How Do I Determine the Best Chromatography for my Sample

Jean Lane Application Engineer LC columns and Consumables Technical Support January 20, 2021

Outline for Talk Getting started

- Sample type and define the objective
- Particle options
 - Totally porous vs superficially porous
- Agilent column chemistries
 - Column chemistries C18 phases and more
- Alternate Selectivity
 - Effect on resolution
- Hilic, CS C18, and chiral chemistries
- Role of instruments
 - Instrument and column compatibility
 - Other instrument considerations

Sample Types

Small molecule separations Examples:

- Environmental pollutants
- Contaminants in food (pesticides)
- Food toxins

•

• Drugs of abuse

Large molecule separations Examples:

- Biologics Therapeutic proteins mAbs (monoclonal antibodies)
- Synthetic polymers Polystyrene Polyethylene
- Natural polymers Starch Dextran

Types of Liquid Chromatography

Separation achieved using a physical or chemical characteristic of molecule in solution

LC Modes	Mechanism	Small Molecules	Large Molecules
Normal phase (NP)	Polar particle	\checkmark	
Reversed phase (RP)	Nonpolar particle	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	\checkmark
Ion exchange (IEX)	Charged particles, +ve or -ve	\checkmark	\checkmark
Size exclusion gel permeation (SEC/GPC)	Porous particles with defined pore size	\checkmark	\checkmark
Affinity	Exploits biological interactions – antigen-antibody		\checkmark
Chiral	Shape recognition	\checkmark	
Hydrophilic interaction (HILIC)	Similar to normal phases but uses aqueous/organic mobile phases	\checkmark	\checkmark
Hydrophobic interaction (HIC)	Similar to RP but uses aqueous mobile phases		\checkmark

Reversed phase is the primary technique for small molecule LC Multiple techniques are required to characterize a biomolecule

Define the Objective

- What is the sample type?
- How complex is the sample?
- What are the goals of the separation?
- Is high efficiency important?
- Is speed important?
- Any instrument considerations or limitations?

Aailent

Particle Options

Comparison of two porous particles

Novel superficially porous particle versus traditional totally porous particle

Superficially Porous Poroshell

Porous Outer Layer

 Short analyte diffusion path in/out of the porous layer enables faster and higherresolution separation.

6

Totally Porous ZORBAX

Totally porous particle offers improved retention, sample capacity and resistance to sample solvents.

- Higher chromatographic efficiencies.
- Faster and higher-resolution separations.

ZORBAX – Fully Porous Particles

Fully Porous Particle Column (ZORBAX)	Superficially Porous Particle Column (Poroshell)
Methods that require high sample loading	Faster, more efficient separations
Direct use in legacy fully porous particle methods	Newly developed or transferred methods
Direct scalability to prep-scale chemistries	Screening or method development
Some chemistries are unique to ZORBAX	High throughput methods

- Rapid trend to **superficially porous particles** due to their robustness and high efficiency
- More efficient Poroshell particles are typically the first choice for new methods
- In some cases, fully porous particles may still be considered

Why InfinityLab Poroshell?

Performance

Poroshell columns deliver improved performance compared to totally porous materials with the same particle size, or similiar performance at significantly lower backpressures.

Robustness

Poroshell columns show excellent lifetime and are less demanding in sample preparation than fullyporous material with similar performance. This is due to bigger particle sizes and frits.

Compatibility

Poroshell 120 columns are ideal for the Agilent InfinityLab LC and LC/MSD instruments. Column ID tags enable convenient column tracking and reporting.

Scalability

Poroshell columns are available in 1.9, 2.7, and 4 μ m pore size and simplify method transfer from HPLC to UHPLC to ultra-low dispersion UHPLC.

Selectivity

The stationary phase is the dominant factor for selectivity and, therefore, resolution. Poroshell offers a wide range of innovative chemistries to achieve selectivity differences.

Poroshell Technology – What Makes it Better?

Poroshell is made of a solid core with a porous outer layer

- Analytes travel though the particle more efficiently
- High efficiency allows you to use a larger SPP (2.7 µm) for nearly equivalent performance to a smaller sub-2 µm (STM) TPP column
- Using a larger particle allows for lower backpressure compared to similar, efficient totally porous STM columns and flexible use on HPLC or UHPLC systems

Which Particle Size is Best for Your Needs?

UHPLC/ UHPLC/ HPLC 2.7 μm

Highest UHPLC performance

- Pressure rating: 1300 bar
- Typical pressure: similar to sub-2 µm totally porous
- Efficiency: ~120% of sub-2 µm totally porous
- Ideal for: Agilent 1290 Infinity II LC System

UHPLC performance at lower pressures

- Pressure rating: 600 bar
- Typical pressure: 50% of sub-2 µm totally porous
- Efficiency: ~90% of sub-2 µm totally porous
- Ideal for: Agilent 1260 Infinity II LC System or Agilent 1260 Infinity II Prime LC System

Improved HPLC performance

- Pressure rating: 600 bar
- Typical pressure: often <200 bar
- Efficiency: ~200% of 5 μm totally porous
- Ideal for: Agilent 1220 Infinity II LC System

Which Particle Size is Best for Your Needs?

UHPLC/ HPLC

2.7 µm

Highest UHPLC performance

- Pressure rating: 1300 bar
- Typical pressure: similar to sub-2 µm totally porous .
- Efficiency: ~120% of sub-2 µm totally porous .
- Ideal for: Agilent 1290 Infinity II LC System •

UHPLC performance at lower pressures

- Pressure rating: 600 bar
- Typical pressure: 50% of sub-2 µm totally porous ٠
- Efficiency: ~90% of sub-2 µm totally porous •
- Ideal for: Agilent 1260 Infinity II LC System or Agilent 1260 Infinity II Prime LC ۰ System

Improved HPLC performance

- Pressure rating: 600 bar ٠
- Typical pressure: often <200 bar ٠
- Efficiency: ~200% of 5 µm totally porous ٠
- Ideal for: Agilent 1220 Infinity II LC System •

Column Choices – Which Particle Type to Choose?

