogenic response – it is very common.


Aggregation is a common response when a protein is exposed to stress conditions:


- Upstream or downstream processes
- Changes in concentration
- Changes in pH or temperature
- Exposure to surfaces or shear forces

Proteins are relatively unstable

Do not always adopt native conformation

SEC = Size Exclusion Chromatography

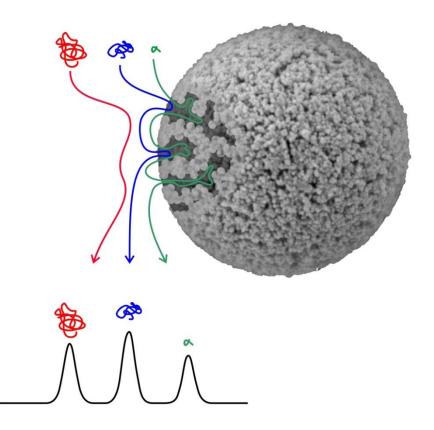
Separates (ideally) purely by sample size in solution

NOT by typical particle surface/sample interaction

SEC Size Exclusion Chromatography is for aqueous mobile phase conditions

GPC Gel Permeation Chromatography is for organic solvent mobile phase conditions

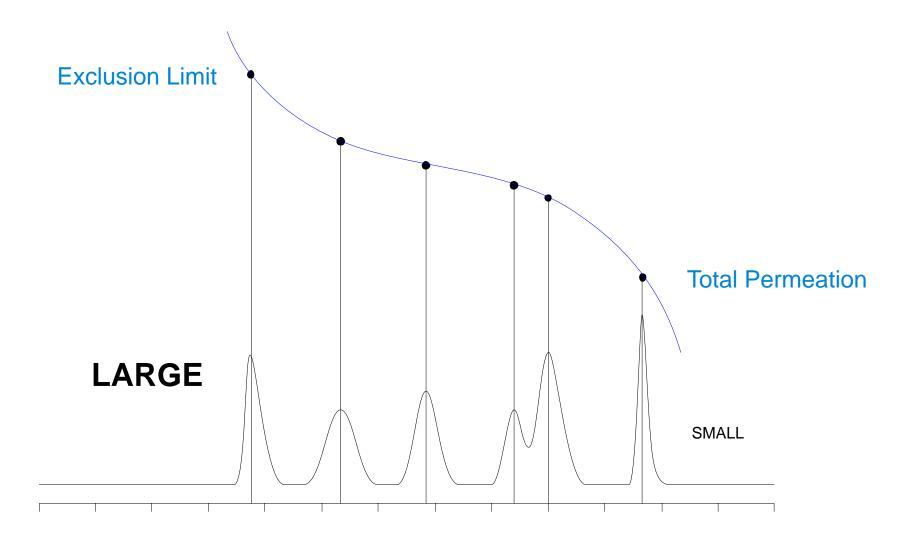
Separation Mechanism


Largest molecules cannot penetrate the pores – they are excluded and elute first

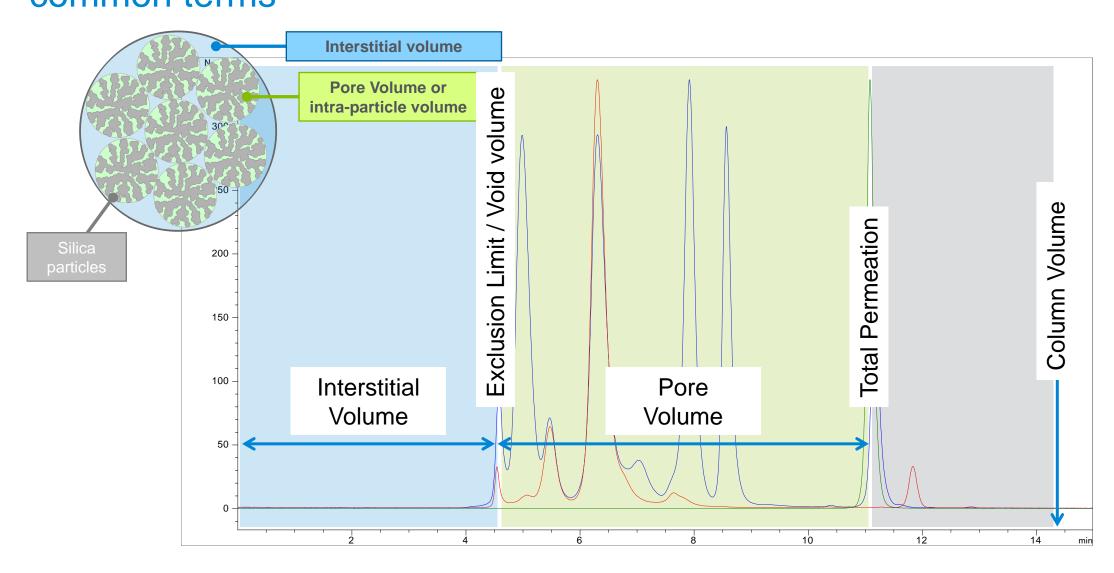
Smallest molecules diffuse into all of the pores - elute from the columns last

Resolution of the column is dependent on the pore volume in the column

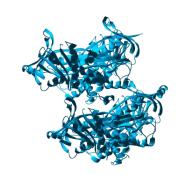
To increase resolution, it is sometimes necessary to run multiple columns in series

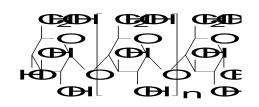

SEC: A Non-interactive isocratic technique; correct choice of pore size is critical for success

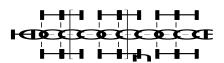
Making sense of Size Exclusion Chromatography



Helpful Hints for Protein SEC Success


Common Terminology and chromatogram example noting common terms





Molecular Weight or Size in Solution

Ovalbumin MW 44,330D 385 amino acids Pullulan MW 45,000D n ~ 275 PEO MW 45,000D n ~ 1000

Molecular Weight or Size in Solution

Helpful Hints for Protein SEC Success

Column Selection Criteria

Pore size

- depends on molecular weight range of sample
- avoid exclusion of sample components
- maximize pore volume in required separation region

Particle size

smaller particles for higher resolution

Number of columns/ length

- compromise between resolution and analysis time
- Smaller length column for increased thruput
- Longer length column for improved resolution

Column ID

Helpful Hints for Protein SEC Success

 smaller column ID can be used for reduced solvent consumption, smaller injection volume, or improved sensitivity

10

Considerations for Column Selection

Pain points and common challenges for SEC

- Limited resolution insufficient/incorrect pore sizes can reduce resolution
- Non-specific interactions contribute to loss of sample, lead to inconsistent results, rework
- Long analysis times SEC is typically slow
- Poor pressure stability creates rework and increased cost
- Want consistent and reproducible results

