It Isn't Always the Column: Troubleshooting Your HPLC Separation

Jean Lane Applications Engineer LC Columns and Consumables Technical Support July 25, 2023

July 24, 2023

You've Recognized that There Is a Problem

Ask Questions:

When did the system and chromatography last function properly?

Has anything been changed?

For the method, was the procedure followed correctly?

Are the instrument settings correct?

What is the problem that is being seen?

Where might the problem be?

- Pump
- Injector/autosampler
- Column
- Detector

- Data system
- Mobile phase
- Sample
- Tubing/fittings
- User

The problem could be one, some, many, or all of these independently or together.

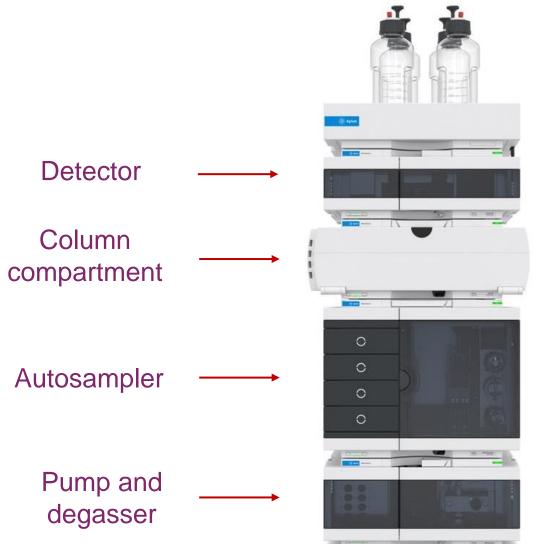
How's that for a challenge?

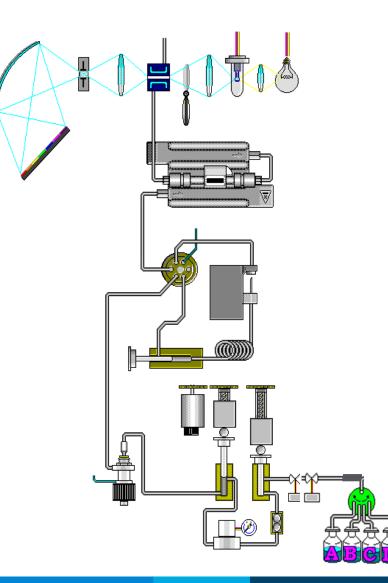
Common Symptoms and Problems

• Pressure

• Peak shape

Retention


• Baseline



- Increased pressure
- Low pressure
- Leaks
- Pressure fluctuations
- Tailing
- Peak splitting and doubling
- Fronting
- Broadening
- Changing retention time
- Loss of resolution
- Noisy baseline
- Drifting baseline
- Reduced intensity or sensitivity

Understand Your HPLC System Know your flow path

July 24, 2023

DE25843549

Changes in System Pressure

5

Causes of Increase in Back Pressure

- Particles leading to blockage can come from sources located both *outside* and *inside* the LC system:
 - Solvent, buffer
 - Microbial growth in solvent reservoirs
 - The sample
 - Wear of LC components piston seals, autosampler valve
- Debris will either be captured on the a filter, frit, or inline filter (inexpensive replaceable frit) or a column frit (column = expensive)

Reduce LC problems by eliminating most common sources of flow blockage: Preventing this is the key

Filter, filter, filter

July 24, 2023

Blockages and Clogging

	Characteristics	Ρ
Parts affected	 Blockages: Capillaries, needle and needle seat Detector flow cells Clogging: Filter frits (inline filter, column filter) 	
Characteristic		Blockages: instant pressure
Identification	 Start by disconnecting the capillary at the column inlet Install a test setup with restriction capillary Continue disconnecting capillaries, one-by-one, moving back toward the pump 	P
Possible root cause	 Debris from mechanically worn parts (needle seat material, rotor seal at injection valve) Coring of vial septa material 	
Instant action/first aid	Backflush affected partReplace part	
Preventive measures	 Replace wear parts in time; apply proper preventive maintenance schedules Use high-quality septa Install inline filters 	► t Clogging: constant pressure increase over time

Microbial Growth

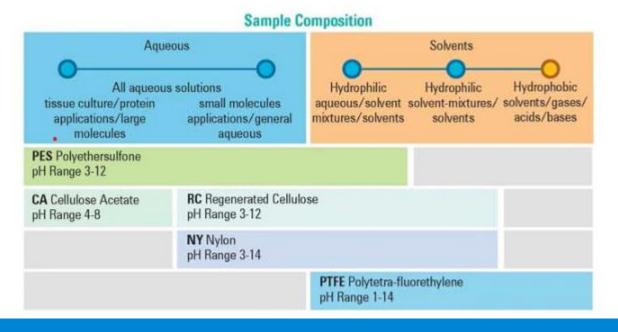
- Potential problems
 - Increased system pressure or pressure fluctuations
 - Increased column pressure, premature column failure
 - Can mimic application problems
 - Gradient inaccuracies
 - Ghost peaks
- Prevent and/or Reduce Microbial Growth
 - Use freshly prepared mobile phase
 - Filter
 - Do not leave mobile phase in instrument for days without flow
 - Always discard "old" mobile phase
 - Do not add fresh mobile phase to old. No "topping off"
 - Use an amber solvent bottle for aqueous mobile phase
 - If possible, can add:
 - 5% organic added to water can be used to reduce bacterial growth
 - Use a few mg/L sodium azide

