
HILIC Chromatography: When and How?

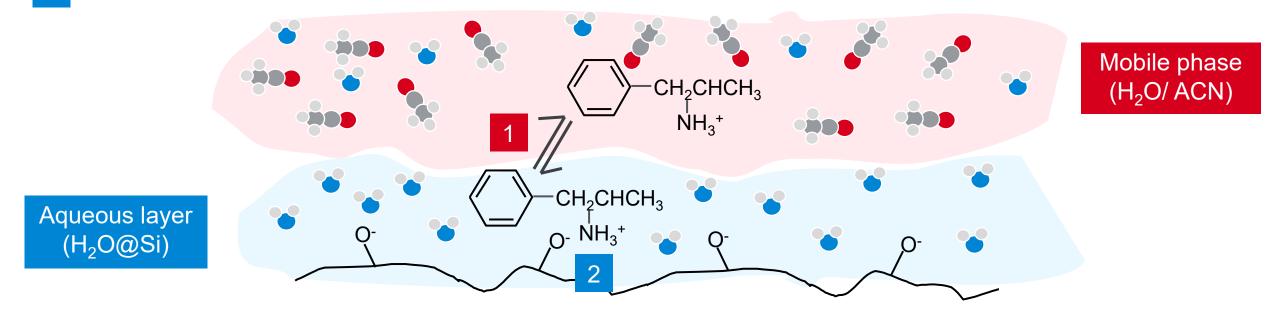
Golnar Javadi Applications Engineer LC Columns and Consumables Technical Support January 25, 2022

Infinity Lab

Agilent

Agenda

1	What is HILIC and when should you consider it?
2	HILIC method development
	 Agilent HILIC column options Mobile phase considerations
3	Tips and tricks for successful HILIC column use and care
	 Column equilibration Sample solvent compatibility Inert HILIC solution for metal-sensitive compounds
4	Summary



Infinity Lab

HILIC retention mechanism

A water layer is adsorbed onto the polar silica surface, creating a liquid/liquid extraction system

- Polar analytes can partition into and out of the water layer, with more polar analytes having a stronger interaction.
- Charged polar analytes can also undergo ion exchange with the silica surface.

Elution is typically from least to most polar, which is the opposite of RPLC

Solvent strengths in HILIC mode are: THF < acetone < acetonitrile < isopropanol < ethanol < methanol < water

What Is HILIC and When Should You Consider It? HILIC compared to RPLC

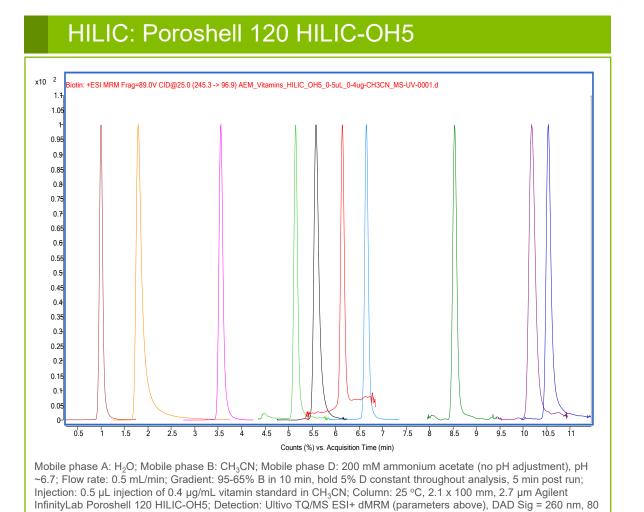
HILIC complements RPLC

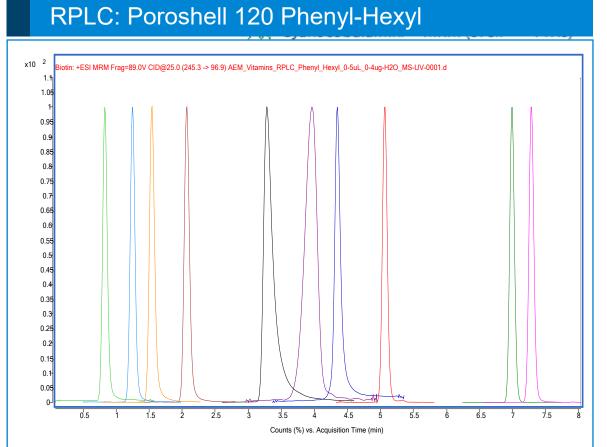
Reversed-Phase LC		Hydrophilic Interaction LC (HILIC)
Nonpolar stationary phase (for example, C18)	Polarity	Polar stationary phase (for example, silica)
Polar mobile phase H ₂ O/CH ₃ OH, H ₂ O/CH ₃ CN	Mobile phase	Polar mobile phase H ₂ O/CH ₃ CN
Decrease retention by decreasing polarity of mobile phase	Gradient	Decrease retention by increasing polarity of mobile phase
H2O \downarrow = retention \uparrow CH ₃ CN \uparrow = retention \downarrow	Oradient	H2O \uparrow = retention \downarrow CH ₃ CN \downarrow = retention \uparrow
Polar to nonpolar	Elution order	Nonpolar to polar

Find the Best Column to Retain and Separate All Analytes

HILIC retains amino acids and separates isobars, while RPLC can't

HILIC: Poroshell 120 HILIC-Z **RPLC:** Poroshell 120 PFP x10⁴ eucine: +ESI MRM Frag=75.0V CID@4.0 (132.1 -> 86.1) Amino-Acids_RPLC-PFP-pH3_25pmolH2O-0112.d so/leucine: +ESI MRM Frag=75.0V CID@4.0 (132.1 -> 86.1) Amino Acids_HILIC_25pmoICH3CN_MA-r03.d 1.05-x10² 9.1 1.1 1.05 1.05 0.768 0.95-1 3.411 1 0.95 0.95 0.9 0.9 0.85 3.686 0.85 0.8 0.8 0.75 0.75 0.7 0.7 0.65 0.65 0.6 0.6 0.55 0.55 0.5 0.5 0.45 0.45 0.4 0.4 0.35 0.35 0.3 0.3 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 3.4 63.5 3.87.5 3.9 28 29 3 3.1 3.2 3.3 3.6 3.7 8 4 8 4.1 Counts (%) vs. Acquisition Time (min) Counts (%) vs. Acquisition Time (min)


Separation of isobars leucine/isoleucine



Find the Best Column to Retain and Separate All Analytes

Both RPLC and HILIC are able to retain and separate water-soluble vitamins

Mobile phase A: H₂O; Mobile phase B: CH₃CN; Mobile phase D: 200 mM ammonium acetate + 0.2% acetic acid, pH ~5.3; Flow rate: 0.5 mL/min; Gradient: 0% B for 1 min, 0-25% B in 8 min, hold 5% D constant throughout analysis, 3 min post run; Injection: 0.5 μ L injection of 0.4 μ g/mL vitamin standard in H₂O; Column: 25 °C, 2.1 x 100 mm, 2.7 μ m Agilent InfinityLab Poroshell 120 Phenyl-Hexyl; Detection: Ultivo TQ/MS ESI+ dMRM, DAD Sig = 260 nm, 80 Hz

Ηz

When to chose which separation mode for your sample

Find the best column to retain and separate all analytes.

Consider the sample: analyte solubility and sample solvent

Ensure reliable detection of your sample

When to chose which separation mode for your sample

Find the best column to retain and separate all analytes.