Totally porous particle

ZORBAX Eclipse Plus C18 4.6 x 250 mm, 5 μm

Runtime: 35 minutes

Superficially porous particle

InfinityLab Poroshell 120 EC-C18 4.6 x 100 mm, 2.7 μm

Runtime: 9 minutes

A: 0.1% formic acid in water, B: ACN Gradient: 8-33% ACN in 30 or 8 min 1 or 2 mL/min, 25 °C, 254 nm Agilent application note: 5990-5572EN

The Agilent Column Families for Small Molecule LC Columns

When to choose which product family

Special phases							
HPLC UHPL	C LD-UHPLC						
5 µm, 3 µm							
Features	Phases						
High carbon load columns	Pursuit XRs, Pursuit XRs Ultra						
Analytical to prep	Pursuit, Polaris						
Alternative selectivity for polar and nonpolar	Polaris C18-Ether, C18 Amide, NH2						

Unique chemistries that help to solve nonstandard applications from HPLC to prep

Agilent's Column Families for Small Molecule LC Columns

Aailent

When to choose which product family

Eclipse Plus C8

Eclipse XDB CI

Eclipse XDB Phenyl

Eclipse XDB CN

StableBond C8

StableBond C3

StableBond Ag

StableBond Phenyl

StableBond CN

Extend C18

Bonus-RF

HILIC Plus

Rx C18

Rx C8

Rx SI

<u>_</u>

 $(\hat{})$

٥

•¥

-

ZORBAX

HPLC	UHPLC	LD-UHPLC
5 µm, 3.5 µm	1.8 μm (RRHT)	1.8 μm (RRHD)

Features

Traditional, reliable columns that offer a vast amount of unique chemistries

Scalable phases that range from UHPLC to HPLC to Prep

Higher overall retention, accepts larger amounts of strong solvent during injection and often shows higher sample capacity.

Scalable from UHPLC to HPLC to Prep-LC with high sample capacity.

A proven and reliable portfolio of totally porous HPLC columns

1.8, 3.5, 5

1.8, 3.5, 5

1.8 (RRHT) 3.5, 5, 7

.8, 3.5, 5, 7

1.8.3.5.5

1.8.3.5.5.7

1.8, 3.5, 5, 7

1.8.3.5.5.7

1.8.3.5.5.7

183557

1.8, 3.5, 5, 7 80

3.5, 5

1-8

1-8

1-8

1-8

80.00

80 *C

Lower retention of hydrophobic analytes vs. C1 Atemative selectivity for aromatic compound

nhanced pi-ol interactions when using metha

electivity for arom

Low pH and high temperature Reduced retention of hydrophobic analyter

Excellent peak shape and

High pH applications Indust performance an

Atternative Selectivity to C18

Polar analytes in HILIC mode

Good starting point for meth

High carbon load for I

General purpose

Excellent retention of polar compounds by HELI

Polar compounds in HILIC, NPLC and SFC mod

xcellent stability and peak shape at highly acidic Low pH and high temperature Lower retention of hydrophobic analytes vs. C

Polar molecules at low pH or high temperature, low blee Excellent peak shape of polar and mid-polar compounds

Excellent peak shape of polar and

160 m²/a

180 m³/g

180 m³/g

180 m²/g

180 m²/a

180 m³/o

180 m²/a

180 m²/g

5.5

Which particle is best for my method

		1.8µm	HPLC	1.8 µm Maxim Ideal fa	zona um pre pr: 129	AX RRH Issure:)) Infinit	ID: high 1200 ba y II LC o	r 1260	PLC pe Infinity	I Prime	LC			
		1.8µm	PLC	1.8 ZO Maxim Ideal fe	RBAX I um pre x: 1264	RRHT: u Issure: () Infinit;	ultra-fac 500 ber y II LC	it chron	natogra	aphy at	up to 6	i00 ber		
		3.6µm	PLC	3.5 µm Maxim Update	UT Pro	AX RR: Issure:	Higher 400 bar method	resolut is on ge	ion of I	HPLC m IPLC ins	ethods trumes	a nts		
	A 505	Elm H	PLC	5 µm 2 Maxim Used fi	ORBA um Pre or tradi	C: Provi Issure: tional m	en and n 400 bar sethods	eliable on ger	for HP eral HP	LC met	hods rument	ts and i	n prepa	rative LI
pai	1450	2900	4350	5900	7250	8750	10,150	11,600	13,060	14,500	15,950	17,400	18,850	20,900
har	100	200	500	400	500	600	750	855	900	1000	1100	1250	1100	1400
Wł	nat (colu	ımr	n ID	and	l ler	ngth	sh	oulo	dIc	hoc	ose	?	
Wł	nat (mat	colu	ımr	1 ID cor 4.6	anc nment mm fo	l ler	ngth	sh	oulo	dIc	hoc	ose	?	
For Col	nat (mat lumn IC	colu	ımr	1 ID Cor 4.6 3.0 2.1	ann mment mm fo mm fo	l ler r legac; r lower r lower	r metho solvent t solver	ds use thi	DUIC an 4.6 m		hoc	ose	?	
	hat (met lumn IC	ngth	umr	Cor 4.6 3.0 2.1 Shc Lor	and mment mm fo mm fo inter 30 iger 15	r legac; r lower r lower r lowes to 100 0 to 25	y metho solvent t solvent mm fo 0 mm fo	ds use th it use a r fastes or incre	DUIC an 4.6 t nd MS t separ ased re	d I C mm applica rations esolution	hoc	ose?	?	
col col	hat (mat lumn ID lumn ke	stec	umr d in	1 ID Cor 4.6 3.0 2.1 Sho Lor	and mment mm fo mm fo mm fo mm fo ger 15 ger 15	r legac; r lower r lower r lower n lower n lower	y metho solvent t solver mm fo mm fo	ds use th t use a r fastes or Incre TOUL	DUIC an 4.61 nd MS t separ ased re	d I c mm applica rations ssolution me	tions tho	ds?	?	
Wh col col	hat (mat lumn ID lumn ke eres tyLab ty to tr	ngth Steo	d in	4.6 3.0 2.1 Sho Lor emistr metho	and mment mm fo mm fo mm fo ger 15 ger 15 der der ies and	r legac r legac r lower r lower r lowes n to 100 0 to 251 n izir n align n fully	y metho solvent t solvent mm fo 0 mm fo 0 mm fo 0 mm fo 0 mm fo 0 mm fo	ds use th t use a r fastes or incre OUIT t tradit s to su	DUIC an 4.6 t nd MS t separ ased re LC ional 3 perfic	d I C mm applica rations isolution me ZORBA jally po	tions tho tho	ds?	e colur	iking nns.
Col Col Col Inti Infini I teas	hat (mat lumn ID lumn le cycab tyLab tyLab tyto tr wBAX	ngth Stec	d in hel ch	4.6 3.0 2.1 Sho Lor emistr metho	anno mm fo mm fo mm fo inter 30 ger 15 deri ies an ds froi	l ler r legac; r lower r lower r lower r lower r lower r lower n lower low	ngth solven t solven mm fo mm	ds use th truse a rfastes rfastes rfastes rfastes rfastes rfastes rfastes rfastes rfastes rfastes rfastes rfastes	DUIC an 4.6 i nd MS it separ seed re ional 2 iperfic poro	d I C mm applica rations sociution me ZORBA ially pc shell 12	tions thoo tho x ches rous p to che	ds?	? e colur	iking mns.
Col Col Col Int infini it ease ZC ZC	imat kumn ID kumn ke eres tyLab sy to tr sRBAX	ngth Stec Chem	Jin hei ch your r	A ID Cor 4.6 3.0 2.1 She Lor MO emistr metho	ancent mm fo mm fo mm fo inter 30 ger 15 der lies and ds from	r legac; r lower r lower r to 100 0 to 251 n izii n fully	ngth solven t solven 0 mm fo 0 mm fo 0 mm fo 0 mm fo 1	ds use th t use a fastes or fastes or fastes or fastes or fastes or fastes or fastes or fastes	an 4.6 i nd MB t separa LC perfic perfic Poros	applica mm applica mations isolution me zonBA ially po shell 12 hell 120	tions tho X cher rous p tho EC che	ds? mistrick mistry s	? es-ma	iking mns.
Col Col Int Infini teas	mat Iumn ID Iumn ke eres tyLab tyLab tyLab tyLab tyLab tyLab tyLab tyLab tyLab tyLab tyLab	ngth Stec Chem Eolipse Eolipse	Jmr helich syourn Plus C Plus E	A ID Cor 4.6 3.0 2.1 Sho Lor mole metho	anc mm fo mm fo mm fo inter 32 ger 15 de ri de ri de fo	r legac r lower r lower to 100 0 to 251 n i Zil n i Zil n fully	y metho solvent t solver mm fo 0 mm fo 0 mm fo 0 mm fo 0 mm fo 0 mm fo 1 mm fo	ds use th it use a r fastes or incre o tradit s to su nityLab	DUIC an 4.6 i nd MS t separ ased re ional J perfic Poros Poros	mm applica rations resolution ZORBA iaily pc shell 120 shell 120 hell 120		ds?	e colum	iking nns.
Col Col Col Int Infini It east ZC ZC ZC	mat Iumn ID Iumn ID Iumn ke eres tyLab	ngth Stec Chem Eolipse Eolipse	Jmr helich yourn Plus D Plus D Plus D	A LD Cor 4.6 3.0 2.1 Sho Lor metho 18 DC8 hergeH	and mment mm fo mm fo mm fo inter 32 ger 15 der i ies an ds froi	r legac r legac r lower r lower n to 100 0 to 251 n izil n izil n fully	y metho solvent t solver mm fo 0 mm fo 0 mm fo 0 mm fo 0 mm fo 1 mm fo	ds use th t use a r fastes or incre r OUIT a tradit s to su nityLab	DUIC an 4.6 i nd MS t separ ased re ional J perfic Porost Porost Porost	mm applica rations resolution ZORBA sially pc shell 120 heil 120 heil 120	tions thoo X cher rous p EC C1 EC C8 Pheny	ds? mistrice mistry 8 1 4Heapt	? is-ma e colur	king nns.

