

ASMS 2013 WP-368

Lingling Shen, Jinting Yao, Caiyong Lin, Xiongxiong Qiu, Qisheng Zhong, Song Zhan, Taohong Huang, Yuka Fujito, Shin-ichi Kawano, Yuki Hashi Shimadzu Global COE, Shimadzu (China) Co., Ltd., China

PO-CON1343E

1. Introduction

Veterinary drugs are widely used in breeding of marine products. However, residual veterinary drugs could enter human body and harm to human health. Therefore, those veterinary drugs in marine products have been strictly regulated in the world. In recent years, the China government continues to strengthen supervision and is developing quicker and highly sensitive analytical method. Usually, the qualitative method of LC/MS/MS is based on the ratio of intensities between qualitative ion and quantitative ion. This paper describes ultra high performance liquid chromatography-triple quadrupole mass spectrometry for rapid screening of 68 veterinary drugs which belong to 12 categories.

2. Methods and Materials

Sample Preparation

Samples of marine products were extracted with acetonitrile. After centrifugation, concentration and filtration, the final extract was injected to the LC-MS/MS instrument.

LC/MS/MS Analysis

The analyses were performed on a Shimadzu Nexera UHPLC instrument (Kyoto, Japan) equipped with LC-30AD pumps, a CTO-30A column oven, a DGU-30A₃ degasser, and an SIL-30AC autosampler. A triple quadrupole mass spectrometer (Shimadzu LCMS-8040, Kyoto, Japan) was connected to the Shimadzu UHPLC instrument via an ESI interface. Samples were separated on a Shim-pack XR-ODSIII (50 mmL. \times 2.0 mmi.d., 1.6 µm). A flow rate of 0.4 mL/min was used together with a gradient elution.

Analytical Conditions

UHPLC (Nexera system)

Column	: Shim-pack XR-ODSIII (50 mmL. × 2.0 mmi.d., 1.6 µm)
Mobile phase A	: 0.1% formic acid
Mobile phase B	: acetonitrile
Flow rate	: 0.4 mL/min
Elution mode	: gradient elution
Column temperature	: 40°C
Injection volume	: 10 μL

MS/MS (LCMS-8040 triple quadrupole mass spectrometer)

: ESI
: positive & negative
: +4.5 kV (positive), -3.5 kV (negative)
: 1.5 L/min
: 10 L/min
: 250°C
: 400°C

Table 1 List of veterinary drugs

Using a polarity switching speed of 15 msec and a scan speed of 15,000 u/sec, MRM spectra were generated in both positive and negative ionization. And fast polarity switching helps to provide information rich production spectra resulting in better detection and identification.

Fig. 1 Representative calibration curves of sulfonamides

No	Compound	%RSD		N	Compound	%RSD	
INO.		R.T	Area	INO.	Compound	R.T	Area
1	Sulfacetamide	0.40	4.43	35	Medroxyprogesterone-17-acetate	0.14	3.33
2	Sulfadiazine	0.27	3.91	36	Norgestrel	0.21	4.13
3	Sulfathiazole	0.21	3.13	37	Chloromadinone-17-acetate	0.14	4.09
4	Sulfapyridine	0.32	2.85	38	Norethindrone	0.27	3.46
5	Sulfamerazine	0.28	3.86	39	Progesterone	0.17	3.28
6	Sulfamethazine	0.18	2.40	40	Spiramycin	0.67	1.37
7	Sulfamethoxypyridazine	0.21	4.02	41	leucomycin hydrate	0.11	0.85
8	Sulfchloropyridazine	0.11	3.47	42	Erythromycin	0.08	1.88
9	Sulfamethoxazole	0.08	4.46	43	Tilmicosin	0.05	2.01
10	Sulfisoxazole	0.07	4.41	44	Acetylisovaleryltylosin tartrate	0.07	1.28
11	Sulfadimethoxine	0.10	2.06	45	Thiamphenicol	0.15	3.34
12	Sulfachinoxalin	0.09	4.00	46	Florfenicol	0.09	2.39
13	Pipemidic acid	0.23	2.82	47	Chloramphenicol	0.16	1.68
14	Enoxacin sesquihydrate	0.50	1.68	48	Ronidazole	0.82	1.25
15	Ofloxacin	0.14	2.88	49	2-methyl-5-nitroimidazole	0.69	1.34
16	Norfloxacin	0.09	2.61	50	Metronidazole	0.76	1.37
17	Ciprofloxacin hydrochloride	0.08	2.18	51	4-Nitroimidazole	0.51	1.10
18	Lomefloxacin	0.04	2.14	52	Ipronidazole	0.07	0.91
19	Danofloxain	0.02	2.42	53	Furazolidone	0.15	2.36
20	Enrofloxacin	0.04	2.04	54	Furaltadone	0.09	2.13
21	Sarafloxacin hydrochloride	0.03	2.27	55	Nitrofurantion	0.27	3.49
22	Cinoxacin	0.04	1.94	56	Furacilinum	0.28	4.66
23	19-nor-4-androstene-3,17-dione	0.19	3.71	57	Tetracycline hydrochloride	0.65	1.60
24	1-Dehydrotestosterone sulfate	0.19	2.57	58	Oxytetracycline	0.65	1.60
25	Danazol	0.23	3.51	59	Demeclocycline hydrochloride	0.64	1.80
26	Fluoxymesterone	0.21	4.78	60	Chlorotetrachclie hydrochloride	0.65	1.60
27	Testosterone	0.22	3.05	61	Doxycycline	0.65	2.00
28	17-alpha-methyltestosterone	0.12	3.67	62	Lincocin hydrochloride	0.11	2.37
29	Methadrostenolone	0.20	1.44	63	Clindamycin	0.19	3.26
30	Nandrolone	0.19	2.89	64	Trimethoprin	0.29	1.72
31	19-nor-4-androstene-3,17-dione	0.18	3.83	65	Malachite green oxalate	0.08	0.75
32	Trenbolone	0.23	2.94	66	Leucomalachite green	0.10	1.29
33	Megestrol-17-acetate	0.10	3.02	67	Basic violet 3	0.04	0.68
34	Medroxyprogesterone	0.25	3.17	68	Leucocrystal violet	0.10	1.83