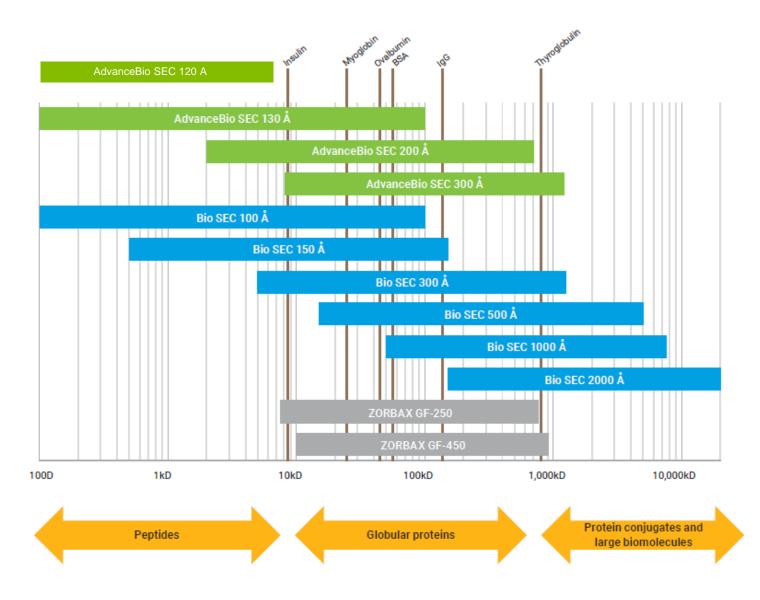
Helpful Hints for Protein SEC Success

High salt conditions puts excessive wear on instrument, parts

Agilent Biomolecule Columns Portfolio

Titer Determination	Aggregate Analysis	Intact Purity &	PTM Analysis	Sequence Variant & PTM Analysis	Charge Variant Analysis	Glycan Analysis	Amino Acid / Ce Anal	
Affinity	Size Exclusion	Reverse Phase >150 Å	Hydrophobic Interaction	Reverse Phase < 150 Å	Ion Exchange	Hydrophilic Interaction	Reverse Phase < 150 Å	Hydrophilic Interaction
Bio-Monolith Protein A	AdvanceBio SEC	PLRP-S	AdvanceBio HIC	AdvanceBio Peptide Plus	Bio mAb	AdvanceBio Glycan Mapping	AdvanceBio Amino Acid Analysis (HpH)	AdvanceBio MS Spent Media
Bio-Monolith Protein G	Bio SEC-3	AdvanceBio RP mAb		AdvanceBio Peptide Mapping	Bio IEX (SAX, WAX, SCX, WCX)	ZORBAX RRHD 300-HILIC 1.8 μm	ZORBAX AAA	
	Bio SEC-5	ZORBAX RRHD 300 Å, 1.8 μm			PL SCX, SAX		age and the second seco	
	ProSEC 300S	ZORBAX 300SB			Bio-Monolith (QA, DEAE, SO3)	•	Age with the	
	ZORBAX GF250 & GF450	Poroshell 300					PROAD TO THE PROPERTY OF THE P	Principle 200

12


Agilent Size Exclusion Columns

AdvanceBio SEC	AdvanceBio SEC	Bio SEC-3	Bio SEC-5	ProSEC 300S	ZORBAX GF-250 & GF-450
1.9µm	2.7µm	3µm	5µm	5µm	4μm, 6μm
200Å, 120Å	130Å, 300Å	100Å, 150Å, 300Å	100Å, 150Å, 300Å, 500Å, 1000Å, 2000Å	Nominal 300Å (linear resolving range)	150Å, 300Å
Coated silica (USP L59)	Coated silica (USP L59)	Coated silica (USP L59)	Coated silica (USP L59)	Silica Diol (USP L20)	Zirconium stabilized silica diol (USP L35)
 mAb and ADC analysis Dimer/monomer LMW mAb fragments 	 mAb and ADC analysis Higher-order aggregates Dimer/monomer 	Polypeptide to small proteinsMS capable separations	Broadest range of pore sizes for wide variety of biomolecules	Unique linear resolving range30cm and 60cm column lengths	 Legacy product Larger column dimensions Ideal for GF-450 & GF-250 in series

Agilent Size Exclusion Columns

14

What to Look for in an SEC Column

The Right Pore Size for Your Sample

Pores must be large enough for sample to permeate the pores and not be excluded

Pores that are too large will limit the separation capability

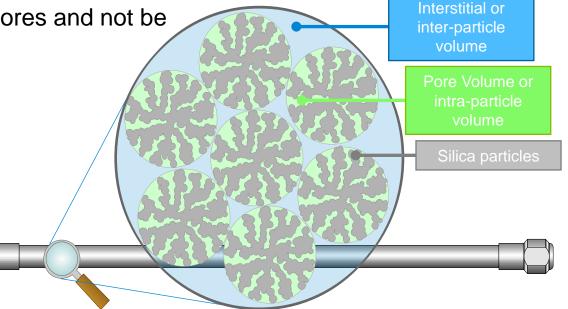
Optimum pore size ~300Å for mAbs

Well Packed Column & Large Pore Volume

- Minimize interstitial volume
- Maximize pore volume

Inert Chemistry

Ideal SEC separations are based only on molecular size


Helpful Hints for Protein SEC Success

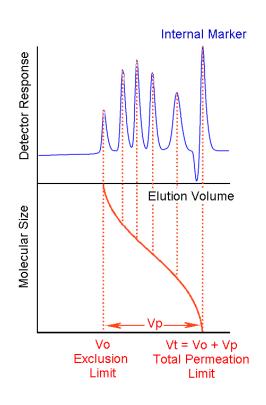
Best to avoid secondary interactions between the sample and stationary phase

The Right Dimensions for Your Application

4.6 or 7.8 x 150 mm for higher throughput, faster separations

7.8 x 300 mm for higher resolution 4.6 x 300 mm for higher sensitivity

Column Selection:



Choose the right pore <u>size</u>

- It is essential to select a column that has pores sufficiently large enough to allow your molecule to permeate into the pore structure of the stationary phase and to not be excluded.
- Provides for complete coverage for the MW range of your sample and for your calibration standards
- Choose a pore size that allows you to work in the linear portion of the calibration curve
- It is also essential to choose a pore size that is not too large

Helpful Hints for Protein SEC Success

Ex: For monoclonal antibodies the optimum pore size is around 300Å

Column Selection Agilent AdvanceBioSEC and BioSEC columns pore size options

Pore Size	MW Range (Globular Protein)	Typical Sample
100Å 120Å	100 — 100,000	Small proteins
150Å	500 - 150,000	Small proteins
200A	2,000 - 700,000	Monomer, dimer & LMW fragments – mAb & ADC
300Å	5,000 - 1,250,000	Monomer, dimer, higher order aggregates – mAb & ADC
500Å	15,000 - 5,000,000	Larger proteins and antibodies (IgM)
1000Å	50,000 - 7,500,000	Very large proteins
2000Å	> 10,000,000	Very large molecules – viruses Lower limit on this column is hard to define, Use only for special applications

Helpful Hints for Protein SEC Success

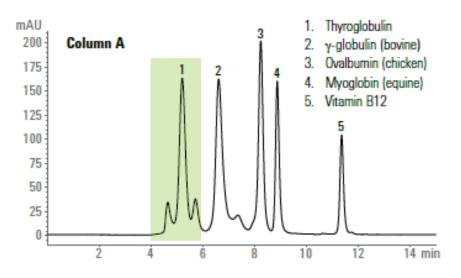
Importance of Pore Size Selection **Calibrants**