PN 3150-0577 Solvent filter/degasser assembly

Glass solvent inlet filter (20 mm), PN 5041-2168 Stainless Steel solvent inlet filter. PN 01018-60028 Amber solvent bottle 1L, PN 9301-6526

DE25843549

Why Filter the LC Sample


Capillaries, frits, and the column inlet are less likely to end up with blockages

Less wear and tear of injection and switching valves

Less downtime

Agilent Syringe Filter Selector tool

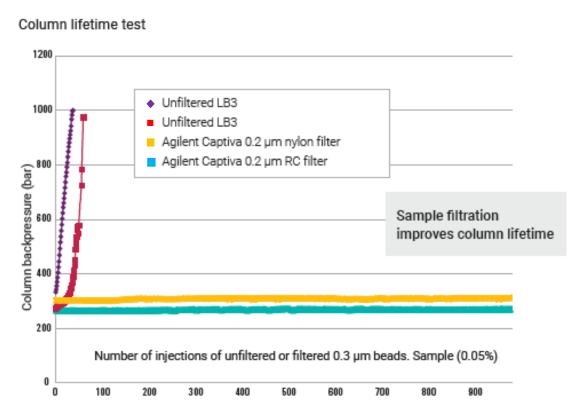
Captiva Syringe Filter Selector | Agilent

What is the Particle Size of Your LC Column?

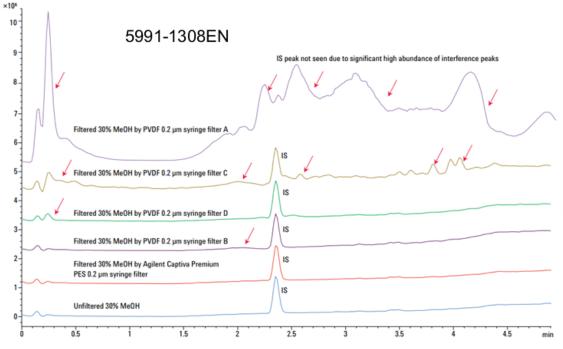
Columns packed < 2 µm particles	Columns packed > 2 µm particles
0.2 μm	0.2 μm or 0.45 μm
UHPLC	HPLC

Applications

Type of Filtration	Recommended	Alternatives
HPLC • UHPLC • LC/MS • GC	RC	PTFE or Nylon
ICP-MS	PTFE	Glass Fiber/PTFE (High Particle Samples)
CE	RC	Nylon
Undiluted Organic Solvents	PTFE	Nylon
Protein Analysis • Samples with Biomolecules – Buffers	PES	RC or CA
Tissue Culture Media	PES	RC or CA
High Particle-Load Samples – Organic Solvents	Glass Fiber/PTFE	4
High Particle-Load Samples – Aqueous Solutions	Glass Fiber/Nylon	


Separation

DE25843<mark>549</mark>



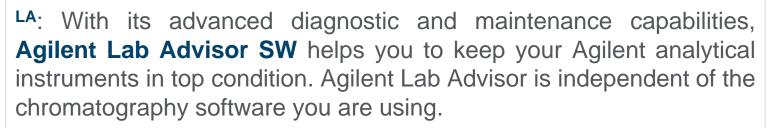
July 24, 2023

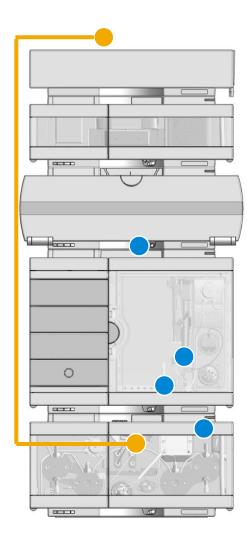
Filtration Captiva premium syringe filters

Impact of filtering a 0.3 μm latex-bead suspension on lifetime of a sub-2 μm column.

Filter cleanliness comparison of the Agilent Captiva Premium PES syringe filter with non-Agilent PVDF syringe filters using LC/MS under positive mode.