Table 2 Repeatability of 68 drugs (n=6)

3. Results and Discussion

The 68 veterinary drugs can be categorized into 12 groups. Fig.1 shows the representative calibration curves of sulfonamides. Excellent linearity was demonstrated in the range of 1 to 200 μ g/L for sulfadiazine, sulfamethoxypyridazine, sulfamethoxazole and sulfisoxazole, with correlation

coefficients greater than 0.998. The repeatabilities of 68 drugs (1-10 μ g/L) were investigated, and the %RSDs of peak area were less than 5%, and those for retention time were better than 0.9%, as shown in Table 2.

	Compound	Recovery (%)		Compound	Recovery (%)
Sulfonamides	Sulfacetamide	88.6		19-nor-4-androstene-3,17-dione	106.0
	Sulfadiazine	96.4		1-Dehydrotestosterone Sulfate	99.0
	Sulfathiazole	91.1		Danazol	93.0
	Sulfapyridine	106.3		Fluoxymesterone	113.5
	Sulfamerazine	94.0		Testosterone	106.0
	Sulfamethazine	97.2		17-alpha-methyltestosterone	94.7
	Sulfamethoxypyridazine	91.9		Methadrostenolone	90.5
	Sulfchloropyridazine	95.3		Nandrolone	95.0
	Sulfamethoxazole	103.1	Hormones	19-nor-4-androstene-3,17-dione	80.0
	Sulfisoxazole	102.2		Trenbolone	96.1
	Sulfadimethoxine	94.1		Megestrol-17-acetate	95.0
	Sulfachinoxalin	93.9		Medroxyprogesterone	94.1
	Pipemidic acid	81.0		Medroxyprogesterone-17-acetate	114.5
	Enoxacin sesquihydrate	68.0		Norgestrel	115.0
	Ofloxacin	88.0		Chloromadinone 17-acetate	110.5
	Norfloxacin	77.0		Norethindrone	111.6
	Ciprofloxacin hydrochloride	95.5		Progesterone	78.0
Quinolones	Lomefloxacin	92.0		Spiramycin	89.0
	Danofloxain	83.0		leucomycin hydrate	91.0
	Enrofloxacin	74.0	Macrolides	Erythromycin	84.0
	Sarafloxacin hydrochloride	76.0		Tilmicosin	104.0
	Cinoxacin	82.5		Acetylisovaleryltylosin Tartrate	93.0
Tetracyclines	Tetracycline hydrochloride	105.0		Thiamphenicol	105.0
	Oxytetracycline	120.0	Chloramphenicols	Florfenicol	81.5
	Demeclocycline hydrochloride	110.0		Chloramphenicol	93.3
	Chlorotetrachclie hydrochloride	100.0			
	Doxycycline	115.0			

Table 3 Recovery test of 52 compounds

In this study, we studied the different marine products. The recoveries of drugs in fish samples (the concentration of spiked drugs ranged from 0.1 to 2 μ g/kg) were summarized

in Table 3. The average recovery range of 52 compounds was from 74 to 120%.

4. Conclusions

A simultaneous and cost-effective method of identification and quantification of 68 veterinary drugs in marine products was developed. Improved selectivity and sensitivity of the instrumental analysis was achieved by LC/MS/MS technique.

First Edition: June, 2013

Shimadzu Corporation www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.