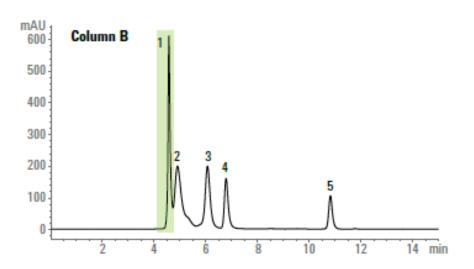
Agilent 1260 Infinity Bio-inert Quaternary LC System

Mobile phase: 150 mM phosphate buffer, pH 7.0

0.35 mL/min Flow rate: UV, 220 nm Detector:

BioRad gel filtration standards mix Sample:

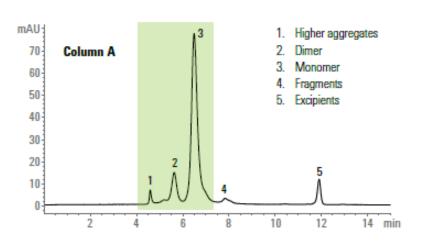

AdvanceBio SEC 300Å Column A:

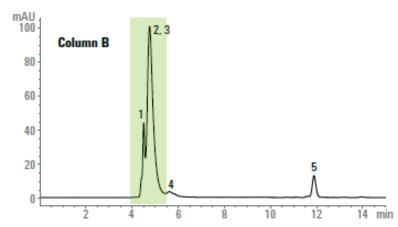

4.6 x 300 mm, 2.7 µm (p/n PL1580-5301)

AdvanceBio SEC 130Å Column B:

4.6 x 300 mm, 2.7 µm (p/n PL1580-5350)

BioRad gel filtration standards mix




18

Importance of Pore Size Selection Sample

Polyclonal IgG separation

Column A: AdvanceBio SEC 300Å

4.6 x 300 mm, 2.7 µm (p/n PL1580-5301)

Column B: AdvanceBio SEC 130Å

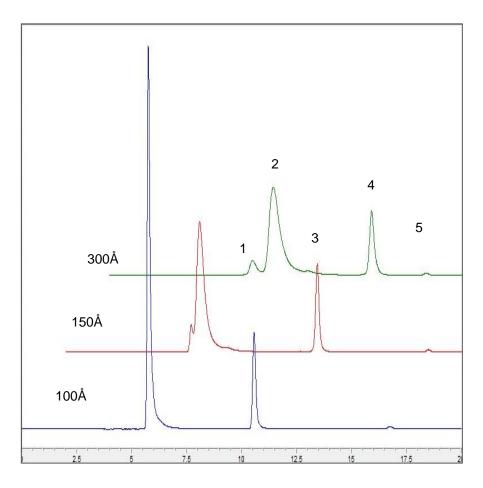
4.6 x 300 mm, 2.7 µm (p/n PL1580-5350)

Instrument: Agilent 1260 Infinity Bio-inert Quaternary LC System

Mobile phase: 150 mM phosphate buffer, pH 7.0

Flow rate: 0.35 mL/min

Detector: UV, 220 nm


Sample: Polyclonal IgG

19

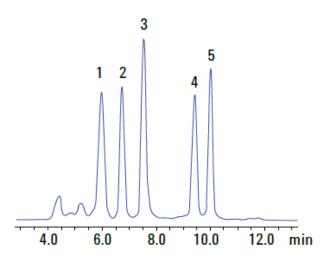
Pore Size Selection **Choice for Antibody Analysis**

Eluent: $50 \text{mM NaH}_2 \text{PO}_4 + 0.15 \text{M NaCl}, \text{ pH6.8}$

Bio SEC various pore sizes Columns:

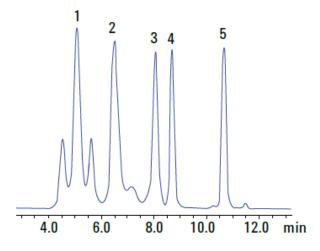
0.35ml/min Flow: Detector: UV@220nm

System: Agilent 1260 Infinity Bio-Inert LC


Mouse IgG Sample:

- 1. Dimer
- 2. Monomer
- 3. Monomer Fragment
- 4. Azide
- 5. Retained Molecule

AdvanceBio SEC Protein Standards:



AdvanceBio SEC 130Å Protein Standard separation on AdvanceBio SEC 130Å column

AdvanceBio SEC 130Å Protein Standard p/n 5190-9416, 1.5 mL vial)		
Analyte	MW	
1. Ovalbumin	45,000	
2. Myoglobin	17,000	
3. Aprotinin	6,700	
4. Neurotensin	1,700	
5. Angiotensin II	1,000	

Helpful Hints for Protein SEC Success

AdvanceBio SEC 300Å Protein Standard separation on AdvanceBio SEC 300Å column

The state of the s	A Protein Standard
Expres: 10No: 001234	Agilent
	A
EC 130Å Protein Standard	
234	Agilent
	OD e
	Part No: 5196-9417 Lot No: 88-50150

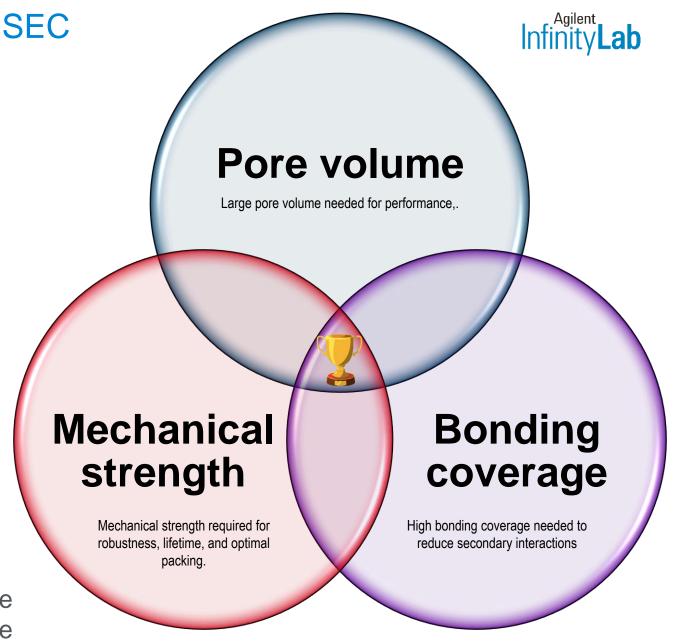
AdvanceBio SEC 300A Protein Standard (p/n 5190-9417, 1.5 mL vial)		
Analyte	MW	
1. Thyroglobulin	670,000	
2. γ-globulin	150,000	
3. Ovalbumin	45,000	
4. Myoglobin	17,000	
5. Angiotensin II	1,000	

Features and Benefits of AdvanceBio SEC

Particles:

- Large pore volume
- Optimized pore size and narrow pore size distribution
- Smaller particles