Consider the sample: analyte solubility and sample solvent

Ensure reliable detection of your sample

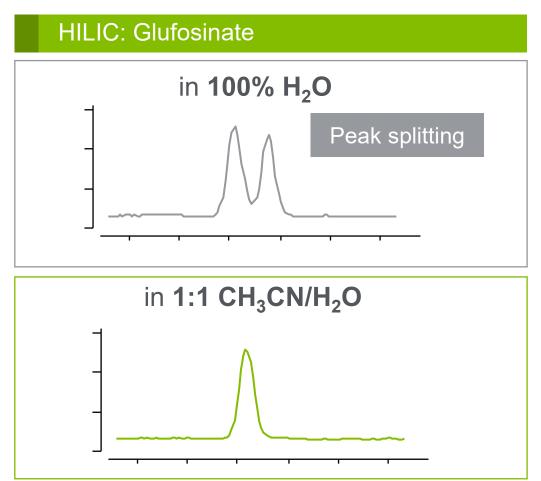
InfinityLab Poroshell 120 offers a broad portfolio to suit your needs

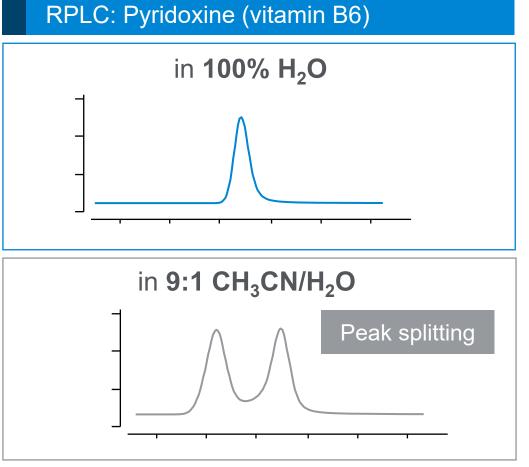
Best all around	mc	r low pH bile ases	Best for high pH mobile phases	Best for alternative selectivity	Best for more polar analytes	Chiral
EC-C18 1.9 μm, 2.7 μm, 4 μm	S 1.9 µm,	RP che	mistries for	Bonus-RP 2.7 μm	SB-Aq 1.9 μm, 2.7 μm, 4 μm	Chiral-V 2.7 μm
ΕС-С8 1.9 μm, 2.7 μm, 4 μm	0	polar analytes		PFP 1.9 μm, 2.7 μm, 4 μm	EC-CN 2.7 μm	Chiral-T 2.7 μm
Phenyl-Hexyl 1.9 μm, 2.7 μm, 4 μm					HILIC 1,9 μm, 2.7 μm, 4 μm, pH range 0.0-8.0	Chiral- CD 2.7 μm
				HILIC	1,9 μm, 2.7 μm, 4 μm,	

When to chose which separation mode for your sample

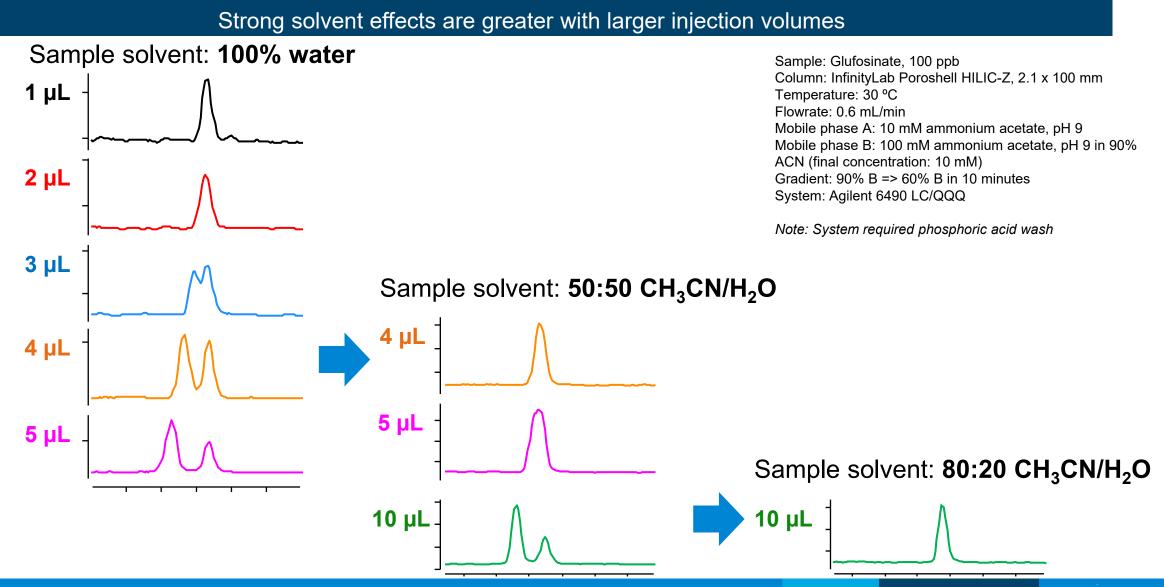
Find the best column to retain and separate all analytes.

Consider the sample: analyte solubility and sample solvent

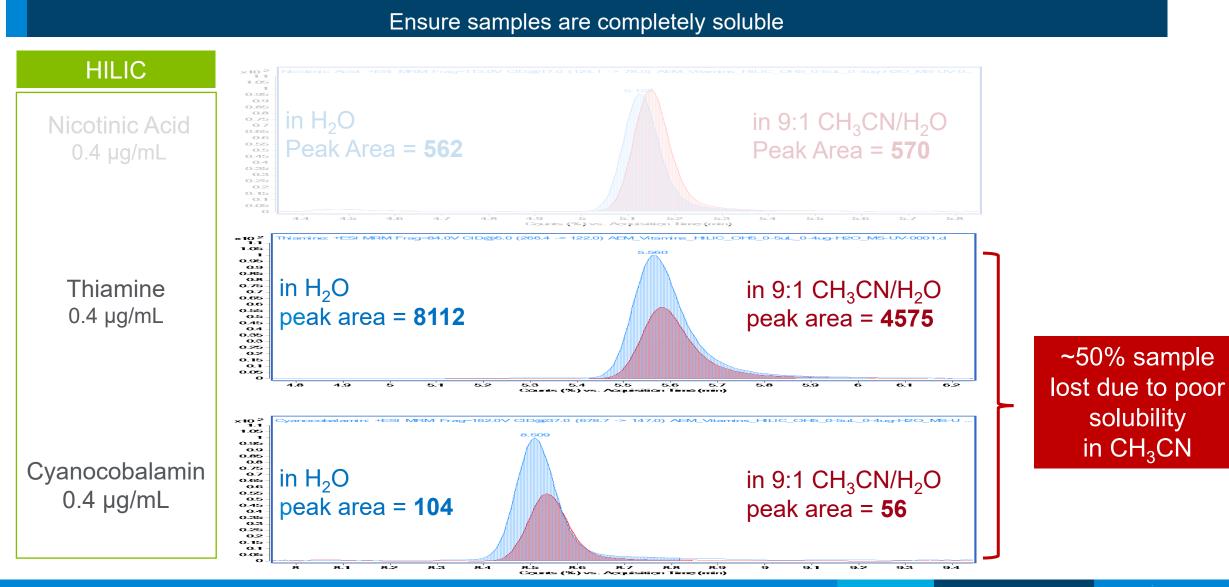

Ensure reliable detection of your sample


Analyte Solubility and Sample Solvent

Strong injection solvents distort peak shapes for HILIC and RPLC


4 μL injection of Glufosinate, 100 ppb, InfinityLab Poroshell HILIC-Z, 2.1x100 mm; Temperature: 30 °C; Flowrate: 0.6 mL/min, Mobile phase A: 10 mM ammonium acetate, pH 9, Mobile phase B: 100 mM ammonium acetate, pH 9 in 90% ACN (final concentration: 10 mM), Gradient: 90% B => 60% B in 10 minutes, System: Agilent 6490 LC/QQQ

0.5 μ L injection of 13 μ g/mL pyridoxine, A: H₂O; B: CH₃CN; D: 200 mM ammonium acetate + 0.2% acetic acid, pH ~5.3; 0.5 mL/min; Gradient: 0% B for 1 min, 0-25% B in 8 min, hold 5% D constant throughout analysis; Column: 25 °C, 2.1 x 100 mm, 2.7 μ m Agilent InfinityLab Poroshell 120 Phenyl-Hexyl; Detection: Ultivo TQ/MS ESI+ dMRM



Ensure Analytes are Completely Soluble

When to chose which separation mode for your sample

Find the best column to retain and separate all analytes.