ZORBAX Eolipse Plus EC-C8	InfinityLab Poroshell 120 EC-C8
ZORBAX Eclipse Plus Pherryl-Hexyl	InfinityLab Poroshell 120 Phenyl-Hexyl
ZORBAX StableBond SB-C18	InfinityLab Poroshell 120 SB-C18
ZORBAX StableBond SB-C8	InfinityLab Poroshell 120 SB-C8
ZORBAX Bonus-RP	InfinityLab Poroshell 120 Bonus-RP
ZORBAX StableBond SB-Ag	InfinityLab Poroshell 120 SB-Aq
ZORBAX Eolipse XDB-CN	InfinityLab Poroshell 120 EC-CN
ZORBAX HILIC Plus	InfinityLab Poroshell 120 HILIC

For more information about ZORBAX columns, go to www.agilent.com/chem/ZORBAX

Zorbax Selectivity Overview Pub No. 5994-2212EN

Agilent's Column Families for Small Molecule LC Columns

When to choose which product family

InfinityLab Poroshell 120

HPLC	UHPLC	LD-UHPLC
4 µm	2.7 µm	1.9 µm

Features

Modern column technology that offers higher performance at similar backpressure

or comparable performance at reduced backpressure

Designed in with Agilent LC instruments and supplies

Universal column platform with offerings for all separation modes, i.e. RP, NP, HILIC, SFC as well as chiral separations

Modern, high-performance HPLC and UHPLC columns designed in for state-of-the-art instruments.

More Chemistries, More Choices For Solving Your Toughest Separation Challenges

Agilent Trusted Answers

The InfinityLab Poroshell 120 family has grown to include 3 particle sizes and 18 chemistries—including new phases for chiral and HILIC separations. So, you can efficiently separate the widest variety of compounds.