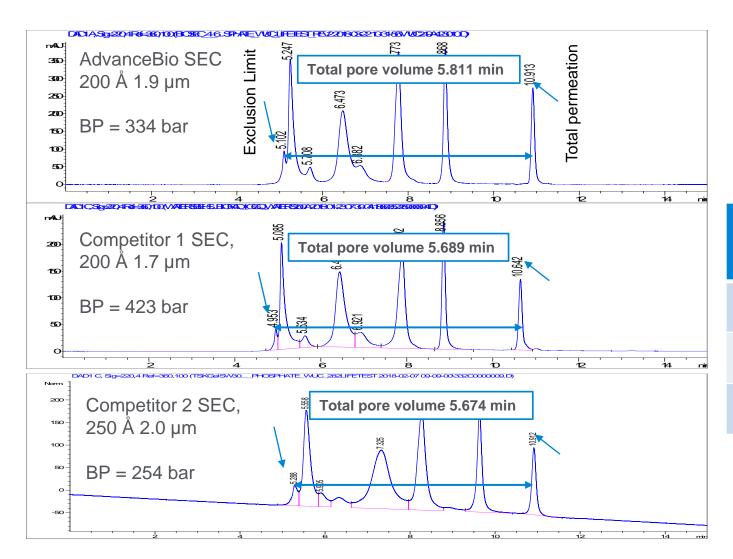
Chemistry:


- Hydrophilic surface and inertness
- Stable chemistry (no retention time shift and peak shape change over injections)

Robustness:

- Strong particles
- Stable packed bed

Available in:

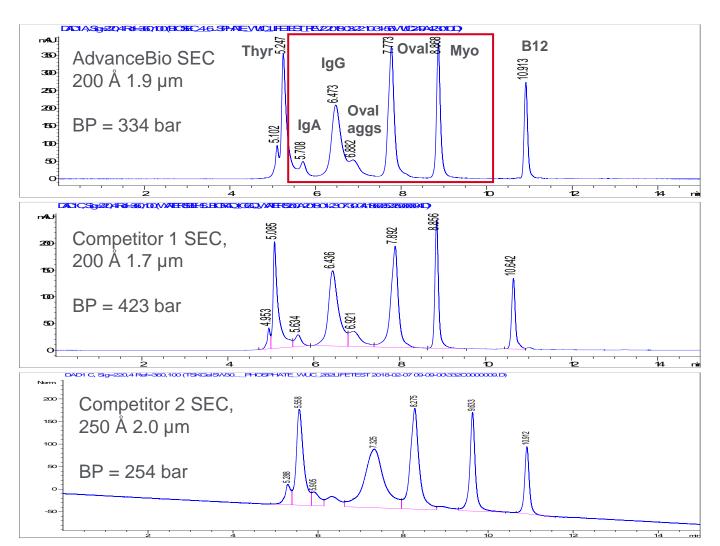

2.7 µm particles 130Å & 300Å pore size 1.9 µm particles 120Å & 200Å pore size

Column Pore Volume Analysis

(4.6 x 300 mm, 0.35 ml/min, pH 7.0 Phosphate Buffer, BioRad sample)

BioRad # 151-1901	Molecular Weight*
Thyroglobulin	670,000
γ-globulin	158,000
Ovalbumin	44,000
Myoglobin	17,000
Vitamin B12	1,350

Column	Exclusion limit (min) Total Permeation (min)		Total Pore Volume (min)
AdvanceBio SEC 200 Å 1.9 µm	5.102	10.913	5.811
Competitor 1 SEC, 200 Å 1.7 µm	4.953	10.642	5.689
Competitor 2 SEC, 250 Å 2.0 µm	5.238	10.912	5.674


AdvanceBio SEC 200 Å 1.9 µm columns provide the widest separation window.

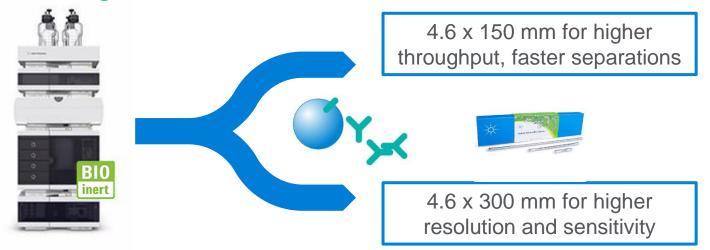
Optimized Performance in the Target Range

(4.6 x 300 mm, 0.35 ml/min, pH 7.0 Phosphate Buffer, BioRad sample)

BioRad # 151-1901	Molecular Weight*
Thyroglobulin	670,000
γ-globulin (IgG)	158,000
Ovalbumin	44,000
Myoglobin	17,000
Vitamin B12	1,350

Column	N (B12)	Rs IgA/IgG	Rs IgG/Oval aggs	Rs Oval/Myo
AdvanceBio SEC 200 Å 1.9 µm	88839	2.56	1.00	5.47
Competitor 1 SEC, 200 Å 1.7 µm	79659	2.15	1.09	4.40
Competitor 2 SEC, 250 Å 2.0 µm	55558	1.73	NA	4.89

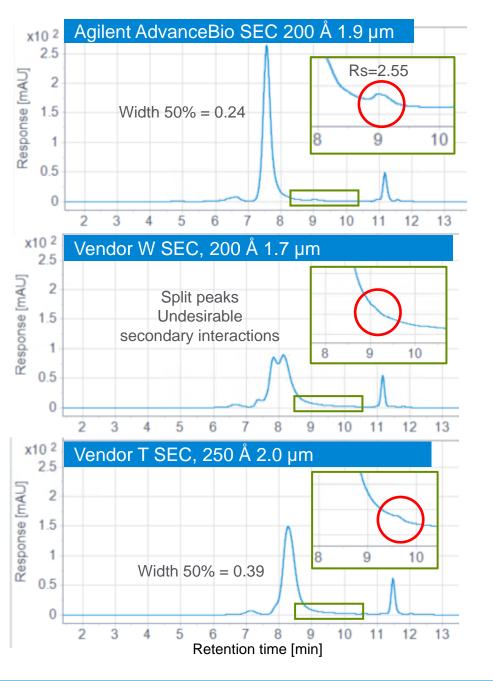
AdvanceBio SEC 200 Å 1.9 µm columns provide the best efficiency and resolution.