Captiva syringe filters guide: <u>5991-1230EN</u>


DE25843549



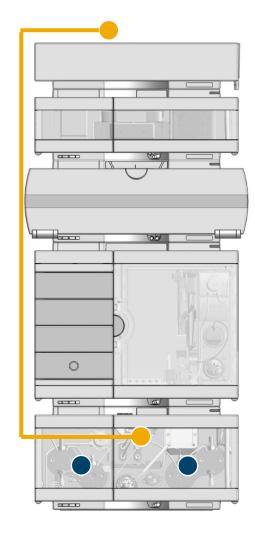
Changes in System Pressure Low pressure

Potential Cause	Recommended Action
Leak in high-pressure flow path	 Visual inspection of the flow path Instrument diagnostic tests ^{LA}
Wrong mobile phase	 Check for correct mobile phase Check solvent reservoir and tube connections

Leaks

Characteristics	
Parts affected	 Potentially all parts in the flow path High potential at frequently operated fitting connections (for example, column inlet) and parts with high mechanical stress (rotor seal, needle, and needle seat)
Characteristic	 Lower pressure Potentially impacting retention times and peak shape
Identification	 Drops of solvent or residues of salt System diagnostic tests ^{LA}
Possible root cause	 Loose or bad fitting connections Cracked capillaries Worn needle and needle seat
Instant action/first aid	Replace affected partsRenew or redo fitting connections
Preventive measures	Use proper fitting connectionsReplace fittings and wear parts in time

Changes in System Pressure


Pressure fluctuations

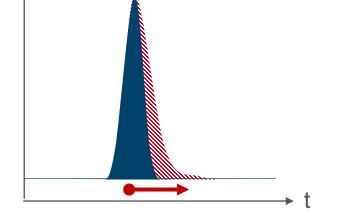
	Potential Cause	Recommended Action
•	Air in the system	 Prime and flush instrument Check for sufficient solvent supply Check for correct plumbing (SSV/MCGV) Check for correct degassing
	Malfunctions at pump head	 Perform pump head diagnostic tests LA Replace defective parts Implement proper maintenance schedule
•	Cavitation effects	 Check for flow restrictions (solvent bottle to pump head inlet) Clean or replace parts Verify that solvent supply is positioned above the pump inlet

In addition

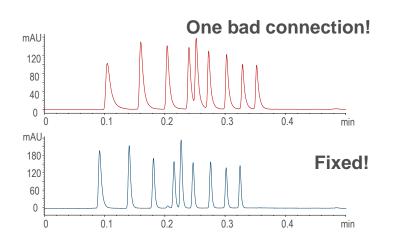
Pressure fluctuations will typically also impact the UV-signal due to refractive index effects.

Peak Shape Changes

14

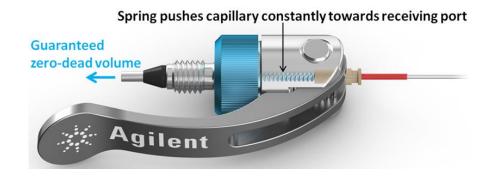

Changes in Peak Shape What is typically seen

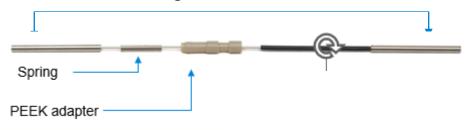
Peak tailing Peak splitting/doublets Peak fronting Peak broadening



Changes in Peak Shape Peak tailing

If applicable to some peaks	Recommended Action
Secondary interactions	Change pHChange stationary phase
Small peak eluting on tail of larger peak	 Change selectivity (column, mobile phase) Switch to methods with higher resolution (UHPLC, 2D-LC)


If applicable to all peaks	Recommended Action
Silica based – column degradation	 Use specialty, polymeric or sterically protected column
Silica based – basic interactions with stationary phase	 Use stronger mobile phase or add appropriate base (<i>e.g.</i> TEA)
Poor tubing connections; high dispersion volume	 Minimize number of connections check connections / fitting condition and proper seat of fittings use fittings with spring-load function


InfinityLab Quick Connect and Quick Turn Fittings

- Spring-loaded design
- Easy-to-use
- Works for all column types
- Reusable
- Consistent ZDV connection