InfinityLab Poroshell 120	Chemistry	Particle Sizes	Pore Size	Temperature Limit	pH Range	Endcapped	Carbon Load	Surface Area	USP Designation	Benefits and Applications
EC-C18	<u></u>	1.9 µm, 2.7 µm, 4 µm	120 Å	60 °C	2.0-8.0	Yes	10%	130 m2/g	u	General purpose Excellent peak shape and efficiency for acids, bases, and neutrals
EC-C8	<u>م</u>	1.9 µm, 2.7 µm, 4 µm	120 Å	60 °C	2.0-8.0	Yes	5%	130 m2/g	L7	General purpose Lower retention of hydrophobic analytes vs. C18
SB-C18		2.7 µm	120 Å	90 °C	1.0-8.0	No	9%	130 m2/g	u	Low pH Excellent stability and peak shape in highly acidic conditions
S8-C8	J	2.7 µm	120 Å	80 °C	1.0-8.0	No	6.5%	130 m2/g	17	Low pH Excellent stability at low pH Lower retention of hydrophobic analytes vs. C18
HPH-C18	<u></u>	1.9 µm, 2.7 µm, 4 µm	100 Å	60 °C	3.0-11.0	Yes	Proprietary	95 m2/g	u	High pH capable Robust performance and long lifetimes Improved retention, resolution, and peak shape of basic compounds
HPH-C8	€	2.7 µm, 4 µm	100 Å	60 °C	3.0-11.0	Yes	Proprietary	95 m2/g	17	High pH capable Robust performance and long lifetimes Lower retention of hydrophobic analytes vs. C18
Bonus-RP	ୢୄୢୄ୷ୄୖୄୡୣ୷ଵ୵୵୵୵୵୵	΄ 2.7 μm	120 Å	60 °C	2.0-8.0	Yes	9.5%	130 m2/g	L60	Alternate selectivity to C18 Improved peak shape for basic compounds, stable in 100% aqueous conditions
PFP	ۥᡶᢩᢇᢣᢩᢣ	1.9 µm, 2.7 µm, 4 µm	120 Å	60 °C	2.0-8.0	Yes	5.1%	130 m2/g	L43	Alternate selectivity Excellent peak shape for polar and nonpolar analytes Unique selectivity for aromatic and halogenated compounds
Phenyl-Hexyl		1.9 µm, 2.7 µm, 4 µm	120 Å	60 °C	2.0-8.0	Yes	9%	130 m2/g	ιn	Alternate selectivity with aromatic groups Highly nonpolar bonded phase takes advantage of pi-pi interactions
SB-Aq	€ ⊙	2.7 µm	120 Å	80 °C	1.0-8.0	No	Proprietary	130 m2/g	L96	Alternate selectivity Excellent peak shape and retention of polar compounds using reversed-phase LC Exceptional stability under high-equeous conditions, including 100% water
EC-CN	<u></u>	2.7 µm	120 Å	60 °C	2.0-8.0	Yes	3.5%	130 m2/g	L10	Alternate selectivity Use in reversed-phase for alternate selectivity of polar and mid-polar compounds Use in normal phase for excellent peak shape and retention of nonpolar analytes
HILIC-Z	<mark>ୄ</mark> ୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄୄ	2.7 µm	100 Å	80 °C	3.0-11.0	No	Proprietary	95 m2/g	L114	Polar analytes Excellent retention of highly polar or charged compounds by HILIC Rugged performance at high pH or high temperature
HILIC	4	1.9 µm, 2.7 µm, 4 µm	120 Å	60 °C	0.0-8.0	No	NA	130 m2/g	13	Polar analytes Excellent retention of polar compounds by HILIC
HILIC-OH5		2.7 µm	120 Å	45 °C	1.0-7.0	Proprietary	Proprietary	130 m2/g	L86	Polar analytes Fructan bonded phase offers alternate selectivity to other HIUC phases
Chiral-V	•	2.7 µm	120 Å	45 °C	2.5-7.0	Proprietary	Proprietary	130 m2/g	L88	Chiral separations Amines, profens, and complex basic and neutral compounds Reversed-phase, polar ionic normal phase, or polar organic modes
Chiral-T		2.7 µm	120 Å	45 °C	2.5-7.0	Proprietary	Proprietary	130 m2/g	L63	Chiral separations Beta blockers, hydroxyl acids, amino acids, profens, benzodiazepines, and hydantoins Reversed phase, polar ionic normal phase, or polar organic modes
Chiral-CD	•	2.7 µm	120 Å	45 °C	3.0-7.0	Proprietary	Proprietary	130 m2/g	L45	Chiral separations Stimulants, fungicides, and protected amino acids Reversed phase or polar organic modes
Chiral-CF		2.7 µm	120 Å	45 °C	3.0-7.0	Proprietary	Proprietary	130 m2/g	NA	Chiral separations Primary amines Polar organic or normal phase modes
The billion of the subject is a speed to strange of the subject is the subject is a strange of the subject is a st	had ratios									Note: HILIC-OH5, and all four Chiral phases have a pressure limit of 400 bar.

 Image: Second Second

Which particle is best for my method?

Still using a legacy method?

InfinityLab Poroshell Chemistry	Aligned Chemistry
nfinityLab Poroshell 120 EC-C18	ZORBAX Eclipse Plus C18
nfinityLab Poroshell 120 EC-C8	ZORBAX Eclipse Plus EC-C8
nfinityLab Poroshell 120 Phenyl-Hexyl	ZORBAX Eclipse Plus Phenyl-Hexyl
nfinityLab Poroshell 120 SB-C18	ZORBAX StableBond SB-C18
nfinityLab Poroshell 120 SB-C8	ZORBAX StableBond SB-C8
nfinityLab Poroshell 120 Bonus-RP	ZORBAX Bonus-RP
nfinityLab Poroshell 120 SB-Ag	ZORBAX StableBond SB-Ag
infinityLab Poroshell 120 EC-CN	ZORBAX Eclipse XDB-CN
InfinityLab Propabell 120 HILLC	70BBAX HILIC Plus

Agilent InfinityLab is an optimized portfolio of LC instruments, columns, and supplies that work together searleasy for maximum efficiency and performation at:

For more information about InfinityLab Poroshell 120 Columns, go to www.agilent.com/chem/poroshell-120

Poroshell Selectivity Overview Pub No. 5991-9013EN

Transferability ZORBAX to Poroshell

Method transferability across product families

Traditional ZORBAX chemistries are aligned with InfinityLab Poroshell chemistries to offer simplified method transfer from fully porous particles to superficially porous particle columns.

InfinityLab Poroshell Chemistries **Aligned Chemistry ZORBAX Eclipse Plus C18** InfinityLab Poroshell 120 EC-C18 InfinityLab Poroshell 120 EC-C8 **ZORBAX Eclipse Plus C8** ZORBAX Eclipse Plus Phenyl-Hexyl InfinityLab Poroshell 120 Phenyl-Hexyl **ZORBAX StableBond SB-C18** InfinityLab Poroshell 120 SB-C18 InfinityLab Poroshell 120 SB-C8 **ZORBAX StableBond SB-C8** InfinityLab Poroshell 120 SB-Aq ZORBAX StableBond SB-Aq InfinityLab Poroshell 120 Bonus-RP **ZORBAX Bonus-RP** InfinityLab Poroshell 120 EC-CN ZORBAX Eclipse XDB-CN InfinityLab Poroshell 120 HILIC **ZORBAX HILIC-Plus**

For more information on method transfer: technical overview 5990-6588EN

The Poroshell 120 Family Offers Chemistries with Unique Selectivity

	For Nonpo				
Best All Around	Best for Low pH Mobile Phases	Best for <mark>High pH</mark> Mobile Phases	Best for Alternative Selectivity	Best for More Polar Analytes	Chiral
EC-C18 1.9 μm, 2.7 μm, 4 μm	SB-C18 1.9 μm, 2.7 μm, 4 μm	HPH-C18 1.9 μm, 2.7 μm, 4 μm	Bonus-RP 2.7 μm	SB-Aq 1.9 μm, 2.7 μm, 4 μm	Chiral-V 2.7 μm
EC-C8 1.9 μm, 2.7 μm, 4 μm	SB-C8 2.7 μm	HPH-C8 2.7 μm, 4 μm	PFP 1.9 μm, 2.7 μm, 4 μm	EC-CN 2.7 μm	Chiral-T 2.7 μm
Phenyl-Hexyl 1.9 μm, 2.7 μm, 4 μm		CS- 2.7	C18 μm	HILIC 1.9μm, 2.7 μm, 4 μm	Chiral-CD 2.7 μm
				HILIC-Z 1.9 μm, 2.7 μm, 4 μm	Chiral-CF 2.7 μm
				HILIC-OH5 2.7 μm	