Consider the sample: analyte solubility and sample solvent

Ensure reliable detection of your sample

Ensure Reliable Detection of Your Sample

Choose a Detector that Can Analyze Compounds of Interest

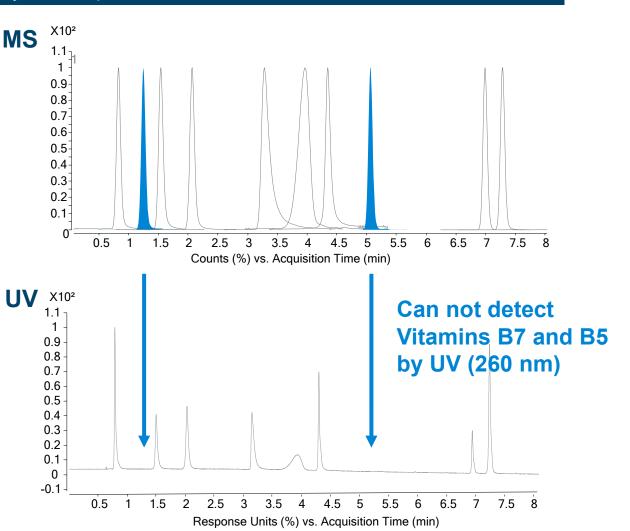
UV, VIS absorbance

For light-absorbing compounds

Refractive index

 Universal detection, but poor sensitivity; can only run isocratic

Evaporative light scattering

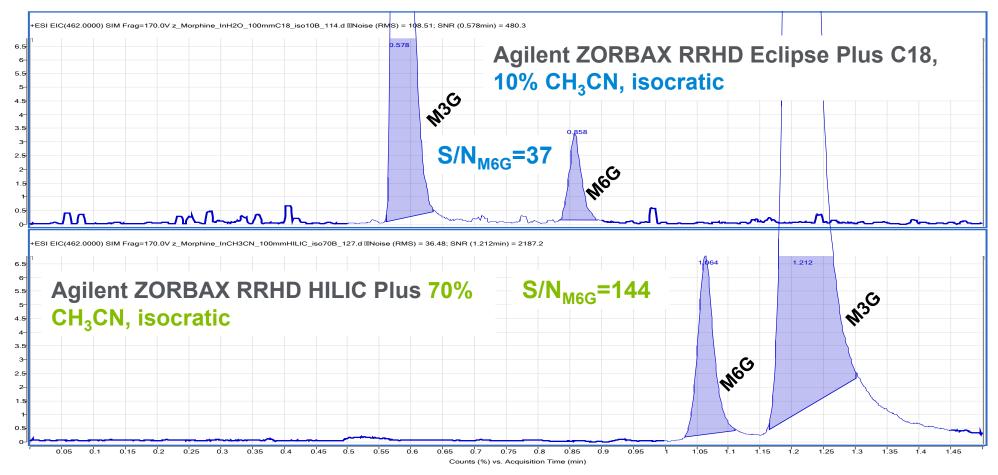

- For nonvolatile analytes

Mass spectrometer

 Low limits of detection based on molecular weight

Fluorescence

 For compounds that fluoresce or can be derivatized to do so



Ensure Reliable Detection of Your Sample

HILIC pairs well with LC/MS and can improve sensitivity compared to RPLC for opioid metabolites

Columns used were 2.1 x 100 mm, 1.8 μm; A: 10 mM ammonium formate pH 3.2 in water, B: acetonitrile/ 100 mM ammonium formate pH 3.2 in water (9:1), isocratic elution, 0.4 mL/min, 2 μL injection of 1 μg/mL each of morphine-3-β-D-glucuronide, and morphine-6-β-Dglucuronide; 25 °C, MS Source: ESI+, 200 V, 250 °C, 11 L/min,, 30 psi, 4000 V; SIM: 462, Frag 170 V, Agilent publication: 5991-0245

Reversed-Phase LC and UV Detection are Compatible with a Wider Range of Mobile Phases, Especially at Low pH

Mobile Phase	Useable pH/Range	Recommended for HILIC?	Recommended for MS?	Recommended for RPLC and UV?
TFA	<1.5	No	No	Yes
Phosphate	1.1-3.1	No	No	Yes
Formic Acid	<2.8	No	Yes	Yes
Acetic Acid	<3.8	Νο	Yes	Yes
Formate	2-8-4.8	Yes	Yes	Yes
Acetate	3.8-5.8	Yes	Yes	Yes
Carbonate	5.4-7.4	Yes	Yes	Yes
Phosphate	6.2-8.2	No	No	Yes
Bicarbonate	6.6-8.6	Yes	Yes	Yes
Ammonia	8.2-10.2	Yes	Yes	Yes
Phosphate	11.3-13.3	No	No	Yes

Summary of when to use which separation mode

Find the best column to retain and separate all analytes.

RPLC cannot retain all polar/ionized analytes, HILIC may work for these

Some analytes can be retained and separated equally well in both modes of LC

njecting strong solvent in both RPLC and HILIC will negatively affect chromatographic quality

It's a balancing act

Polar compounds are generally more soluble in water than acetonitrile, which is good for RPLC

Consider the sample: analyte solubility and sample solvent

Ensure reliable detection of your sample

Ensure analytes are compatible with detector choice

HLIC can improve LCMS analyses due to more volatile mobile phases

UV and RPLC are compatible with a wider variety of mobile phases, which may improve analyte retention and separation

Other Techniques for Polar Compounds

Advantages and disadvantages of each technique

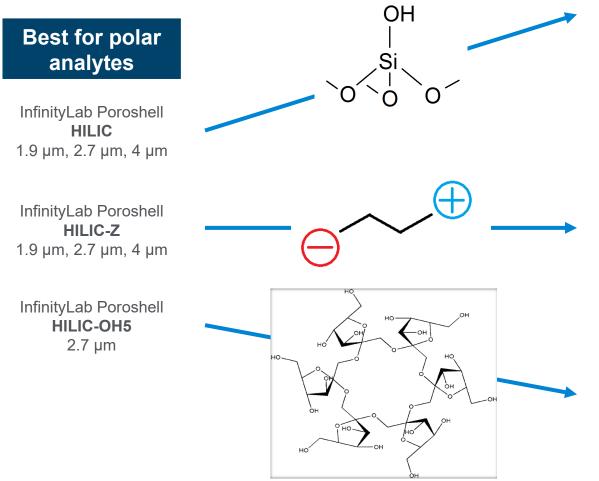
	Advantage	Disadvantage
Ion Pairing	Fast. Uses standard system and reverse phase columns.	Often contaminates system, reagents can cause ion suppression, restricted to only positive or only negative mode MS.
Ion Chromatography	Well understood mechanism, established for over 40 years.	Slower than modern HPLC, expensive systems and consumables, cannot resolve cations and anions simultaneously, difficult to make MS-compatible.
Ion Exchange	Strong retention and separation	Slower than HPLC, cannot resolve cations and anions simultaneously, difficult to make MS-compatible.
Normal Phase	Fast. Uses standard HPLC and common columns.	Safety and compatibility of organic solvents, smaller selection of stationary phases, sample solubility issues.
Derivatization	Tailored selectivity, adds chromophore or fluorophore	Lengthy sample preparation, repeatability issues.

Why we choose HILIC

Advantages

- Uses a standard system and solvent, just swap columns
 - Easily adopted by labs currently performing reverse phase analysis
- Retains cations, anions, and polar neutrals
 - Widely applicable across all major polar samples
- Fully MS compatible
 - Operate in positive or negative mode with high sensitivity




And common application areas

<u>HILIC</u>

- Bare silica chemistry
- For very simple mixtures, low column bleed

HILIC-Z

- Proprietary zwitterionic chemistry, high pH stable
- The most modern and robust column start method development here
- PEEK-lined version available

HILIC-OH5

- Brushed fructan chemistry
- Alternative selectivity

Mobile phase considerations

	Recommendations
Organic solvent concentration	 Solvent strength in HILIC mode: <i>THF < Acetone < CH₃CN < IPA < EtOH < MeOH < H₂O</i> H₂O must be present — <i>need >3% H₂O</i> for hydration of silica Mobile phase will typically be >50% acetonitrile
lonic strength of buffer	 Concentration of (salt) buffer increases strength Different anions and cations may can also affect analyte retention
Type of buffer	 Acetates and formates are good, soluble in CH3CN—also MS friendly Phosphate salts are bad due to low CH₃CN solubility

More information

For more HILIC method development tips, see this publication:

Agilent Infinity Lab

Column used was 2.1 x 150 mm, 2.7 µm Agilent InfinityLab Poroshell 120 HILIC-Z (PEEK lined); A: 100 mM pH 3 ammonium formate in Water, B: Acetonitrile, x % B, isocratic elution, 0.25 mL/min, 30 °C, 1 µL injection of toluene, cytosine, uracil QC mixture, 254 nm

Starting mobile phases

Mobile phase A (strong phase, H_2O):

- Typical buffer concentration: 5 to 30 mM **Basic analytes**
 - 10 to 20 mM is most common
- Ammonium formate, pH 3
- Ammonium acetate, pH 4-5

Acidic analytes

- Ammonium acetate, pH ~7
 - Ammonium acetate solution is near pH 7, before adjusting with other modifiers
 - Not a true buffer, but still commonly used at mid-pH
- Ammonium acetate or formate, pH 9-10
 - Can be formate or acetate because the ammonium ion is buffering Sugars
 - **HILIC-Z** only
- Ammonium hydroxide, pH 10-11 •
 - **HILIC-Z** only
- Phosphate buffers are not recommended *

Mobile phase B (weak phase, CH_3CN):

- Buffer concentration should match mobile phase A for improved reproducibility
- Adding 10% water in ACN is generally recommended for improved solubility and faster re-equilibration
- Pure MeOH is too strong a solvent for most HILIC separations. Mixed with ACN in small quantities (<15%), it can be used to change selectivity slightly

*Note: Phosphates have low solubility in high % ACN (1-30 mM). Always test solubility before running. Never run in >80% ACN to avoid precipitation.