Capillary for Quick Connect fitting

'Long socket' at both ends

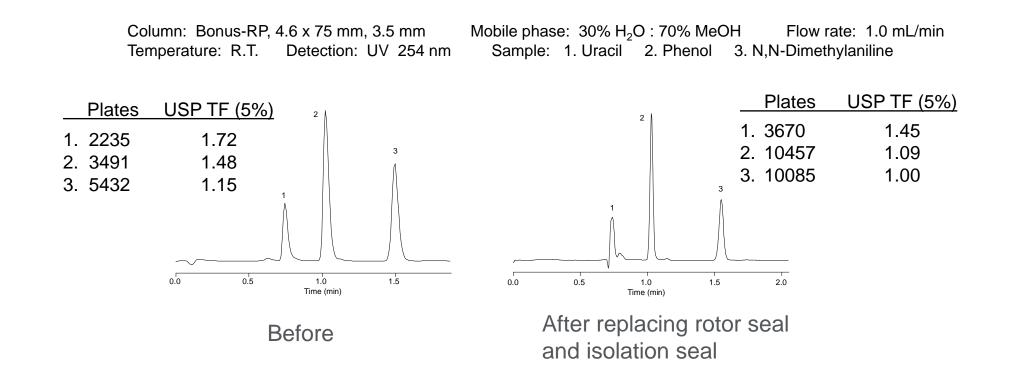
InfinityLab Quick Turn fitting

Capillary for Quick Turn fitting

'Long socket' at both ends

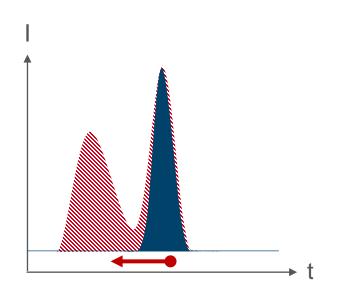
Quick Connect Fitting

- Finger tight up to 1300 bar
- Hand tighten the nut, then depress the lever

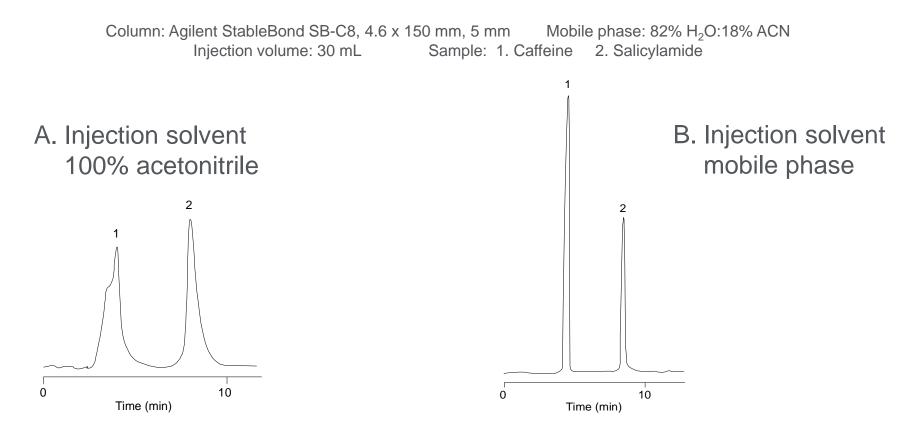

Quick Turn fitting

- Finger tight up to 400 bar
- Up to 1300 bar with a wrench
- Compact design

Brochure: 5991-5164EN

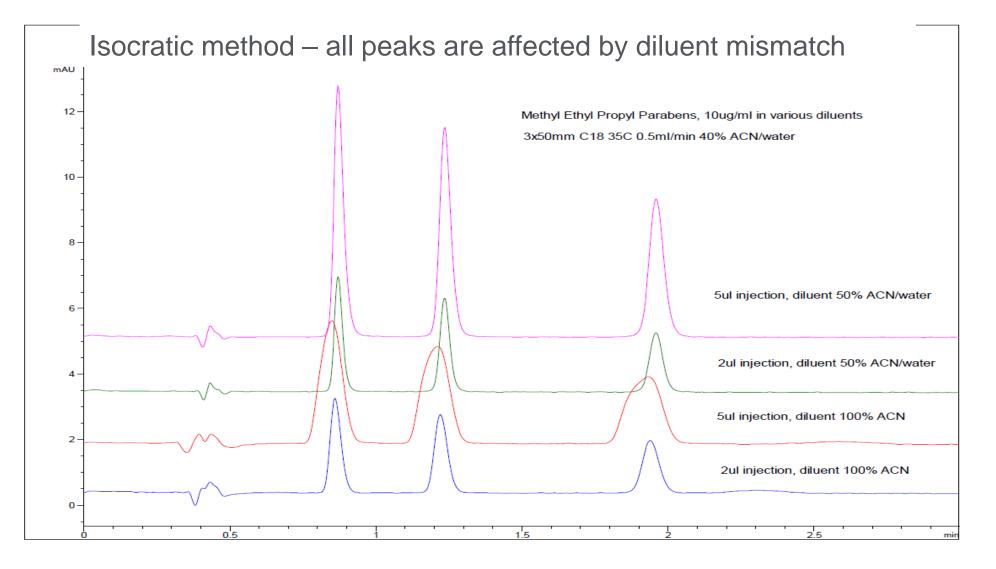


Peak Tailing Injector seal failure


Changes in Peak Shape Peak splitting/doubling

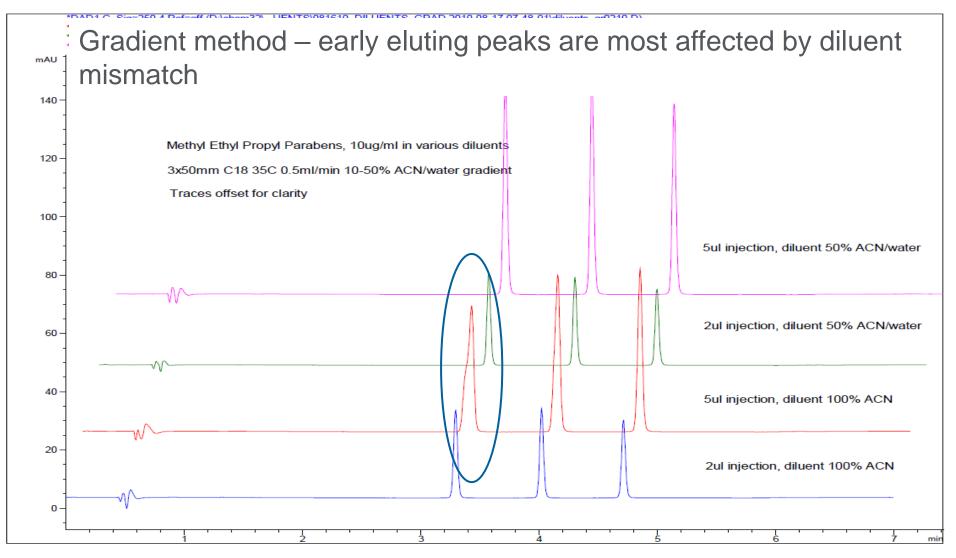
If Applicable to Some Peaks	Recommended Action
Partially plugged column frit	 Backflush the column (if applicable) Use an inline filter Use a guard column
Column void	 Use a guard column Use less aggressive mobile phase conditions Replace the column
Sample volume overload	Use a smaller injection volume