The Poroshell 120 Family Offers Chemistries with Unique Selectivity

	For Nonpo				
Best All Around	Best for Low pH Mobile Phases	Best for High pH Mobile Phases	Best for Alternative Selectivity	Best for More Polar Analytes	Chiral
EC-C18 1.9 μm, 2.7 μm, 4 μm	SB-C18 1.9 μm, 2.7 μm, 4 μm	HPH-C18 1.9 μm, 2.7 μm, 4 μm	Bonus-RP 2.7 μm	SB-Aq 1.9 μm, 2.7 μm, 4 μm	Chiral-V 2.7 μm
EC-C8 1.9 μm, 2.7 μm, 4 μm	SB-C8 2.7 μm	HPH-C8 2.7 μm, 4 μm	PFP 1.9 μm, 2.7 μm, 4 μm	EC-CN 2.7 μm	Chiral-T 2.7 μm
Phenyl-Hexyl 1.9 μm, 2.7 μm, 4 μm		CS- 2.7	C18 μm	HILIC 1.9μm, 2.7 μm, 4 μm	Chiral-CD 2.7 μm
				HILIC-Z 1.9 μm, 2.7 μm, 4 μm	Chiral-CF 2.7 μm
				HILIC-OH5 2.7 μm	

The Poroshell 120 Family Offers Chemistries with Unique Selectivity

	For Nonpol				
Best All Around	Best for Low pH Mobile Phases	Best for High pH Mobile Phases	Best for Alternative Selectivity	Best for More Polar Analytes	Chiral
EC-C18 1.9 μm, 2.7 μm, 4 μm	SB-C18 1.9 μm, 2.7 μm, 4 μm	HPH-C18 1.9 μm, 2.7 μm, 4 μm	Bonus-RP 2.7 μm	SB-Aq 1.9 μm, 2.7 μm, 4 μm	Chiral-V 2.7 μm
EC-C8 1.9 μm, 2.7 μm, 4 μm	SB-C8 2.7 μm	HPH-C8 2.7 μm, 4 μm	PFP 1.9 μm, 2.7 μm, 4 μm	EC-CN 2.7 μm	Chiral-T 2.7 μm
Phenyl-Hexyl 1.9 μm, 2.7 μm, 4 μm		CS- 2.7	C18 μm	HILIC 1.9μm, 2.7 μm, 4 μm	Chiral-CD 2.7 μm
	For RP start here			HILIC-Z 1.9 μm, 2.7 μm, 4 μm	Chiral-CF 2.7 μm
				HILIC-OH5 2.7 μm	

Best All Round Poroshell 120 EC C18 or EC C8

InfinityLab Poroshell 120 EC C18, 3.0 x 50 mm, 2.7 µm, p/n 699975-302

InfinityLab Poroshell 120 EC C8, 3.0 x 50 mm, 2.7 µm, p/n 699975-306

Conditions

Mobile phase: Flow rate: Temperature: Detection: Sample:

60% ACN, 40% water 0.85 mL/min 26 °C 254 nm 2 μL of RRLC checkout sample (p/n 5188-6529), alkylphenones

Need For Use Over a Wide pH Range Poroshell HPH C18 and HPH C8

Infinity Lab

Polar Embedded Phase for Alternate Selectivity

0.35 mL/min, 10 mM pH 3.8 ammonium formate buffer and methanol, 10-70% methanol/12 min, 2.1 x 100 mm, 40 °C , DAD 260 nm

Selectivity impacts the resolution most

$$R_s = \frac{\sqrt{N}}{4} \left(\frac{\alpha - 1}{\alpha}\right) \cdot \frac{k'}{k' + 1}$$

23 January 19, 2021 How Do I Determine the Best Chromatography for my Sample DE44208.4011805556

Chemistries with Unique Selectivity

January 19, 2021 How Do I Determine the Best Chromatography for my Sample DE44208.4011805556

24

Chemistries with Unique Selectivity

$$R_s = \frac{\sqrt{N}}{4} \left(\frac{\alpha - 1}{\alpha}\right) \cdot \frac{k'}{k' + 1}$$

Selectivity impacts resolution

- Stationary and mobile phase
- Temperature
- N is strongly influenced by alpha

Why Not to Use C18 chemistry Some reasons for trying an alternative

C18 columns are a very common 'go to' column for HPLC methods and may be a suitable column choice for simple methods. **But** the C18 chemistry may not be the optimal choice.

For analysis of polar analytes, it is typically suggested that these sample types can be better separated on chemistries that have a greater polarity than C18.

Reasons to **try** another chemistry:

- Too much retention or selectivity with C18 for desired analysis time
- Polar analytes are not well retained with low or no organic modifier
- Polar analytes not well resolved even if retained
- A C18 method already in use is not rugged enough (revalidate)
- Screening different column chemistries is commonly advised when sample mixtures are complex

Why is Changing the Bonded Phase Effective?

- Differences in interactions between polar and nonpolar compounds
- Other types of interactions with a bonded phase can be exploited (for example, pi-pi interactions)
- These all change with the bonded phase
- Changing the bonded phase can improve selectivity/resolution
- Reduce analysis time

Orthogonal: Orthogonality in chromatography refers to alternative selectivity between separations.

Best All Around	Best for Low pH Mobile Phases	Best for <mark>High</mark> pH Mobile Phases	Best for Alternative Selectivity	Best for More Polar Analytes	Chiral
EC-C18	SB-C18	HPH-C18	Bonus-RP	SB-Aq	Chiral-V
1.9 μm, 2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	2.7 μm	1.9 μm, 2.7 μm, 4 μm	2.7 μm
EC-C8	SB-C8	HPH-C8	PFP	EC-CN	Chiral-T
1.9 μm, 2.7 μm, 4 μm	2.7 μm	2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	2.7 μm	2.7 μm
Phenyl-Hexyl		CS-	C18	HILIC	Chiral-CD
1.9 μm, 2.7 μm, 4 μm		2.7	μm	1.9μm, 2.7 μm, 4 μm	2.7 μm
				HILIC-Z 1.9 μm, 2.7 μm, 4 μm	Chiral-CF 2.7 μm
				HILIC-OH5 2.7 μm	

Best All Around	Best for Low pH Mobile Phases	Best for <mark>High</mark> pH Mobile Phases	Best for Alternative Selectivity	Best for More Polar Analytes	Chiral
EC-C18	SB-C18	HPH-C1 <i>ξ</i>	Bonus-RP	SB-Aq	Chiral-V
1.9 μm, 2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	1.9 μm, 2.7 μm 4 μm	2.7 μm	1.9 μm, 2.7 μm, 4 μm	2.7 μm
EC-C8	SB-C8	ΗΡΗ-C8	PFP	EC-CN	Chiral-T
1.9 μm, 2.7 μm, 4 μm	2.7 μm	2.7 μm, 4 μ n	1.9 μm, 2.7 μm, 4 μm	2.7 μm	2.7 μm
Phenyl-Hexyl		CS-	C18 Very or	thogonal	Chiral-CD
1.9 μm, 2.7 μm, 4 μm		2.7	μm	1.9μm, 2.7 μm, 4 μm	2.7 μm
				HILIC-Z 1.9 μm, 2.7 μm, 4 μm	Chiral-CF 2.7 μm
				HILIC-OH5 2.7 μm	