Product Description

Product Name	Particle	Column Hardware	Column Dimensions	Part Number
AdvanceBio SEC 200Å 1.9 μm	1.9 µm 200Å (coated silica)	RRHD	4.6 x 300 mm 4.6 x 150 mm 4.6 x 30 mm guard	PL1580-5201 PL1580-3201 PL1580-1201
AdvanceBio SEC 120Å 1.9 μm	1.9 µm 120Å	RRHD	4.6 x 300 mm 4.6 x 150 mm 4.6 x 30 mm guard	PL1580-5250 PL1580-3250 PL1580-1250
AdvanceBio SEC 120Å 1.9 um MVK	(coated silica)		3 lots of 4.6x300mm 3 lots of 4.6x150mm	PL1580-5250K PL1580-3250K

AdvanceBio SEC 1.9 μ m 200Å, 120Å is designed for aggregates (monomer / dimer) and analysis of low MW mAb fragments



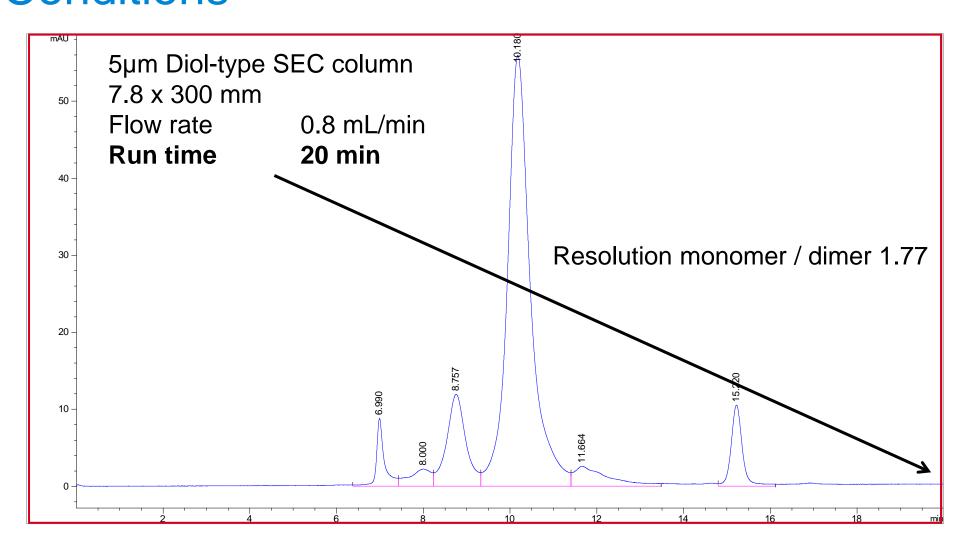
Resolving Range

200Å MW: 2,000 - 700,000 Da

120Å MW: 1,000 - 80,000 Da

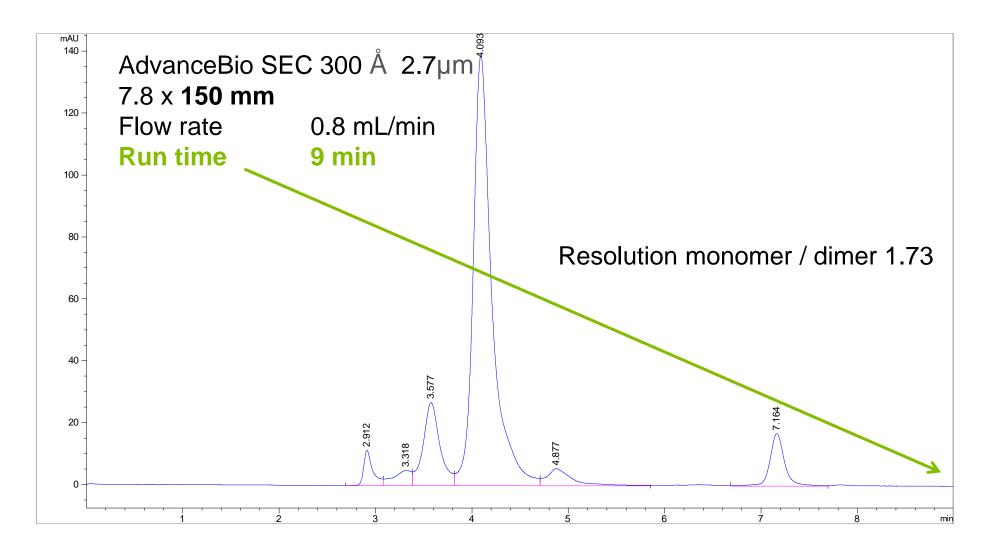
LC Conditions	1260 Infinity II Bioinert LC System
Column dimension	4.6 x 300 mm
Mobile phase	50 mM sodium phosphate, 200 mM NaCl, pH 7.0
Temperature	25 °C
Sample	SigmaMAb ADC Mimic
Flow rate	0.35 mL/min
UV detection	220 nm

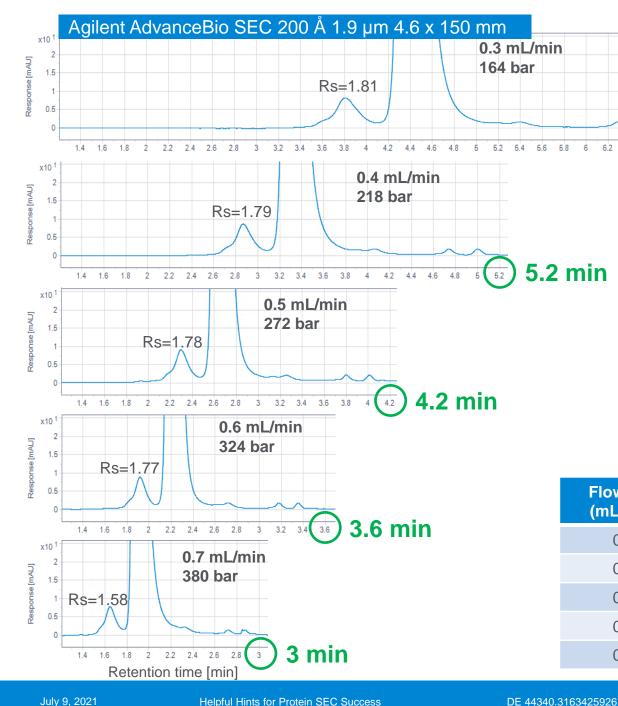
	Monomer peak	Resolution of fragment peak
AdvanceBio SEC 200 Å 1.9 μm	Single peak (sharper)	Well resolved
Vendor W SEC 200 Å 1.7 μm	Split peaks	Not resolved
Vendor T SEC 250 Å 2.0 μm	Single peak	Partially resolved


ADC aggregate and fragment separation

Greatly reduced undesirable secondary interactions resulting in a single, sharp monomer peak and well-resolved aggregate and fragment peaks.

26


Fast SEC Initial Conditions



Same flow rate, 15cm column Same resolution, much shorter run time

	LC Conditions	1260 Infinity II Bioinert LC System	
	Column Dimensions	4.6 x 150 mm)i
	Mobile phase	50 mM sodium phosphate, 200 mM NaCl, pH 7.0	
6.8 min	Temperature	25 °C	
	Sample	SigmaMAb	
	UV detection	220 nm	

Fast Analysis 150 mm 150 mm 2.3 times faster 0.3 mL/min 0.7 mL/min 300 mm 150 mm 4.6 times faster 0.3 mL/min 0.7 mL/min

Flow rate (mL/min)	Dimer area%	Samples per hour	Samples per day (24 h)
0.3	2.33	8-9	211
0.4	2.35	11-12	276
0.5	2.35	14	342
0.6	2.39	16-17	400
0.7	2.30	20	480

Buffers and SEC: criteria for optimal mobile phase

- Mobile phase should contain enough buffer/salt (to overcome ionic interactions).
- Mobile phase should not contain too much buffer/salt (to prevent hydrophobic interactions).
- Mobile phase should not alter the analyte (cause degradation / aggregation etc.).
- Mobile phase should be made up fresh and used promptly (bacterial growth is rapid in dilute buffer stored at room temperature).
- Buffer shelf life < 7 days unless refrigerated.

