Identification of antioxidants in Fructus aurantii using a new on-line combination of analytical techniques

Identification of antioxidants in Fructus aurantii using a new on-line combination of analytical techniques

Introduction

A new on-line method for simultaneous identification and monitoring of antioxidants in Fructus aurantii was established by coupling high performance liquid chromatography-diode array detector-electrospray ionisation-ion trap-time of flight-mass spectrometry with post-column derivatisation and luminol-potassium ferricyanide chemiluminescence
(HPLC-DAD-ESI-IT-TOF-MS-PCD-LPFCL). The HPLC fingerprint, structural identification and radical scavenging profile were rapidly obtained by an on-line system using
ultraviolet (UV) absorption, MS and LPFCL. Details of the precise substitution patterns of various structures were achieved through UV absorption shift using PCD.
Twenty-six flavonoids were identified by either their PCD and MS data or comparison with reference substances. The results showed that this method was rapid and precise, and therefore would be an effective and sensitive method for bioactive components analysis and quality evaluation for complex medicinal samples.

Experimental

Sample preparation

1.0 g of F. aurantii powder (60 mesh) was accurately weighed and extracted with 50 mL methanol in an ultrasonic water bath for 30 min .

HPLC conditions

Column: Diamonsil C 18 column ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ i.d.; $5 \mu \mathrm{~m}$)
Oven temperature: $40^{\circ} \mathrm{C}$
Wavelength range: $200-400 \mathrm{~nm}$
A: ACN+0.02\%FA (\%, v/v)
B: Water+0.02\% FA (\%, v/v)
Table 1 Gradient Program

Injection volumn: $10 \mu \mathrm{~L}$
Flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$

Post Column Derivisation system solutions

Table2 Experimental conditions for the post column addition of UV shift reagents

Shift reagent	Pump 1	Flow $1(\mathrm{~mL} \cdot \mathrm{~min}-1)$	Pump 2	Flow 2 $(\mathrm{mL} \cdot \mathrm{min}-1)$	pH	Temp $\left({ }^{\circ} \mathrm{C}\right)$
AlCl_{3}	NaOH^{a}	0.8	$\mathrm{AlCl}^{\mathrm{b}}$	0.8	5.0	90
$\mathrm{AlCl}_{3} / \mathrm{HCl}$	NaOH^{a}	0.8	$\mathrm{AlCl}_{3} / \mathrm{HCl}$	0.8	3.5	90
NaOAC	NaOH^{a}	0.8	$\mathrm{NaOAc}^{\mathrm{c}}$	0.8	8.0	50
$\mathrm{NaOAC} / \mathrm{H}_{3} \mathrm{BO}_{3}$	NaOH^{a}	0.8	$\mathrm{NaOAC}^{\mathrm{d}} / \mathrm{HBO}_{3}{ }^{\mathrm{d}}$	0.8	6.0	50

a. $0.01 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{NaOH}$ aqueous solution
b. $0.3 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{AlCl}_{3}$ aqueous solution; c. $0.5 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{NaOAc}$ aqueous solution;
d. $0.1 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{NaOAc} / 0.7 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{H}_{3} \mathrm{BO}_{3}=1: 1(\mathrm{v} / \mathrm{v})$

Post column derivisation techniques were used to give additional structural information, such as the linkage of
sugar moieties, free phenolic groups, by inducing a shift of the UV absorption maxima of compounds.

Identification of antioxidants in Fructus aurantii using a new on-line combination of analytical techniques

ESI-IT-TOF-MS analysis

The MSn experiments were performed by using a LCMS-IT-TOF system (Shimadzu Corporation) equipped with an ESI source. All of the MSn data were acquired in both positive and negative ion modes, CDL temperature
$200^{\circ} \mathrm{C}$, heat block temperature $200^{\circ} \mathrm{C}$. The collision energies for each compound ranged from 20-50\%. Spectra were acquired over a mass range of m / z 100-800.

Fig. 2 Schematic representation of the LCMS-IT-TOF

Fig. 3 HPLC-DAD-ESI-MS-PCD-LPFCL detection apparatus (pumps E and F were only used during PCD analysis; T: T-piece).