Control Selectivity with Choice of Phases Poroshell 120 columns

InfinityLab Poroshell 120 columns, 2.1 x 100 mm, 2.7 µm

Conditions

Flow rate:0.4 mL/minMobile phase:A: 0.1% formic acid in H2O
B: MeOH + 0.1% formic acidTemperature:25 °CDetection:260 nmGradient:40-80 and MeOH/14 min

Sample: 8 steroids

1. Hydrocortisone

2. B Estradiole

- 3. Andostadiene 3,17 dione
- 4. Testosterone
- 5. Ethyestradione
- 6. Estrone

Agilent publication number: 5990-5951EN

Chemistries with Unique Selectivity

The influence of stationary phase on selectivity and resolution is dominant

DE44208.4011805556

Importance of Alternate Selectivity Chemistries

InfinityLab Poroshell 120 columns, 4.6 x 50 mm, 2.7 μm 70:30 – MeOH/H2O, 1.5 mL/min, 40 °C, 254 nm

Best All Around	Best for Low pH Mobile Phases	Best for <mark>High pH</mark> Mobile Phases	Best for Alternative Selectivity	Best for More Polar Analytes	Chiral
EC-C18	SB-C18	HPH-C18	Bonus-RP	SB-Aq	Chiral-V
1.9 μm, 2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	2.7 μm	1.9 μm, 2.7 μm, 4 μm	2.7 μm
EC-C8	SB-C8	HPH-C8	PFP	EC-CN	Chiral-T
1.9 μm, 2.7 μm, 4 μm	2.7 μm	2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	2.7 μm	2.7 μm
Phenyl-Hexyl		CS-C18		HILIC	Chiral-CD
1.9 μm, 2.7 μm, 4 μm		2.7 μm		1.9μm, 2.7 μm, 4 μm	2.7 μm
	Charged	surface C18	HILIC	HILIC-Z 1.9 μm, 2.7 μm, 4 μm	Chiral-CF 2.7 μm
			chemistries	HILIC-OH5 2.7 μm	

What is HILIC and When Should it be Considered?

HILIC complements RPLC

Reversed-Phase LC		Hydrophilic Interaction LC (HILIC)
Nonpolar stationary phase (for example, C18)	Polarity	Polar stationary phase (for example, silica)
Polar mobile phase H_2O/CH_3OH , H_2O/CH_3CN	Mobile phase	Polar mobile phase CH ₃ CN/H ₂ O
Decrease retention by decreasing polarity of mobile phase CH ₃ CN ↑ = retention ↓	Gradient	Decrease retention by increasing polarity of mobile phase ddH2O ↑ = retention ↓
Polar to nonpolar	Elution order	Nonpolar to polar

InfinityLab Poroshell 120 HILIC column options

For more information on method development for HILIC, see Agilent technical note 5991-9271EN

InfinityLab Poroshell 120 HILIC column options

For more information on method development for HILIC, see Agilent technical note 5991-9271EN

InfinityLab Poroshell 120 HILIC column options

HILIC

- Bare silica chemistry
- For very simple mixtures

HILIC-Z

- Proprietary zwitterionic chemistry, high pH stable
- The most modern and robust column start method development here
- PEEK-lined version available

For more information on method development for HILIC, see Agilent technical note 5991-9271EN

InfinityLab Poroshell 120 HILIC column options

For more information on method development for HILIC, see Agilent technical note 5991-9271EN

<u>HILIC</u>

- Bare silica chemistry
- For very simple mixtures

HILIC-Z

• Proprietary zwitterionic chemistry, high pH stable

- The most modern and robust column start method development here
- PEEK-lined version available

HILIC-OH5

- Brushed fructan chemistry
- Alternative selectivity

Separation of 11 Sugars on Poroshell 120 HILIC-Z

Agilent

Selectivity Options with Poroshell 120 HILIC Columns Water soluble vitamins

Columns used: 2.1 x 100 mm, 2.7 µm; A: 100 mM ammonium acetate + 0.5% acetic acid (pH ~4.6) in H₂O, B: CH₃CN, 0.5 mL/min, 87% B for 1 min, 87-50% B in 4 min, 3 min re-equilibration, 1 µL injection of individual vitamin standards (0.1-0.4 mg/mL each), 40 °C, 260 nm, 80 Hz

PEEK-lined column options are rare in the reversed phase column market and help with challenging metal sensitive compounds.

Agilent InfinityLab Poroshell 120 CS-C18

Better peak shape than traditional C18 for analytes with FA mobile phase

A: 0.1% formic acid or 0.2% trifluoroacetic acid in water; B: acetonitrile; 0.4 mL/min; isocratic: %B varies; 2.1 x 100 mm columns, 1 µL injection, 30 °C, LC/MS: ESI+, dMRM; sample: 5 µg/mL of doxepin, desipramine, imipramine, nortriptyline, amitriptyline, trimipramine

Agilent publication number: 5994-2095EN

Agilent InfinityLab Poroshell 120 CS-C18

Better peak shape than traditional C18 for analytes with FA mobile phase

A: 0.1% formic acid or 0.2% trifluoroacetic acid in water; B: acetonitrile; 0.4 mL/min; isocratic: %B varies; 2.1 x 100 mm columns, 1 μL injection, 30 °C, LC/MS: ESI+, dMRM; sample: 5 μg/mL of doxepin, desipramine, imipramine, nortriptyline, amitriptyline, trimipramine

Agilent publication number: 5994-2095EN

Agilent InfinityLab Poroshell 120 CS-C18

Better peak shape than traditional C18 for analytes with FA mobile phase

A: 0.1% formic acid or 0.2% trifluoroacetic acid in water; B: acetonitrile; 0.4 mL/min; isocratic: %B varies; 2.1 x 100 mm columns, 1 µL injection, 30 °C, LC/MS: ESI+, dMRM; sample: 5 µg/mL of doxepin, desipramine, imipramine, nortriptyline, amitriptyline, trimipramine

Choosing Between C18s

Infinity Lab

InfinityLab Poroshell 120	Chemistry	Pore Size	Endcapped	Carbon Load	Surface Area	Best For
EC-C18 1.9 μm, 2.7 μm, 4 μm	o — Si CH ₃	120 Å	Yes	10%	130 m²/g	General purpose Excellent peak shape and efficiency for acids, bases, neutrals
SB-C18 1.9 μm, 2.7 μm, 4 μm		120 Å	No	9%	130 m²/g	Low pH Excellent stability and peak shape in highly acidic conditions
HPH-C18 1.9 μm, 2.7 μm, 4 μm	-o - CH _a - CH _a - CH _a	100 Å	Yes	Proprietary	95 m²/g	Capable of high pH Robust performance and long lifetimes
CS-C18 2.7 μm		100 Å	Yes	Proprietary	95 m²/g	Alternate selectivity Improved peak shape and sample capacity for basic compounds with low ionic strength mobile phases Capable of high pH