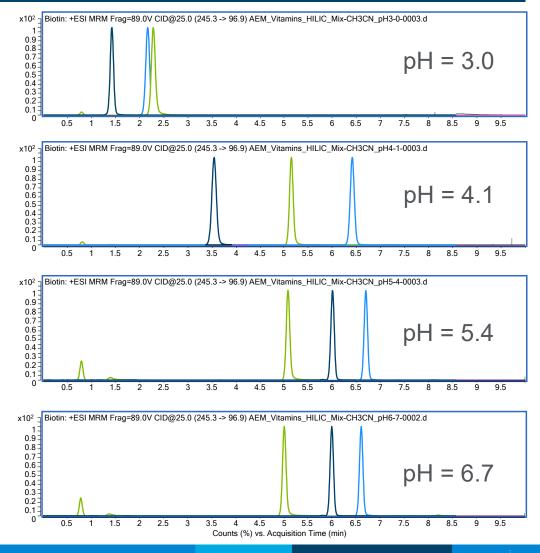
Effect of pH on Retention of Acidic Compounds with HILIC

Starting mobile phases

In HILIC mode, ionizable compounds are better retained when they are ionized

- Acids at high pH
- Bases at low pH

Once the analyte is fully ionized, retention should stabilize


 Note: If other retention mechanisms are occurring, this may not be true

Biotin pKa = 4.5

Nicotinic acid pKa = 4.8

Pantothenic acid pKa = 4.3

Mobile phase A: H₂O, B: CH₃CN, D: varies, 200 mM ammonium formate or acetate; Flow rate: 0.5 mL/min; Gradient: 95% B for 1 min, 95-65% B in 9 min, hold 5% D constant throughout analysis, 5 min post run; Injection: 0.5 μ L of 13.3 μ g/mL each in CH₃CN/H₂O 19:1; Column: 25 °C, 2.1 x 100 mm, 2.7 μ m Agilent InfinityLab Poroshell 120 HILIC-Z; Detection: Ultivo TQ/MS ESI+ dMRM

Infinity Lab

Common starting conditions for HILIC method development

	Method Parameter
Column	Agilent InfinityLab Poroshell 120 HILIC-Z
Buffer	 Acidic analytes: mid to high pH (HILIC-Z only) Basic analytes: low to mid pH Mixed analytes: mid pH
Isocratic	 Column equilibration is faster as you move from high to low aqueous 50% ACN – Column wash (typically no retention) 70% ACN – Very polar analytes 80% ACN – Polar analytes, mixtures 90% ACN – Less polar analytes separation
Gradient	 90% → 50% ACN – Scouting gradient Isocratic holds or shallow gradients (1-3% per min) recommended for critical pair separation

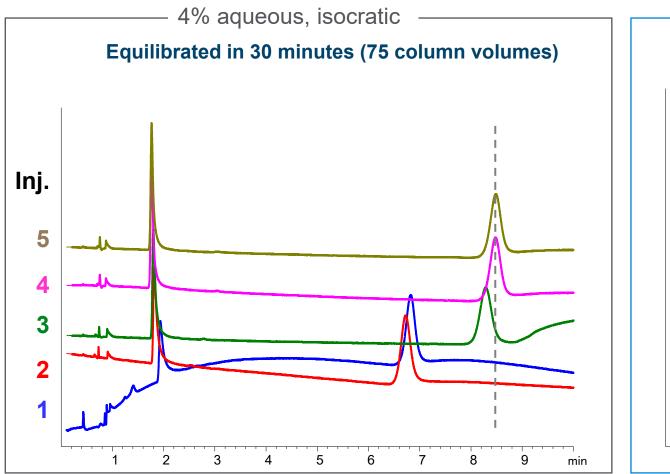
Tips and Tricks For successful HILIC column use and care

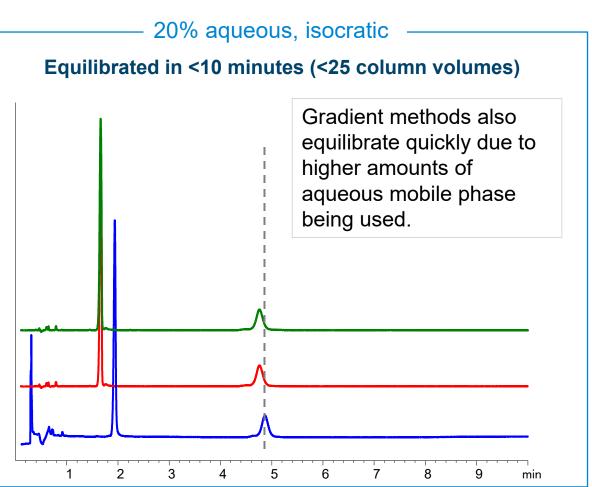
Tips and Tricks for Your HILIC separations

Considerations on solvent and sample handling

	Impact
Add 10% aqueous to your organic	 Buffer solubility increases drastically with addition of 10- 20% water HILIC columns equilibrate faster with more aqueous
Have the same ionic strength in both mobile phases	 Ionic strength gradients have more variability than constant ionic strength Near 90-100% ACN, many buffers crash out, causing serious clogs
Increasing buffer concentration can improve peak shape and sample loadability	High buffer concentrations can cause ion suppression when using MS detection
Follow good measurement practices when mixing buffers	 Retention can vary from bottle-to-bottle if eluent is not mixed accurately and consistently
Prepare samples in as much acetonitrile as possible and keep injection volumes small	 Avoid peak shape and retention issues from strong solvent effects
Use inert solution, if needed	Reduce unwanted interactions of analytes with metal in the flow path