Helpful Hints for Protein SEC Success

Mobile phase should be filtered before use. Particulates may be present in water (less likely) or in buffer salts (more likely).

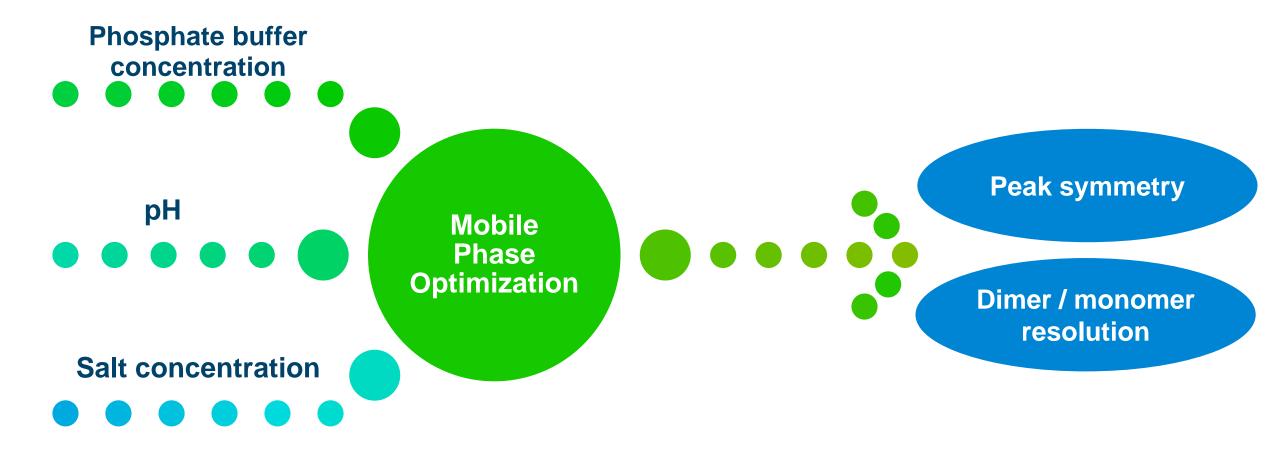
The optimal eluent for the separation should be determined by the characteristics of the column stationary phase and the proteins/polymers to be analyzed so that non specific interactions are minimized

Buffer Preparation Good Practices

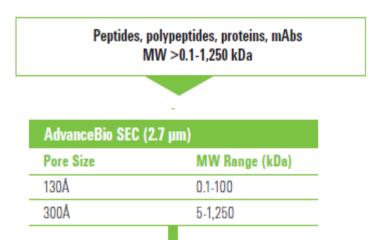
- Use HPLC grade water or Milli Q DI water
- Use HPLC grade reagents including salts and base and acid modifiers
- Use HPLC grade Organic mobile phase modifiers

Helpful Hints for Protein SEC Success

- Always rinse pH electrode thoroughly when measuring/adjusting pH of mobile phase
- Prepare fresh buffers to avoid contaminants from the growth of bacteria or algae
- Do not top off your mobile phase bottle. Replace with a clean bottle
- Consider using amber solvent bottles to decrease light exposure
- Filter your mobile phase buffer with 0.2um or 0.45 µm filter before use
- Solvent filters installed at the end of solvent lines should be replaced periodically



Buffer Considerations



Recommended Starting Conditions

For AdvanceBio SEC Columns we recommend starting with 150mM Sodium phosphate, pH 7.0

Recommended Initial Separation Conditions

Column: AdvanceBio SEC or Agilent Bio SEC-5

Mobile phase: 150 mM phosphate buffer, pH 7.0*

Gradient: Isocratic in 10-30 min range

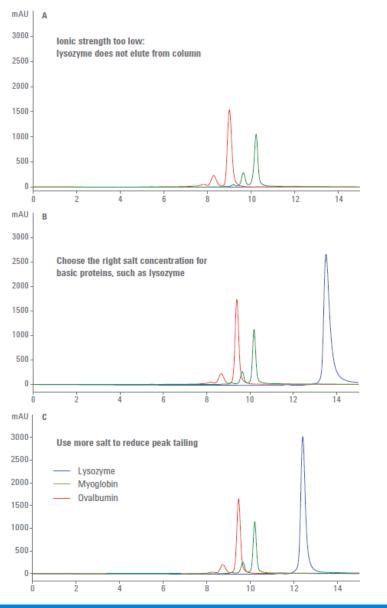
Recommended: 10-30 °C. Maximum: 80 °C Temperature:

Helpful Hints for Protein SEC Success

0.1-0.4 mL/min for 4.6 mm id columns Flow rate:

0.1-1.25 mL/min for 7.8 mm id columns

≤ 5% of total column volume Sample size:


*Other aqueous buffers with high and low salt can be used

Remember buffer concentration and ionic strength can impact retention time, peak shape, and resolution Adjustments should be made depending on your sample requirements

Buffer Considerations

Column: Agilent Bio SEC-3 300Å

4.6 mm x 300 mm, 3 µm (p/n 5190-2513)

Agilent 1260 Infinity Bio-inert Quaternary LC System Instrument:

Flow rate: 0.35 mL/min

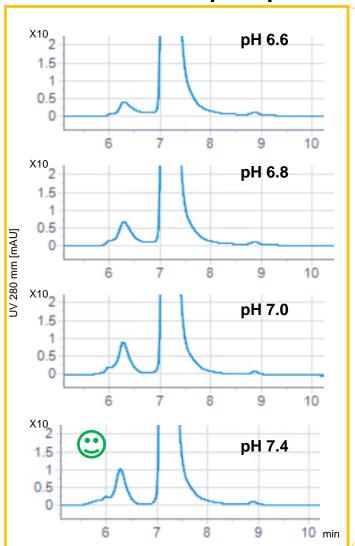
Detector: UV, 220 nm

> A: Eluent 20 mM phosphate buffer, pH 7 + 50 mM NaCl B: Eluent 20 mM phosphate buffer, pH 7 + 100 mM NaCl C: Eluent 20 mM phosphate buffer, pH 7 + 400 mM NaCl

Injection: 5 μL

Sample: Protein (1 mg/mL 20 mM phosphate buffer, pH 7)

Pub No. 5991-3651EN



34

Mobile Phase Optimization - NISTmAb

150 mM sodium phosphate

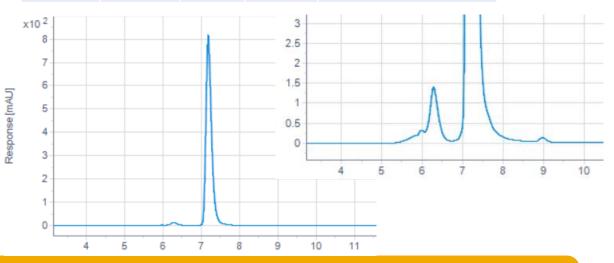
Buffer (mM)	NaCl (mM)	рН	Asymmetry (As)	Rs (dimer/monomer)
150	0	6.6	1.49	2.33
150	0	6.8	1.43	2.35
150	0	7	1.42	2.67
150	0	7.4	1.41	2.78
200	0	7.4	1.45	2.60
250	0	7.4	1.42	2.57
300	0	7.4	1.40	2.45
350	0	7.4	1.38	2.33