The Poroshell 120 Family

19 chemistries with unique selectivity

Best All Around	Best for <mark>Low pH</mark> Mobile Phases	Best for <mark>High pH</mark> Mobile Phases	Best for Alternative Selectivity	Best for More Polar Analytes	Chiral
EC-C18	SB-C18	HPH-C18	Bonus-RP	SB-Aq	Chiral-V
1.9 μm, 2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	2.7 μm	1.9 μm, 2.7 μm, 4 μm	2.7 μm
EC-C8	SB-C8	HPH-C8	PFP	EC-CN	Chiral-T
1.9 μm, 2.7 μm, 4 μm	2.7 μm	2.7 μm, 4 μm	1.9 μm, 2.7 μm, 4 μm	2.7 μm	2.7 μm
Phenyl-Hexyl		CS-C18		HILIC	Chiral-CD
1.9 μm, 2.7 μm, 4 μm		2.7 μm		1.9μm, 2.7 μm, 4 μm	2.7 μm
				HILIC-Z 1.9 μm, 2.7 μm, 4 μm	Chiral-CF 2.7 μm
				HILIC-OH5 2.7 μm	

Why Do Chiral Separations

- Most small molecule drugs on the market today are either racemates or enantiomerically pure.
- Enantiomers: Same chemical and physical properties, but can have very different behavorial properties.
- It is important to characterize each enantiomer.

InfinityLab Poroshell 120 Chiral Chemistries

Column Chemistry	Chiral Selector (bonded chemistry)	Typical LC Mode	Typical Applications
		Polar Organic (PO)	Primary amines
InfinityLab Poroshell 120 Chiral-CF	Derivatized cyclofructan (CF6)	Normal Phase (NP)	Primary amines
		Reversed Phase (RP)	Stimulants, fungicides, t-boc amino acids
InfinityLab Poroshell 120 Chiral-CD	Hydroxypropylated-β-cyclodextrin	Polar Organic (PO)	Complex molecules
		Polar Ionic (PI)	Basic pharmaceuticals (various)
InfinityLab Poroshell 120 Chiral-V	Vancomycin (macrolide antibiotic)	Reversed Phase (RP)	Amines, profens
		Polar Organic (PO)	Complex neutral molecules
		Polar Ionic (PI)	Beta blockers, hydroxyl acids
InfinityLab Poroshell 120 Chiral-T	Teicoplanin (macrolide antibiotic)	Reversed Phase (RP)	Amino acids, hydroxyl acids, profens
		Polar Organic (PO)	Hydantoins, benzodiazepines

Application Examples InfinityLab Poroshell chiral columns

1-benzyl-2,2,diphenylethylamine

Method Conditions

Column:	InfinityLab Poroshell 120 Chiral-V (10 cm x 4.6 mm, 2.7 µm)
Mobile phase:	100/0.1 wt %: Methanol/Ammonium Trifluoroacetate
Flow Rate:	1.0 mL/min
Temperature:	Ambient (23 °C)
Injection Volume:	1.0 µL
Detection:	UV 220 nm

Benalaxyl – fungicide

Method Conditions

Column:	InfinityLab Poroshell 120 Chiral-CD (10 cm x 4.6 mm, 2.7 µm)
Mobile phase:	30/70: Acetonitrile/15 mM Ammonium Formate (pH 3.6)
Flow Rate:	1.0 mL/min
Temperature:	Ambient (23 °C)
Injection Volume:	1.0 µL
Detection:	UV 220 nm

InfinityLab Chiral Applications Compendium Publication number: 5991-8450EN

O Agilent

Fungicides Amines Haloxyfop 1.12/1.37 (Peak1/Peak 2) Method Conditions Column InfinityLab Poroshell 120 Chiral-T (10 cm x 4.6 mm, 2.7 µm) Mobile phase 100/0.3 wt %: Methanol/Ammonium Trifluomacetate Flow Rate: 1.0 mL/min Amblent (23 °C) Temperature njection Volume: 1.0 µL 0.5 1.5 Detection: UV 220 nm 2 0 2 Mandipropamid 7.65/8.22 (Peak1/Peak 2) Retention (min):

Retention (min):

Mecoprop methyl ester

Method Conditio	ns
Column:	InfinityLab Poroshell 120 Chiral-T (15 cm x 4.6 mm, 2.7 µm
Mobile phase:	30/70: Methanol/50 mM Ammonium Formate (pH 3.6)
Flow Rate:	0.5 mL/min
Temperature:	45 °C
Injection Volume:	1.0 µL
Detection:	UV 230 nm

1.14/1.31 (Peak1/Peak 2)

174

3.50

12.73/13.39 (Peak1/Peak 2)

1-benzyl-2,2-diphenylethylamine

Method Conditi InfinityLab Poroshell 120 Chiral-CD (15 cm x 4.6 mm, 2.7 µm) Column: 30/70: Acetonitrile/15 mM Ammonium Formate (pH 3.6) Mobile phase: Flow Rate: 1.0 mL/min Ambient (23 °C) Temperature Injection Volume: 1.0 µL UV 220 nm Detection:

2.61/2.89 (Peak1/Peak 2)

3.51

1-benzyl-2,2-diphenylethylamine

Method Condition Column: InfinityLab Poroshell 120 Chiral-V (10 cm x 4.6 mm, 2.7 µm) Mobile phase: 100/0.1 wt %: Methanol/Ammonium Trifluoroacetate Flow Rate: 1.0 mL/min Temperature Ambient (23 °C) Injection Volume: 1.0 µL UV 220 nm Detection:

1,1'-binaphthyl-2,2'-diamine

2.11 Resolution

Method Conditions

Mobile phase 90/10/0.3/0.2: Acetonitrile/Methanol/Trifluoroacetate/TEA 1.0 mL/min Ambient (23 °C) Temperature Injection Volume: 1.0 µL UV 254 nm

Put InfinityLab Poroshell 120 Chiral innovation to work for your challenging separations

Mecoprop

d Conditio	ns
	InfinityLab Poroshell 120 Chiral-T (10 cm x 4.6 mm, 2.7 µm)
phase:	100/0.3 wt %: Methanol/Ammonium Trifluoroacetate
ate:	1.0 mL/min
rature:	Ambient (23 °C)
n Volume:	1.0 µL
on:	UV 220 nm