Sample solvent incompatibility with mobile phase	Use mobile phase or weaker miscible solvent as injection solvent
Issues with injection valve	Check injector valve partsReplace worn parts

Split Peaks from Injection Solvent Effects



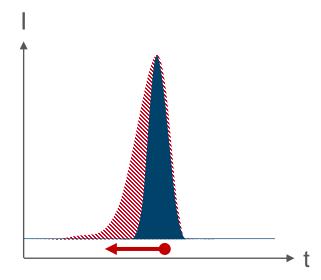
Injecting in a solvent stronger than the mobile phase can cause peak shape problems, such as peak splitting or broadening.

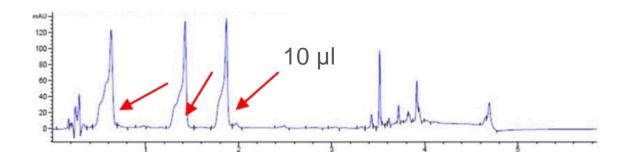
Keep organic concentration in sample solvent < mobile phase

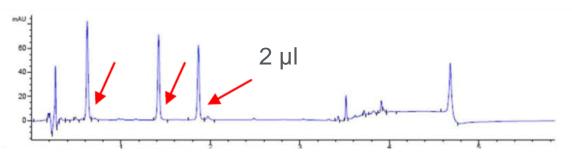


Strong Sample Solvent Can Compromise Peak Shape Isocratic method

Strong Sample Solvent Can Compromise Peak Shape Gradient analysis

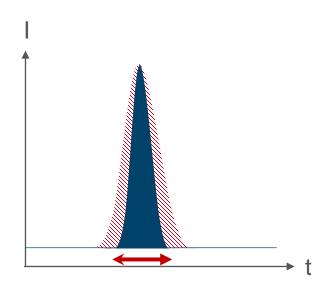






Changes in Peak Shape Fronting

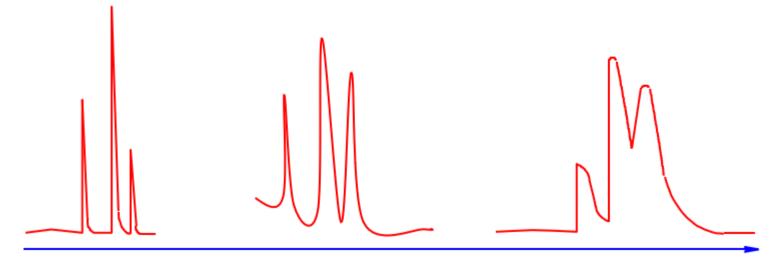
Potential Cause	Recommended Action
Channeling in column	Replace the columnUse guard columns
Column overload	 Use a higher capacity column (increase length, diameter or change to high-capacity material) Decrease sample amount