Sodium phosphate without NaCl

Lower pH, more tailing, less resolution

Higher buffer concentration, less tailing but worse resolution

Mobile Phase Optimization - NISTmAb


Sodium phosphate concentration and pH screening

Buffer (mM)	NaCl (mM)	рН	As	Rs (dimer/monomer)
25	250	6.6	1.36	2.73
25	250	6.8	1.36	2.86
25	250	7	1.35	2.83
25	250	7.4	1.37	2.86

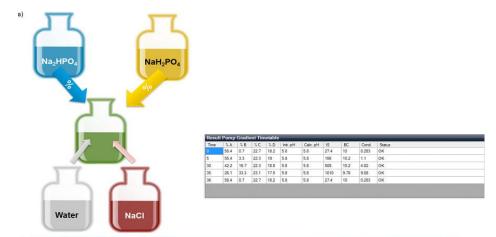
Buffer (mM)	NaCl (mM)	рН	As	Rs (dimer/monomer)
50	250	6.6	1.35	2.87
50	250	6.8	1.33	2.86
50	250	7	1.36	2.85
50	250	7.4	1.36	2.84

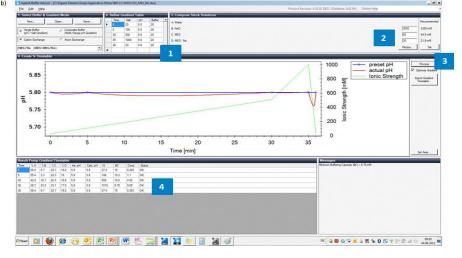
Helpful Hints for Protein SEC Success

Buffer (mM)	NaCI (mM)	рН	As	Rs (dimer/monomer)
100	250	6.6	1.36	2.87
100	250	6.8	1.36	2.89
100	250	7	1.35	2.83
100	250	7.4	1.37	2.80

For some samples certain concentration of NaCl is needed in the mobile phase with optimized pH for a balance of good peak shape and resolution.

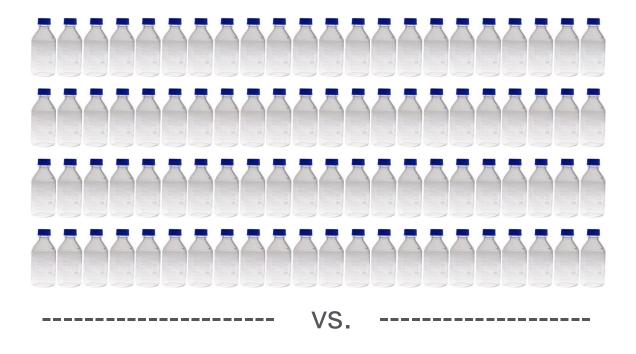
SEC Method Robustness Agilent Buffer Advisor


Infinity Lab


Ease of use

- Automates preparation of mobile phases from stock solutions
- Eliminates the need to prepare multiple mobile phases for a method development/robustness study
- Provides recipes for buffer preparation

Increase of productivity


- Simplifies pH scouting studies
- Simplifies buffer concentration studies
- Simplifies salt concentration/mobile additive studies

The Advantage of Buffer Advisor

Manual method
One bottle for each mobile phase

Buffer Advisor method Four bottles only

Buffer Advisor helps you achieve more in less time

Common Detectors

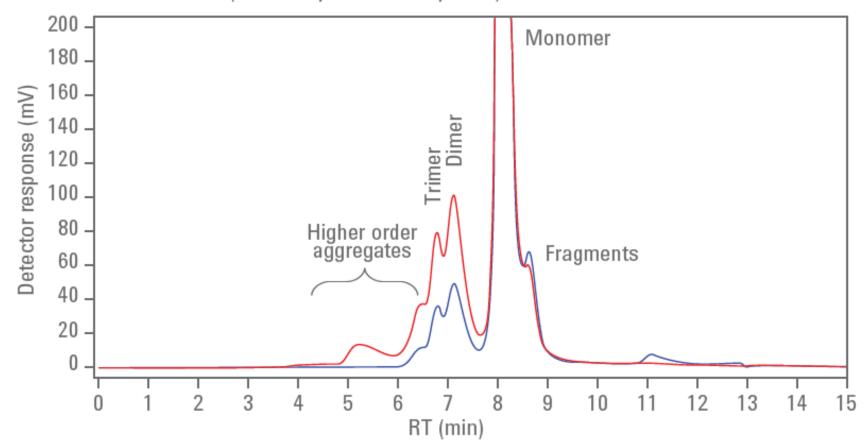
Choice of Detector

UV and Diode Array Detectors

Refractive Index Detector

Advanced Detection Techniques

- Light scattering detector
- Mass Spectometry


Detection for Size Exclusion Chromatography **UV** and Light scattering

LS 90° (more sensitive to higher order aggregation)

Helpful Hints for Protein SEC Success

— UV 280nm (linear response to all species)

Light-scattering detection achieves much greater sensitivity to the presence of aggregates and is an important technique being increasingly used to study mAb aggregation

Agilent 1260 Infinity Bio-SEC System

Detection for Size Exclusion Chromatography

Helpful Hints for Protein SEC Success

MDS more sensitive to light scattering of higher order aggregates

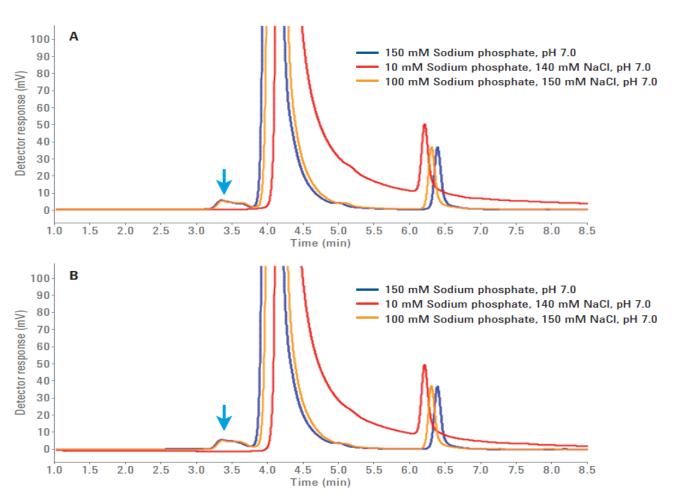


Figure 4. Baseline zoom of UV 220 nm signals of rituximab innovator (A) and rituximab biosimilar (B) run with different buffer salt concentrations at the optimized pH 7.0 (Experiments 3, 6, and 11 in Table 1).