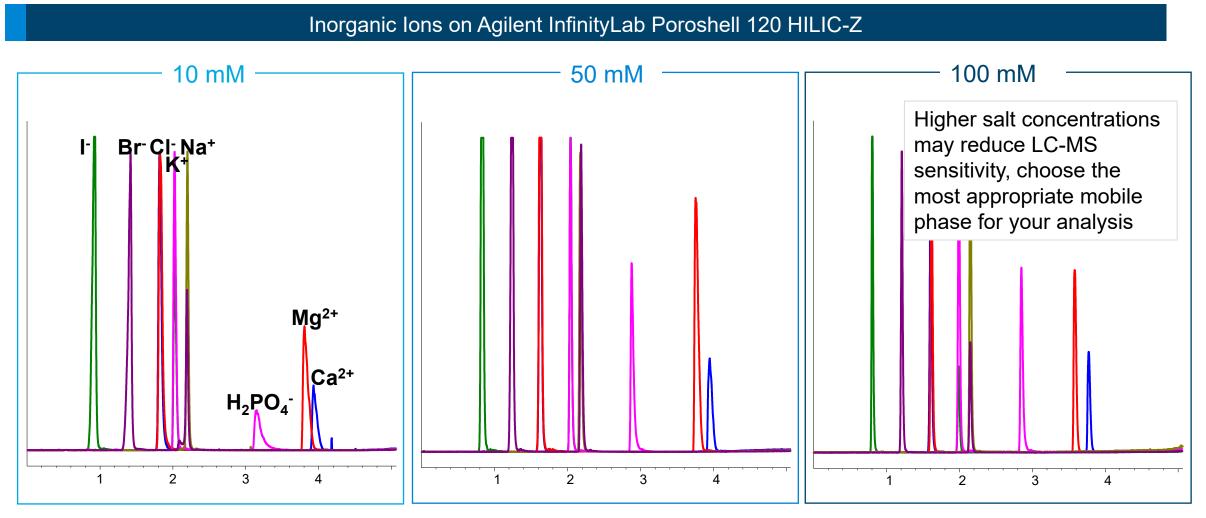
InfinityLab solvent bottles


InfinityLab Stay Safe caps


HILIC Column Equilibration is Faster with Higher Amounts of Aqueous

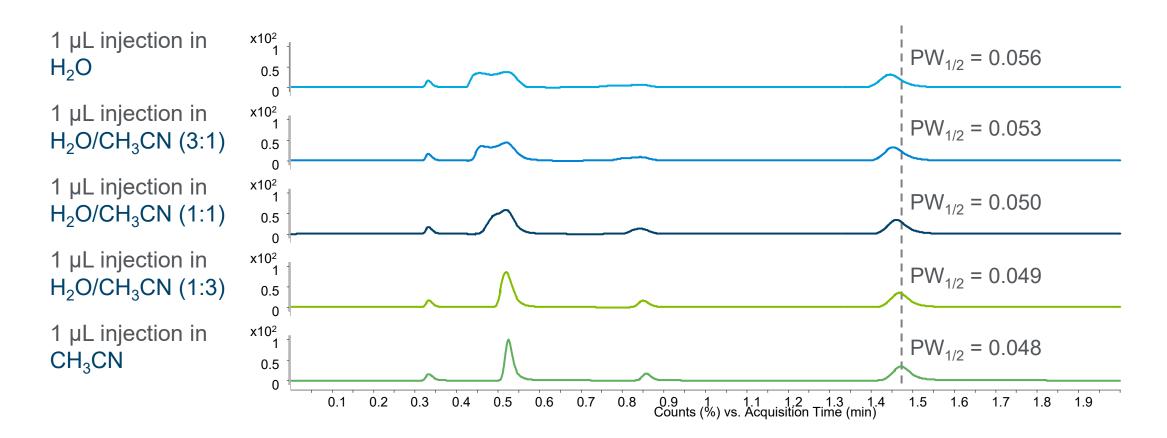
B vitamins on Agilent InfinityLab Poroshell 120 HILIC-OH5 (2.1 x 100 mm, 2.7 μm)

Column stored in 100% CH₃CN before analysis; A: 100 mM ammonium formate pH 3.0, B: CH₃CN, 96% B isocratic, 0.5 mL/min, 1 µL injection of B2+B6, 25 °C, 260 nm, 80 Hz



Column stored in 100% CH₃CN before analysis; A: 100 mM ammonium formate pH 3.0, B: CH₃CN, 80% B isocratic, 0.5 mL/min, 1 μ L injection of B9+B12, 25 °C, 260 nm, 80 Hz

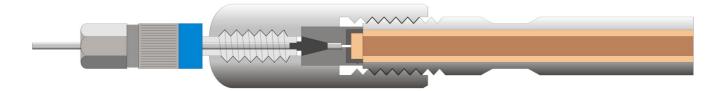
Higher Salt Concentrations Can Improve Peak Shapes and Resolution


Agilent InfinityLab Poroshell 120 HILIC-Z 2.1 x 100 mm, 2.7 µm; A: 10, 50, or 100 mM pH 3 ammonium formate, B: Acetonitrile, 80-20% B in 5 min, 3 min re-equilibration, 0.4 mL/min, 30 C, 2 µL injection of individual standards (0.3 to 0.5 mg/mL), ELSD 40 °C/3.5 psi/30Hz

HILIC Analyses Perform Best with Weak Injection Solvents

B vitamins on HILIC with isocratic elution

Agilent ZORBAX RRHD HILIC Plus 2.1 x 50 mm, 1.8 µm; Mobile phase: acetonitrile/100 mM ammonium formate pH 3.2 in water (9:1), isocratic elution, 0.4 mL/min, 1 µL injection of 5.7 µg/mL each of 4-aminobenzoic acid, nicotinamide, riboflavin, nicotinic acid ; 25 °C, MS source: ESI+, 200 °C, 10 L/min, 30 psi, 4000 V; SIM: 138, 123, 377, 124



HILIC Sensitivity Can Be Improved with a PEEK-Lined Column

PEEK-lined stainless steel and PEEK-coated titanium frits

- Metal-free flow path minimizes unwanted interactions
- Stainless steel provides strength for UHPLC use

For best results, use the full InfinityLab bio-inert LC Solution:

- InfinityLab bio-inert LC System
- Bio-inert quick connect heat exchanger, p/n: G7116-60009
- All Agilent PEEK/SST Bio-inert capillaries with Quick Turn fitting (5067-5966) or UHP-FF fitting Bioinert (5067-5695)

Tips and Tricks for Your HILIC Separations

InfinityLab deactivator additive pairs well with PEEK-lined HILIC-Z

	mprovement
Reduce Metal-Analyte Interaction	Chelate-free metals, covers exposed active sites in sample flow path, reducing unwanted metal-analyte interactions and allowing lower detection limits using LC/MS
Amenable to LC/MS use	 Optimized for use at a 5 µM (1:1000 dilution) with minimal ion suppression effects Does not persist in the LC/MS system after use (unlike traditional ion pairing reagents)
Operational time and cost savings	 Saves time needed to passivate your system Can avoid derivatization Can avoid potential system contamination from ion pairing agents Limits of detection can be lowered for challenging compounds such as phosphorylated metabolites, phosphate pesticides, and organic acids

Improvement

Recommended read

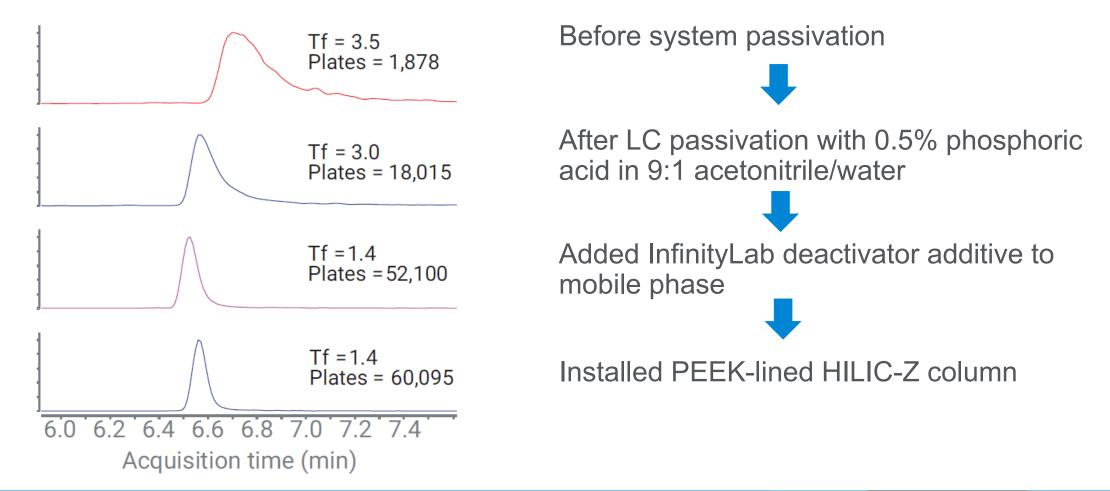
More information can be found in the InfinityLab Deactivator Additive user guide <u>5991-9516EN</u>.

InfinityLab deactivator additive 50 mL: 5190-4506

Tips and Tricks for Your HILIC Separations

LC passivation procedure to reduce unwanted metal interactions

- LC disconnected from MS and going directly to waste
- IPA at 5 mL/min for 5 min
- Water at 5 mL/min for 5 min
 - Flow at 0.5 mL/min for 1 hour
- 0.5% phosphoric acid in 90% acetonitrile/10% water at 5 mL/min for 5 min
 - Flow at 0.1 mL/min overnight (at a minimum)
- Water at 5 mL/min for 5 min
 - Flow at 0.5 mL/min for 1 hour
- Mobile phase at 5 mL/min for 5 min
 - Flow at 0.25 mL/min for 1 hour
- Reconnect LC to MS and proceed with analysis
 - Flow at 0.25 mL/min for 20 to 30 min



Tips and Tricks for Your HILIC Separations

Stepwise improvements for metal sensitive analytes

Thiamine diphosphate

HILIC Column Care

How to clean and store a HILIC Column

Cleaning a HILIC column:

- Use a strong HILIC solvent to clean HILIC columns
- Flush HILIC columns with 100% water
- If that is insufficient, add in 100 to 500 mM salt
 - You can use a strong salt like NaCl or, if you prefer to avoid that, you can use buffer salts like ammonium acetate
- Increasing the temperature to 35 to 55 °C can also help with the cleaning efficiency
- Flush with about 30 column volumes per step
- Be sure that once you have finished flushing with high concentration salt, you flush with pure water before reintroducing acetonitrile into the mobile phase