[^0]
Identification of antioxidants in Fructus aurantii using a new on-line combination of analytical techniques

LPFCL detection method

Free radical in vivo like superoxide radicals (O_{2}.') $^{-}$) are known to be involve in various disease processes. Natural compounds possessing free radical scavenging properties were considered to be safe antioxidant agents for prevention and treatment of those diseases. Luminol-potassium ferricyanide chemiluminesence (LPFCL) involving a superoxide radical mechanism were thus considered to evaluate radical scavenging activity of plant extracts or individual compounds. A on-line system was
developed (Fig. 3) to screen the potential antioxidants in plant extracts and identify their structures.
One quarter of the eluate stream ($0.2 \mathrm{ml} / \mathrm{min}$) was added to a mixed solution of luminol ($1.1 \mathrm{~mL} / \mathrm{min}$) and $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ $(0.9 \mathrm{ml} / \mathrm{min})$ at a T -piece, then immediately introduced into a reaction coil ($10 \mathrm{~m}, 0.25 \mathrm{~mm}$) maintained at $25^{\circ} \mathrm{C}$ throughout the detection. The mixture finally arrived at a fluorescence spectrophotometer for recording the intensity of emission light at 425 nm .

Results and discussion

Identification of antioxidants in Fructus aurantii using a new on-line combination of analytical techniques

Table3 UV shift data

No.	$\begin{aligned} & \text { RT } \\ & (\mathrm{min}) \end{aligned}$	UV spectra		AlCl_{3}		$\mathrm{AlCl}_{3} / \mathrm{HCl}$		NaOAc		$\mathrm{NaOAc} / \mathrm{H}_{3} \mathrm{BO}_{3}$	
		II	I	II	1	II	1	11	1	II	1
1	20.32	271	334	300	379	301	378	282	333	281	343
2	20.96	275	339	281	352	278	378	284	371	296	369
3	21.77	284	332	306	374	305	381	284	363	284	347
4	24.78	284	325	302	375	301	377	285	361	283	325
5	25.11	265	351	276	392	275	376	272	372	266	389
6	25.43	284	325	302	372	303	370	288	350	282	325
7	26.29	276	330	276	324	275	370	281	364	279	325
8	27.67	273	325	278	325	275	370	278	365	279	325
9	27.06	285	330	302	376	304	370	287	349	283	389
10	28.21	283	329	303	376	303	376	284	356	282	325
11	29.00	282	328	303	376	303	376	284	356	283	329
12	29.52	284	326	302	376	301	376	285	356	283	327
13	30.17	283	326	302	375	301	374	285	356	283	325
14	30.96	275	342	303	374	304	374	274	-	278	388
15	32.09	282	326	282	324	304	370	282	354	281	332
16	33.16	282	330	303	366	301	370	282	360	282	325
17	33.60	282	330	303	373	301	376	282	360	282	331
18	35.49	287	324	305	370	307	367	324	-	281	325
19	36.95	284	324	308	375	311	367	319	-	286	324
20	37.85	271	336	270	331	270	330	270	332	270	334
21	38.94	276	324	275	324	273	324	-	325	275	324
22	39.45	278	324	277	325	273	330	272	330	-	325
23	41.45	270	333	269	336	269	335	269	336	269	336
24	43.22	254	343	255	344	254	344	254	344	254	342
25	44.43	271	323	269	326	270	324	270	324	269	325
26	45.35	281	341	289	354	289	355	288	-	280	345

Table4 MS ${ }^{n}$ data and identified results

A variety of bioactive flavonoids were separated and detected by the on-line system. A number of peaks displayed their antioxidative ability in the corresponding inhibition profile (See Fig. 4 chromatogram C).

Multi-stage MS analysis were performed in both positive and negative modes. Based on the MSn data and UV shift information (Table 3), 26 compounds were identified (See Table 4).