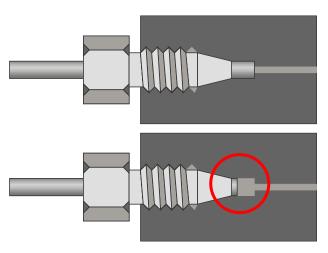
Considerations for LC Instrument Best Practices to keep in mind

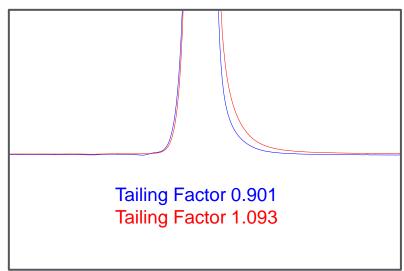

Helpful Hints for Protein SEC Success

Low dispersion LC

Minimized tubing ID and length to reduce extra-column volume and band broadening (shortest possible 0.12 mm ID red tubing).

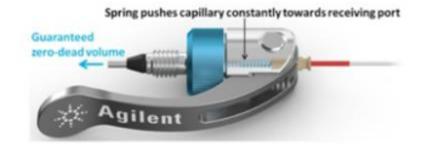
Start at a low flow rate such as 0.1 mL/min and gradually increase the flow with no more than 0.1 mL/min increments until you reach the intended operating flow rate.




Best Practices to keep in mind

AVOID BAD CONNECTIONS!

Ensure column connections do not leave dead spots:


Use High Data Collection Rates

Helpful Hints for Protein SEC Success

Data collection rates of 10 – 20 Hz could result in 4 – 5% reduction in column efficiency compared to 40 or 80 Hz.

Common LC consumables Quick Connect and Quick Turn Fittings

- Spring loaded design
- Easy! No tools needed
- Works for all column types
- Reusable
- Consistent ZDV connection

Correct connection every time

Quick Connect Fitting

- Finger tight up to 1300 bar
- Hand tighten the nut, then depress the lever

Quick Turn Fitting

- Finger tight up to 600 bar
- · Up to 1300 bar with a wrench
- Compact design

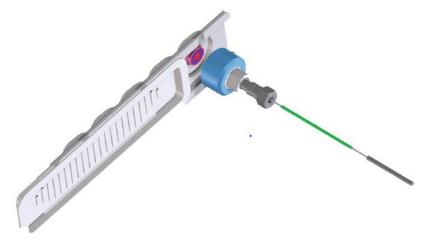


Common LC consumables

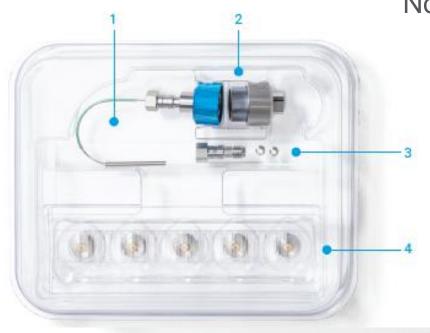
Inline Filters

Agilent InfinityLab Quick Change inline filter

Dimensions and porosities of Filter Discs



Touchless Packaging


Touchless insertion of filer disc to housing

InfinityLab Quick Change inline filter assembly

In-line filters can help extend the life of your column

Not intended to be a replacement for good sample cleanup

For 2.1 mm ID – comes with 0.2um filter discs, 0.12 x 90mm SS capillary

For 4.6mm ID – comes with 0.5um filter discs, 0.17 x 90mm SS capillary

Parts available to purchase separately

- 1. Capillary, SST, 90 mm length
- 2. Filter housing (two parts)
- 3. Loose fitting for non-swaged end of capillary
- 4. Filter discs in touchless packaging, 5/pk

InfinityLab Quick Change Inline Filters (agilent.com)
Pub No 5994-3028EN

Common LC consumables Solvent Inlet filters

Use a Solvent inlet filter

- Glass solvent inlet filter (20 µm), 5041-2168
- Stainless steel solvent inlet filter, 01018-60028
- Stainless inlet filter recommended for LCMS

not designed to take the place of good mobile phase hygiene

AdvanceBio SEC User Guides

AdvanceBio SEC 1.9 μm			
Pressure limit	620 bar (9000 psi)		
Recommended flow rate	0.1 – 0.5 mL/min		
Flow rate limit	4.6 x 150 mm 4.6 x 300 mm	0.7 mL/min 0.5 mL/min	
Shipping solvent	pH 6.7 100mM sodium phosphate buffer with 0.02% NaN ₃		
Long term storage	Shipping solvent or 30% ACN in water		
pH stability	2 to 8		
Salt concentration	<= 0.5 M		
Operating temperature	20 – 40 °C (recommended) 80 °C (maximum)		

Agilent WebLinks:

Bio LC Column User Guides | Agilent

Working at extremes of the operating parameters may reduce column lifetime.

Troubleshooting your SEC method

Problem	Source	Solution
Peaks that appear when they should not, based on Molecular weight or peak tailing	Ionic Interactions or basic proteins	Increase the ionic strength – salt concentration at 50-100mM intervals, add to phosphate buffer
Poor peak shapes	Non specific adsorption	Increase salt concentration or try Agilent BioInert System
Poor resolution of analytes	Insufficient pore size for molecule size	Consider an alternative Advance BioSEC or BioSEC column choice
Lower than expected recovery or a broadening of the peaks	Hydrophobic analytes	Add a small amount (10-20%) organic modifier, ACN or MeOH to mobile phase
Increased back pressure	Inline filters, guard, or columns	Change frit for inline filter Replace guard column Remove and test guard column OR the individual columns used

Agilent WebLinks:

LC Troubleshooting
Guide (agilent.com

LC Columns and Supplies Resources

Product catalog, 'how to' guides, and other resources

- BioHPLC column catalog: <u>5994-0974en-agilent.pdf</u>
- SEC for biomolecules "How to" guide: <u>5991-3651EN_LR.pdf</u> (agilent.com)
- Bio LC column user guides: Bio LC Column User Guides | Agilent
- InfinityLab supplies catalog: InfinityLab LC Supplies (agilent.com)
- LC troubleshooting poster: <u>LC Troubleshooting Guide (agilent.com)</u>
- App finder: <u>Application Finder | Agilent</u>
- Agilent University: http://www.agilent.com/crosslab/university
- YouTube: Agilent Channel
- Your local product specialists
- Subscribe to the Agilent Peak Tales podcasts: <u>peaktales.libsyn.com</u>
- Webinars, upcoming and recorded: Webinars | Agilent

Contact Agilent Chemistries and Supplies Technical Support

Helpful Hints for Protein SEC Success

Available in the USA and Canada 8-5pm all time zones

1-800-227-9770 option 3, option 3:

Option 1 for GC and GC/MS columns and supplies

Option 2 for LC and LC/MS columns and supplies

Option 3 for sample preparation, filtration, and QuEChERS

Option 4 for spectroscopy supplies

Option 5 for chemical standards

Option 6 for Prozyme products

gc-column-support@agilent.com <u>lc-column-support@agilent.com</u> spp-support@agilent.com spectro-supplies-support@agilent.com chem-standards-support@agilent.com advancebio.glycan@agilent.com

51

Thank you for attending

Any questions?

Agilent Infinity Lab