Storing a HILIC Column:

- Flush with acetonitrile/water (20/80) for 30 column volumes
- Flush with acetonitrile/water (80/20) for 30 column volumes
- Store at room temperature

Summary

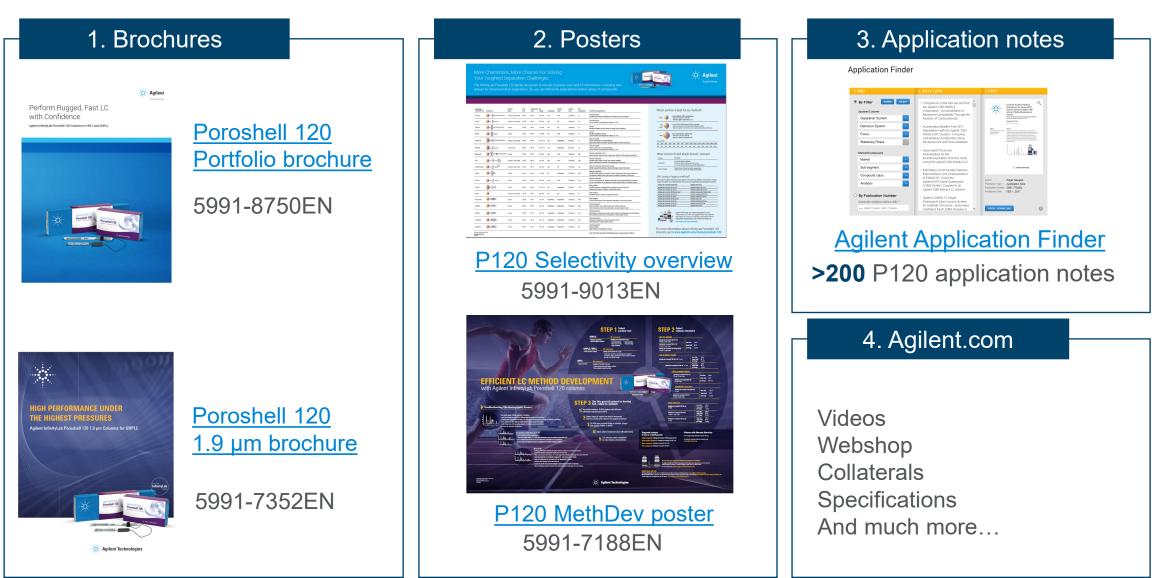
When to consider a HILIC column:

- Are your analytes unretained with RPLC?
- Are your analytes at least somewhat soluble in acetonitrile?
- Are you using MS detection?
- Do your analytes interact with metals in the LC system?

Keep sample solvents in mind for HILIC analyses; prepare the sample in as much acetonitrile as possible and keep injection volumes as small as possible

• Most common support issue with HILIC methods

Additional Information


Learn more about Agilent HILIC Column portfolio

More Information on Poroshell 120

Additional Information

Application notes on Poroshell 120 HILIC columns

	Application Note Title
Agriculture and Food Testing	 Analysis of Amino Acids in Animal Feed Matrices Using the Ultivo Triple Quadrupole LC/MS System – 5994-0586EN Analysis of Sugars Using an Agilent InfinityLab Poroshell 120 HILIC-Z Column – 5991-8984EN Analysis of Organic Acids on an Agilent InfinityLab Poroshell 120 HILIC-Z Column – 5991-8985EN LC/MS Analysis of Free Amino Acids on Agilent InfinityLab Poroshell 120 HILIC 1.9 µm Columns – 5991-7541EN
Biopharma	 Integrated Transcriptomics and Metabolomics Study of Retinoblastoma Using Agilent Microarrays and LC/MS/GC/MS Platforms – 5991-6215EN Enhanced Metabolite Profiling from Bark of Alangium Salviifolium Using LC/MS and GC/Q-TOF Techniques – 5991-4663EN Analysis of Water-Soluble Vitamins and their Metabolites – 5994-1553EN Methods for the Analysis of Underivatized Amino Acids by LC/MS – 5991-8582EN HPLC-DAD Analysis of Nucleotides Using a Fully Inert Flowpath – Agilent 1260 Infinity II Bio-inert LC System and a PEEK-Lined Agilent InfinityLab Poroshell 120 HILIC-Z Column – 5994-0680EN 13C Glucose Qualitative Flux Analysis in HEPG2 Cells Using an Agilent 6546 LC/Q-TOF and VistaFlux – 5994-0713EN Analysis of Choline Metabolites by Hydrophilic Interaction Chromatography (HILIC) with LC/MS/MS – 5991-9491EN Monitoring of Mammalian Cell Culture Media with HILIC LC/MS – 5994-0024EN

Filter for Poroshell 120 HILIC phases on https://www.agilent.com/en/applicationfinder/applicationfinder

Additional Information

Application notes on Poroshell 120 HILIC columns					
	Application Note Title				
Small Molecule Pharma	 Impurity Analysis of Aminoglycoside Antibiotic Using the Agilent InfinityLab Poroshell 120 HILIC-S Column with ELSD Detection – 5991-8824EN Trace Level Quantification of Potential Mutagenic Impurities in Pharmaceuticals Using an Agilent Ultivo LC/TQ with Mixed Mode Detection – 5994-1238EN How to Catch a Potential Mutagenic Impurity Using Agilent LC/MSD XT and Agilent InfinityLab Poroshell 120 HILIC-Z Column for Sensitive and Reliable Detection of Dalfampridine Impurities – 5994-0864EN Analysis of Polar Compounds in Plant Material – 5991-8617EN Analysis of Water-Soluble Vitamins on an Agilent InfinityLab Poroshell 120 HILIC-OH5 Column – 5991-8780EN Analysis of Aminoglycosides Using the Agilent InfinityLab Poroshell 120 HILIC-Z Column – 5991-8824EN 				
Environmental	 Paraquat, Diquat, and Mepiquat Analysis in Environmental Water – 5994-1307EN Modified QuEChERS for HILIC LC/MS/MS Analysis of Nicotine and its Metabolites in Fish – 5991-2408EN Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography – 5991-8602EN 				
General	 Retaining and Separating Polar Molecules – A Detailed Investigation of When to Use HILIC versus a Reversed-Phase LC Column – 5994-1137EN Hydrophilic Interaction Chromatography (HILIC) Using Agilent Poroshell 120 HILIC – 5991-1242EN Hydrophilic Interaction Chromatography Method Development and Troubleshooting – 5991-9271EN The Agilent 1260 Infinity Analytical SFC System with Time-of-Flight Mass Spectrometric Detection - Method Development Using Method Scouting Wizard – 5994-0251EN Analysis of Highly Polar Compounds by SFC/Q-TOF MS with Identification using Database and Library Searches – Enhanced Fluidity Liquid Chromatography (EFLC) using High Modifier Concentration at Elevated System Pressure – 5994-1096EN 				

Filter for Poroshell 120 HILIC phases on https://www.agilent.com/en/applicationfinder/applicationfinder