Method Condition InfinityLab Poroshell 120 Chiral-V (10 cm x 4.6 mm, 2.7µm) Mobile phase: 90/10: Methanol/15 mM Ammonium Formate (pH 3.6) Flow Rate: 1.0 mL/min Ambient (23 °C) Temperature: Injection Volume: 1.0 µL UV 220 nm

2.64/2.79 (Peak1/Peak 2)

1.31

Role of the LC Instrument

Instrument considerations

Column compatibility with LC instruments

Extra column volume

Proper connections and fittings

Importance of cell volume

Data collection rate

Designed along with your LC instruments for highest performance

SPP Particle	For	Maximum Pressure	Typical Pressure	Efficiency	Target System
1.9 µm	Highest UHPLC performance	1300 bar	Similar to sub-2 µm totally porous	~120% of sub-2 µm totally porous	1290 Infinity II
2.7 µm	UHPLC performance at lower pressures	600 bar/ 1000 bar	50% of sub-2 μm totally porous	~90% of sub-2 µm totally porous	1290 Infinity II 1260 Infinity II
4 µm	Improved HPLC performance	600 bar	Typically <200 bar	~200% of 5 µm totally porous	1260 Infinity II VL 1220 Infinity II (VL)

Particle Size	ID	Optimum Flow	Column length	Recommended Use
1.9 µm	2.1 mm	0.4 – 0.5 mL/min	50	High speed
	3.0 mm	0.8 – 1 mL/min	100	High resolution
2.7 µm	2.1 mm	0.4 – 0.5 mL/min	>=150	Ultra-high resolution
	3.0 mm	0.8 – 1 mL/min		
	4.6 mm	1.5 – 2 mL/min		
4 µm	3.0 mm	0.5 – 0.75 mL/min		
	4.6 mm	1 – 1.25 mL/min		

Infinity Lab

Making Correct Connections

Poor fitting connections

- Will broaden or split peaks, or cause tailing
- Will typically affect all peaks, but especially early eluting peaks
- Can cause carryover

Good

Properly fitted tubing, no dead volume

Importance of Correct Connections

Compatible to 1300 bar

Infinity Lab

Optimizing Connecting Tubing Volume for UHPLC Columns

Length	10 mm	50 mm	100 mm	150 mm
Tubing id	Volume	Volume	Volume	Volume
0.17 mm (green)	0.227 µL	1.1 µL	2.27 µL	3.3 µL
0.12 mm (red)	0.113 µL	0.55 µL	1.13 µL	1.65 µL

Resolution and Importance of Flow Cell Volume

Differences in detector flow cell volume can affect N and R_s

Scenario: Agilent ZORBAX Rapid Resolution column: 75 mm, 3.5 µm; flow rate: 1mL/min; k = 3

Flow Cell Volume	Band Broadening* (4.6 mm)	Band Broadening* (2.1 mm**)
1.7 μL	0.3%	6%
8 µL	6%	138%
14 µL	19%	423%

*Versus 8571 theoretical plates (HPLC Calculations Assistant, Version 2.1, Savant Audiovisuals) **Flow rate, 0.2 mL/min

Maintaining Resolution at High Analysis Speed

Importance of data collection rate for narrow peaks

80Hz versus 10Hz (20Hz) Data Rate

- Peak Width: 55% (- 30%)
- Resolution: + 90% (+ 30%)
- Peak Capacity: + 120% (+ 40%)
- App. Column Eff.: + 260% (+ 70%)

Data Rate	Peak Width	Resolution	Peak Capacity
80 Hz	0.300	2.25	60
40 Hz	0.329	2.05	55
20 Hz	0.416	1.71	45
10 Hz	0.666	1.17	29
5 Hz	1.236	0.67	16

Sample:	Phenones Test Mix
Column:	Zorbax SB-C18, 4.6x30, 1.8um
Gradient::	50-100%ACN in 0.3min
Flow Rate:	5ml/min

Designed to seamlessly integrate into the InfinityLab family

Agilent InfinityLab products are designed to provide the best efficiency in your liquid chromatography workflow, regardless of application area. When relying on Agilent InfinityLab instruments, LC columns and supplies be assured that every part works together seamlessly.

Agilent Resources for Support

Infinity] ab

- Resource page <u>http://www.agilent.com/chem/agilentresources</u>
 - InfinityLab Poroshell 120 brochure <u>https://www.agilent.com/cs/library/brochures/5991-8750EN_InfinityLab_Poroshell120_brochure.pdf</u>
 - Quick reference guides, product catalogs
 - Online selection tools, "How-to" videos
 - Column user guides <u>https://www.agilent.com/en-us/support/liquid-</u> <u>chromatography/kb005965</u>
 - Tech support: <u>http://www.agilent.com/chem/techsupport</u>
- InfinityLab LC Supplies catalog (<u>5991-8031EN</u>)
- Agilent University http://www.agilent.com/crosslab/university
- YouTube <u>Agilent Channel</u>
- Your local product specialists
- Subscribe to Agilent Peak Tales podcasts at peaktales.libsyn.com

Perform Rugged, Fast LC with Confidence

Contact Agilent Chemistries and Supplies Technical Support

Available in the USA and Canada 8-5 all time zones

1-800-227-9770 option 3, option 3:
Option 1 for GC and GC/MS columns and supplies
Option 2 for LC and LC/MS columns and supplies
Option 3 for sample preparation, filtration and QuEChERS
Option 4 for spectroscopy supplies
Option 5 for chemical standards

<u>gc-column-support@agilent.com</u> <u>lc-column-support@agilent.com</u> <u>spp-support@agilent.com</u> <u>spectro-supplies-support@agilent.com</u> chem-standards-support@agilent.com

Thank you for attending

Any questions?

65 January 19, 2021 How Do I Determine the Best Chromatography for my Sample DE44208.4011805556

Additional Resources and Information on Agilent LC Columns

Brochures	Posters	Application Notes
<text><text><text><text><text><text></text></text></text></text></text></text>	<section-header><section-header><section-header><section-header><section-header><complex-block></complex-block></section-header></section-header></section-header></section-header></section-header>	<complex-block><section-header></section-header></complex-block>
Poroshell 120	A proven and induide portfolio of foldaly porces HPLC columns The set and a proven and induite portfolio of foldaly porces HPLC columns The set and a proven and the set and t	Selection Guide
CORCEPTING GUIDE STORE Jerrer Hindig van Personell 120 ookurns Jerrer Hindig van Personell 120 ookurns Store S		Aglent InfinityLab Poroshell 120 LC Columns: Body State Columnation Columnation </td
* Agilent	5994-2212EN	5994-1982EN

HPLC Chemistry Selection: Poroshell 120

ZORBAX, Pursuit, Polaris, PLRP-S

Particle Size and Dimension: Poroshell 120

Aqilent