Changes in Peak Shape
Peak broadening

Potential Cause	Recommended Action
Injection volume is too large	Decrease the injection volume
Long retention times	Use gradient elution or stronger mobile phase
System settings	 Check data collection rate: Adjust the detector setting or time constant to the fastest possible value without compromising signal-to-noise.
Viscosity of the mobile phase is too high	Increase the column temperature
Detector cell volume is too large	Use the smallest possible cell volume
Improper fittings/connections	Ensure that your fitting connections are correct
Extra tubing volume on system	• Ensure that the tubing is narrow and as short as possible to avoid extra volume.
Sample diluent too strong	Reduce diluent strength

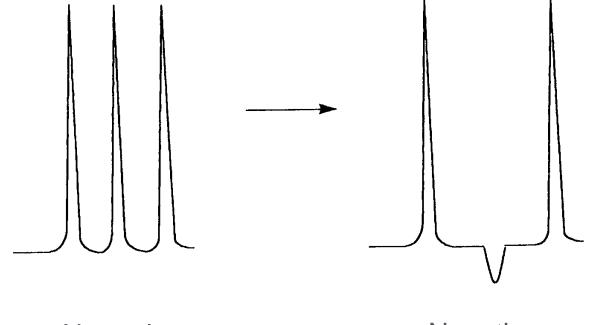
Changes in Peak Shape Influence of data rate on appearance



July 24, 2023

July 24, 2023

Peak Shape Extracolumn dispersion (Volume)


Increasing extracolumn volume

- Use short, small internal diameter tubing between the injector and the column and between the column and the detector.
- Make certain all tubing connections are made with matched fittings.
- Use a low-volume detector cell.
- · Inject small sample volumes.

Length	10mm	50mm	100mm	150mm
Tubing ID	Volume	Volume	Volume	Volume
0.17mm (green)	0.227 uL	1.1uL	2.27 uL	3.3 uL
0.12mm (red)	0.113 uL	0.55uL	1.13 uL	1.65 uL

Peak Shape Negative peaks

Causes

- Absorbance of the sample is less than the mobile phase
- Equilibrium disturbance when the sample solvent passes through the column
- Normal with Refractive Index Detectors
- Indirect UV detection

Negative

- 🔆 Agilent

Retention

28	July 24, 2023	It Isn't Always The Column: Troubleshooting Your HPLC Separation	DE25843549		Agilent

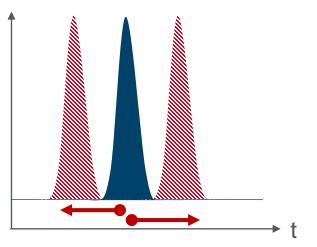
What is the Specific Issue?

- Retention times of all peaks shift
- Retention time of only one peak shifts

Increase the detail to be more specific:

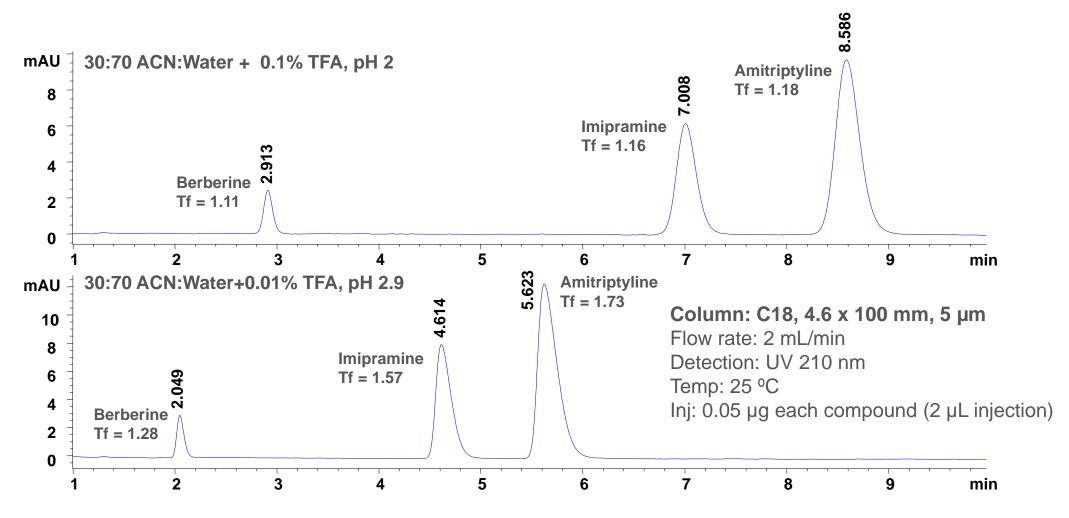
• Retention time of all peaks shift

29


- Retention time of all peaks is shifting earlier
- Retention time of all peaks is shifting to earlier times and the extent of the shift appears to be the same