Resources for Support

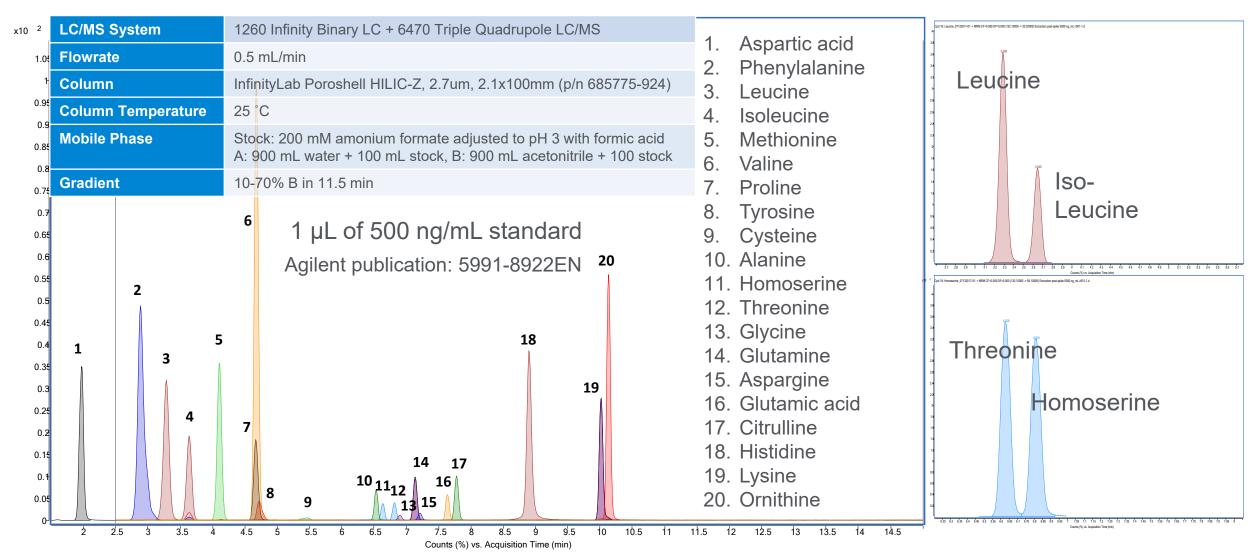
- LC troubleshooting poster (<u>5994-0709EN</u>)
- Tech support <u>www.agilent.com/chem/techsupport</u>
- Resource page <u>www.agilent.com/chem/agilentresources</u>
 - Quick reference guides
 - Catalogs, column user guides
 - Online selection tools, how-to videos
 - Application workflows (such as cannabis, PFAS, and more)
- InfinityLab LC Supplies catalog (<u>5991-8031EN</u>)
- LC handbook (<u>5990-7595EN</u>)
- Best practices for using an Agilent LC system (<u>01200-90090</u>)
- Your local FSE and specialists
- Agilent University <u>www.agilent.com/crosslab/university</u>
- YouTube <u>Agilent Channel</u> (maintenance videos)
- Agilent service contracts

Agilent Technolog

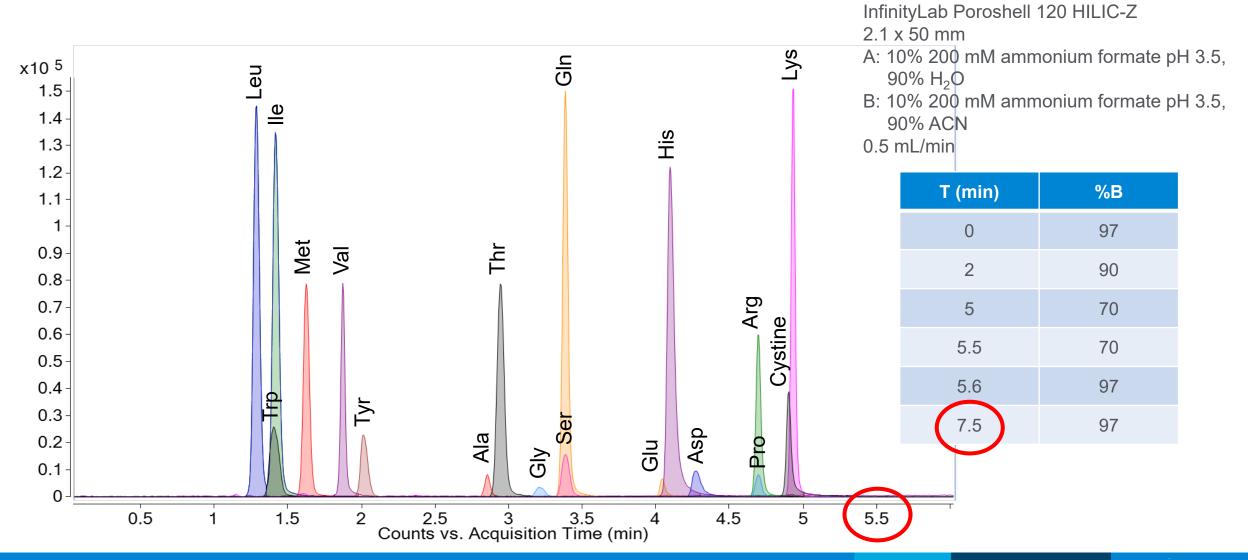
Contact Agilent Chemistries and Supplies Technical Support

1-800-227-9770 option 3, option 3: Option 1 for GC and GC/MS columns and supplies Option 2 for LC and LC/MS columns and supplies Option 3 for sample preparation, filtration, and QuEChERS Option 4 for spectroscopy supplies Option 5 for chemical standards Option 6 for former Prozyme products Available in the U.S. and Canada, 8–5 all time zones gc-column-support@agilent.com lc-column-support@agilent.com spp-support@agilent.com spectro-supplies-support@agilent.com chem-standards-support@agilent.com advancebio.glycan@agilent.com Web chat: Product pages of agilent.com

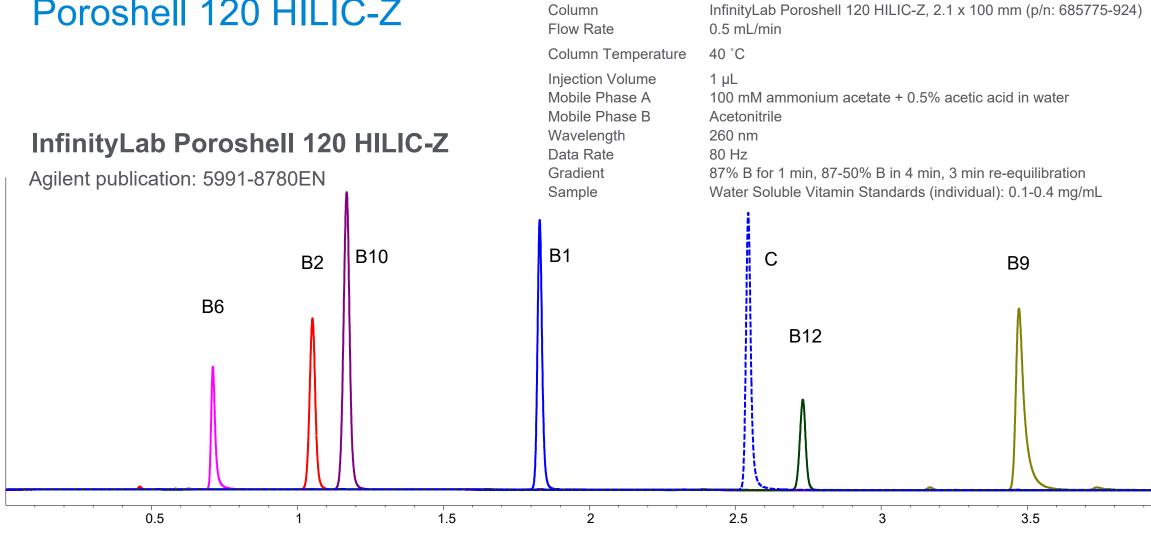
Thank you


Appendix Agilent applications

Analysis of Amino Acids (and Isobars) in Plant Tissue with LC-MS/MS

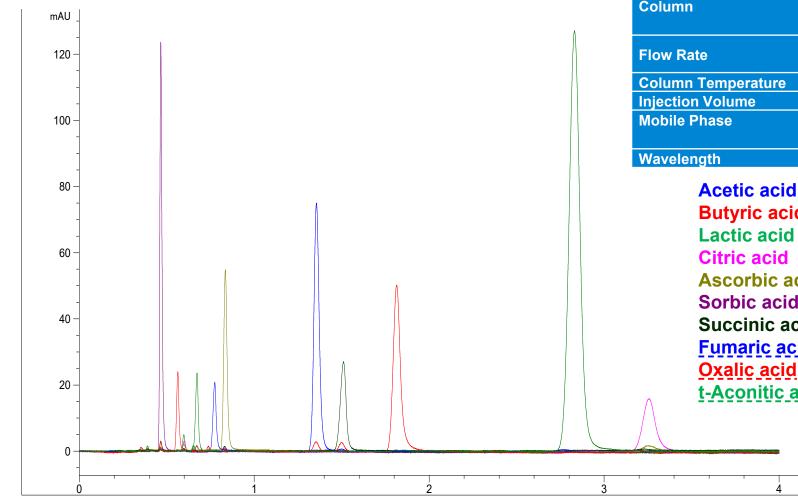


High Throughput LC/MS Analysis of Amino Acids with an Agilent InfinityLab Poroshell 120 HILIC-Z Column



Water Soluble Vitamins on Agilent InfinityLab Poroshell 120 HILIC-Z

System Agilent 1260 Infinity Binary HPLC w/ DAD Column Flow Rate 0.5 mL/min 40 °C Column Temperature Injection Volume 1 uL Mobile Phase A Mobile Phase B Acetonitrile 260 nm Wavelength Data Rate 80 Hz Gradient