No.	$\begin{aligned} & \text { RT } \\ & (\mathrm{min}) \end{aligned}$	Compound Name	(+)ESI-MSn data (Observed)
1	20.32	6,8-Di-C-glucopyranocylapigenin	$595.1626 \rightarrow 577.1532 \rightarrow 457.1126$
2	20.96	6,8-Di-C-glucopyranocyldiosmetin	$625.1751 \rightarrow 607.1669 \rightarrow 487.1220$
3	21.77	Naringenin -7-O-triglycoside	$743.2382 \rightarrow 581.1871 \rightarrow 273.0840$
4	24.78	Eriocitrin	$597.1817 \rightarrow 289.0772 \rightarrow$
5	25.11	Rutin	$611.1623 \rightarrow 465.0877 \rightarrow 303.0487$
6	25.43	Neoeriocitrin	$597.1817 \rightarrow 289.0772 \rightarrow$
7	26.29	Isovitexin	$433.1190 \rightarrow 397.0895 \rightarrow 283.0635$
8	27.67	3' -Methoxyl isovitexin	$463.1277 \rightarrow 397.0973 \rightarrow 313.0698$
9	27.06	Naringenin-7-O-sophorose	$597.1855 \rightarrow 435.1314 \rightarrow 273.0794$
10	28.21	Narirutin	$581.1841 \rightarrow 419.1372 \rightarrow 273.0774$
11	29.00	Naringin	$581.1851 \rightarrow 419.1388 \rightarrow 273.0792$
12	29.52	Hesperidin	$611.1957 \rightarrow 449.1494 \rightarrow 303.0900$
13	30.17	Neohesperidin	$611.1952 \rightarrow 449.1444 \rightarrow 303.0875$
14	30.96	Neohesperidin	$653.1718 \rightarrow 347.0767 \rightarrow 332.0532$
15	32.09	7-0-6" - Malonylnaringin	$667.1808 \rightarrow 521.1370 \rightarrow 359.1181$
16	33.16	Poncirin	$595.2099 \rightarrow 433.1513 \rightarrow 287.0937$
17	33.60	Neoponcirin	$595.2090 \rightarrow 433.1496 \rightarrow 287.0947$
18	35.49	Naringenin	$273.0761 \rightarrow 147.0457 \rightarrow$
19	36.95	Hesperitin	$303.0870 \rightarrow 177.0566 \rightarrow 145.0322$
20	37.85	Isosinensetin	$373.1287 \rightarrow 343.0818 \rightarrow 163.0759$
21	38.94	Gossypetin hexamethyl	$403.1393 \rightarrow 373.1287 \rightarrow 358.0689$
22	39.45	Auranetin	$373.1287 \rightarrow 343.0818 \rightarrow 163.0759$
23	41.45	Nobiletin	$403.1393 \rightarrow 373.1287 \rightarrow 358.0689$
24	43.22	3', ${ }^{\prime}$ ' , 3,5,6,7,8-Hexa-methoxyflavone	$433.1499 \rightarrow 403.1393 \rightarrow 373.1287$
25	44.43	Tangeritin	$373.1287 \rightarrow 343.0818 \rightarrow 168.0059$
26	45.35	7-Hydroxyl-4' , 3,5,6,8-Pentamethoxyflavone	$389.1236 \rightarrow 359.0767 \rightarrow 341.0661$

Identification of antioxidants in Fructus aurantii using a new on-line combination of analytical techniques

Conclusions

An on-line system based on the combination of HPLC, MS, PCD and LPFCL was established and investigated to screen and identify multiple active constituents in Fructus Aurantii.
This method was rapid and effective for screening and identification of antioxidative compounds with superoxide scavenging activity in complicated herbal extracts and thus it can offer a potential approach for components analysis and quality control.

[^0]: *3.0 $\times 10^{-4} \mathrm{M}$ luminol solution (containing $10^{-4} \mathrm{M}$ EDTA, pH 13.0)
 *3.0 $\times 10^{-4} \mathrm{M} \mathrm{K} 3 \mathrm{Fe}(\mathrm{CN})$ s solution (pH 13.0)
 *Temp. room temperature