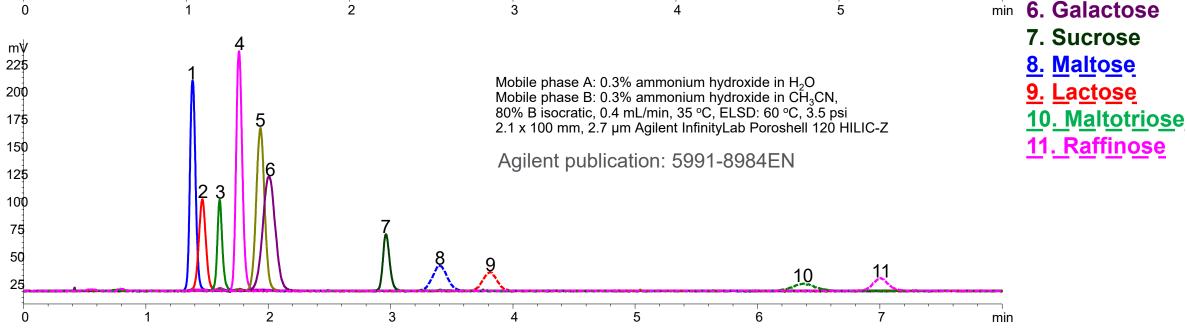


min

Organic Acids on Agilent InfinityLab Poroshell 120 HILIC-Z

Agilent 1260 Infinity Binary HPLC with DAD

InfinityLab Poroshell 120 HILIC-Ζ, 2.1 x 100 mm, 2.7 μm (p/n: 685775-924)
0.5 mL/min
30 °C
1 μL
30% 30 mM sodium phosphate + 0.075% phosphoric
acid, pH ~6.7, 70% ACN*
214 nm


Butyric acid Lactic acid Ascorbic acid Sorbic acid Succinic acid **Fumaric acid Oxalic acid** t-Aconitic acid *Sodium phosphate is not soluble in high % ACN.

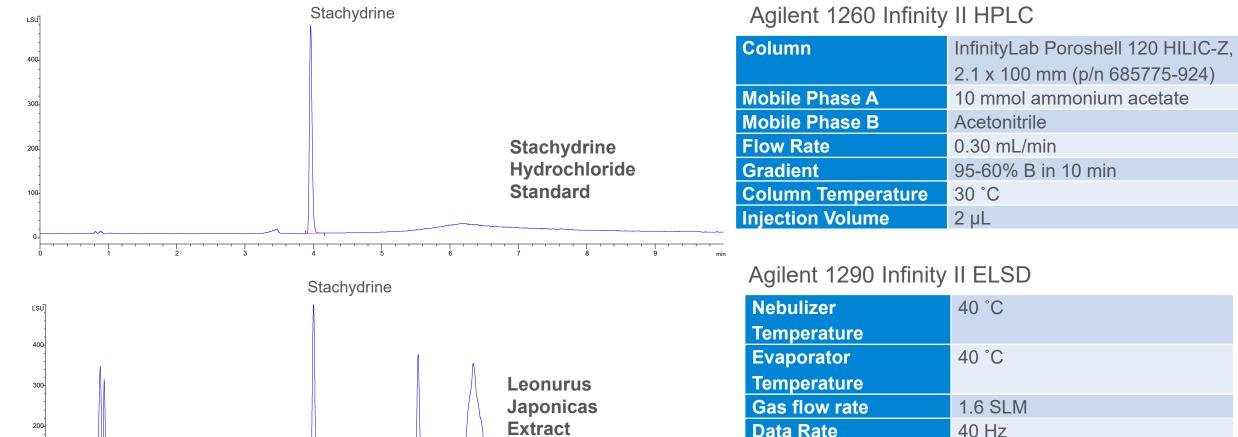
- Do not increase salt • concentration in mobile phase A.
- Do not increase %B •
- If using ELSD or MS, use ٠ similar pH/concentration ammonium acetate instead

Agilent publication: 5991-8985EN

Separation of 11 Sugars on Agilent InfinityLab Poroshell 120 Agilent Infinity**Lab** HILIC-Z m∜ 180 Mobile phase A: 0.3% ammonium hydroxide in H₂O Mobile phase B: 0.3% ammonium hydroxide in CH₃CN, 160 85-60% B in 6 min, 0.4 mL/min, 35 °C, ELSD: 60 °Č, 3.5 psi 2.1 x 100 mm, 2.7 µm Agilent InfinityLab Poroshell 120 HILIC-Z 140 120 100 1. Xylose 80 2. Arabinose 60 3. Fructose 40 4. Mannose

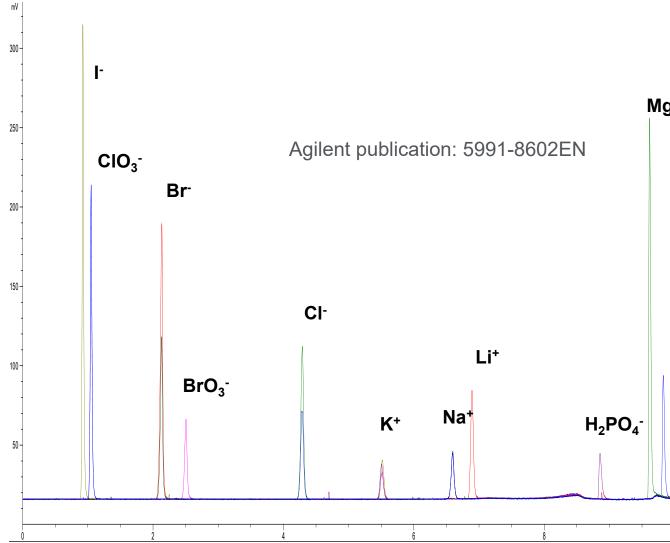
5. Glucose

InfinityLab Poroshell 120 HILIC-Z Analysis of Paraquat/Diquat



		Column	InfinityLab Porc	shell 120 HILIC-Z, 2.1	x 100 mm		
٨	2.246	Mobile Phase A	20 mM ammoniu	m formate in water, pH	=3		
		Mobile Phase B 20 mM ammonium formate in 90% ad		m formate in 90% acet	onitrile in water, pH=	3	
		Flow Rate	0.80 mL/min				
	X	Column Temperature	30 °C				
	NO	Injection Volume	0.25 µL				
e e e e e e e e e e e e e e e e e e e		Total Runtime	16 min				
0 ⁰	jouat Diollat						
		Parameter		Setting	Time (m	in)	Percentage B
		Mass Spectrometer		QQQ in dMRM	0		100
				mode	10		70
		Ionization Mode		eam positive	11		100
		Gas Temp		300 °C			
		Gas Flow 7.0 L/min		0 L/min			
		Nebulizer45 psi		45 psi	Agilent Pub # 5991-8830EN		
		Sheath Gas Temp 400 °C		400 °C			
		Sheath Gas Flow	is Flow 11 L/min				
		Capillary Voltage	3500 V				
		Nozzle voltage	0 V				
		Analyte	Conc. (mM)	Precursor Ion (m/z)	Product Ion (m/z)	Fragmentor (V)	Dwell Time (I
					470.4	100	10
		Paraquat Diquat	0.25 0.25	185.1 183.1	170.1 157.1	100	10

Analysis of Polar Compounds in Plant Materials: Quantitation of Stachydrine in Chinese Motherwort (Leonurus japonicas) by InfinityLab Poroshell 120 HILIC-Z



Agilent publication: 5991-8617EN

100

Analysis of Metals, Halides, and Inorganic Ions on Agilent InfinityLab Poroshell HILIC-Z

Agilent 1260 Infinity Binary HPLC

	Column	InfinityLab Poroshell 120 HILIC-Ζ, 2.1 x 100 mm, 2.7 μm (p/n 685775-924)			
∕lg²+	Flow Rate	0.40 mL/min			
	Column Temperature	30 °C			
	Injection Volume	μL			
	Mobile Phase A	100 mM ammonium formate in water at pH=3			
	Mobile Phase B	cetonitrile			
	Gradient	91% B for 1 min, 91-80% B in 5 min, 80-20% B in			
		5 min, 3 min re-equilibration			
Agilent G4218A ELSD					
	Temperature	40 °C			
	Pressure	3.5 psi			
	Data Rate	30 Hz			
Са	2+ Samples:				
	Calcium chlor	ride Lithium bromide			
	<u>Magnesium c</u>	hloride Potassium bromate			

Potassium iodide

Sodium bromide

Potassium phosphate

Agilent

Sodium chlorate