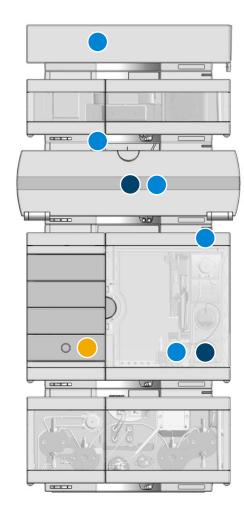
Changes in Separation

Retention time changing


Potential Cause	Recommended Action
Flow rate changing	Check "Pressure fluctuation", pump flow rate
Inconsistent online mobile phase mixing	Ensure gradient system is delivering constant composition check vs. manual preparation of mobile phase
Column temperature varying	Thermostat column and ensure constant lab temperature
Equilibration time insufficient with gradient run or change in isocratic mobile phase	Flush with at least 10 column volumes after solvent change or gradient conclusion
Selective evaporation of mobile phase component	Keep solvent reservoirs covered Prepare fresh mobile phase
Buffer capacity insufficient	Use >20 mM concentration of buffer
Contamination buildup	Occasionally flush the column with strong solvent to remove contaminants
First few injections – adsorption on active sites	Condition the column by initial injection of a concentrated sample
Column overloaded with sample	Decrease injection volume or concentration
Active sites on silica packing	Add competing base to mobile phase
Mobile phase composition changing	Follow 'best practices'

July 24, 2023

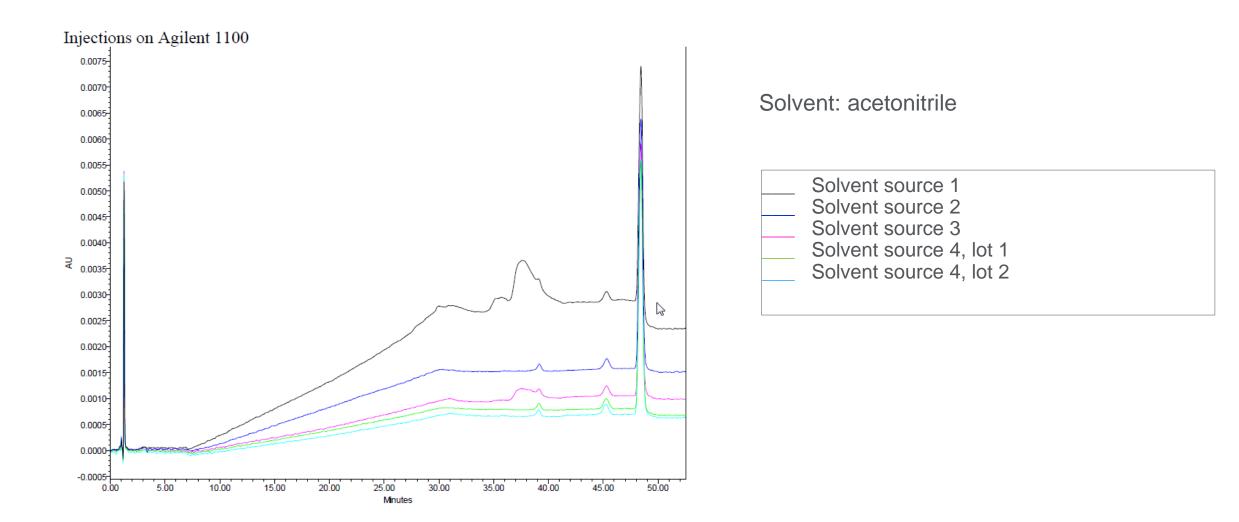
Change in Volatile Buffer Concentration and Shift in Retention Time and Peak Shape



Tip: The definition of "volatile" is "evaporating rapidly" or "passing off rapidly in the form of vapor"

Changes in Separation Ghost peaks, carry over

Potential Cause	Recommended Action
Peaks from previous injections	 Flush the column to remove contaminants Check with blank injection
Specific interaction with metal surfaces	 Passivate instrument Use InfinityLab Deactivator Additive Use bio-inert LC equipment
Contamination or unknown interferences in samples	Proper sample cleanup
Ion pair – disequilibrium	Prepare sample in actual mobile phase to minimize disturbance



BIO INERT

PN 5191-4506 | Deactivator Additive 50 ml PN 5191-3940 | Deactivator Additive 25 ml

32

Solvent Contamination

July 24, 2023 It Isn't Always The Column: Troubleshooting Your HPLC Separation DE

DE25843549

Column Cleaning

Do what's recommended for your column

Tips for cleaning columns:

- Flush with stronger solvents than your mobile phase
- Make sure the detector is taken out of the flow path
- Do not add your organic solvent directly to the buffer, as this may cause the buffer salts to precipitate out and lead to more backpressure

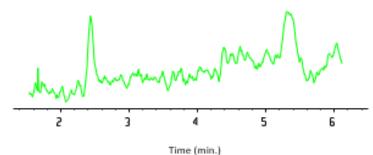
For reversed phase:

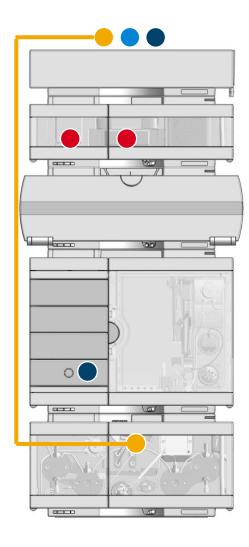
Use at least 10 column volumes of each solvent for analytical columns

- 1. Start with your mobile phase without buffer salts (water/organic)
- 2. 100% organic (MeOH or ACN)
- 3. Check the pressure to see if it has returned to normal; if not, then
- 4. Discard the column or consider more drastic conditions: 75% acetonitrile/25% isopropanol
- 5. 100% isopropanol
- 6. 100% methylene chloride, solvent wash for very nonpolar compounds
- 7. Hexane

*Always see your specific column user guide for instructions

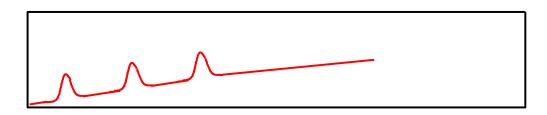
LC Column User Guides | Agilent

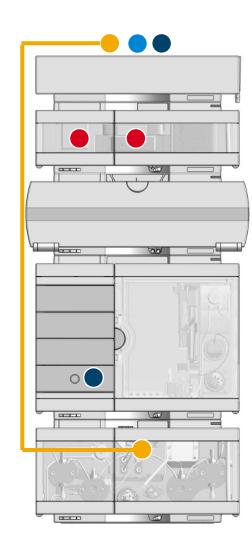



Baselines and Detection

Changes in Detection Noisy baseline

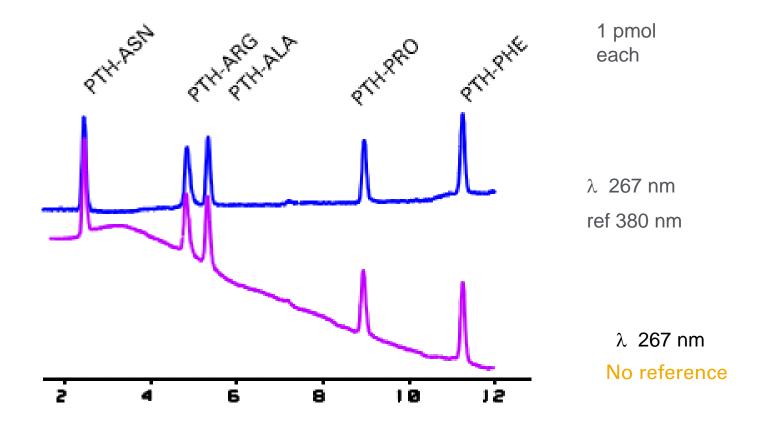
Potential Cause	Recommended Action		
Gas bubbles in the mobile phase	Apply degassingCheck degasser performance		
Low difference between sample and mobile phase absorbance	Check absorbance values of sample vs. mobile phase		
Contamination	Use degassed HPLC-grade solventsFlush systemClean up sample		
Detector optics	 Perform intensity test Check signal with flow cell removed if possible Replace lamp 		
Pressure instability	Check "Pressure fluctuation"		



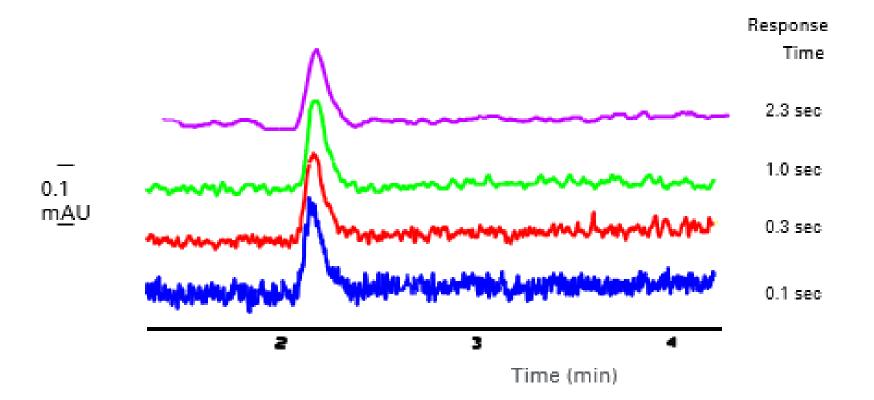


Changes in Detection Drifting baseline

	Potential Cause	Recommended Action
	Contamination in the mobile phase	 Make up new mobile phase If running a gradient, might need to adjust modifier
	Low difference between sample and mobile phase absorbance	Check absorbance values of sample vs. mobile phase
•	Contamination	 Use degassed HPLC-grade solvents Flush system Clean up sample
	Detector	Check temperature stabilityCheck for leaksReplace lamp
	Pressure instability	Check "Pressure fluctuation"



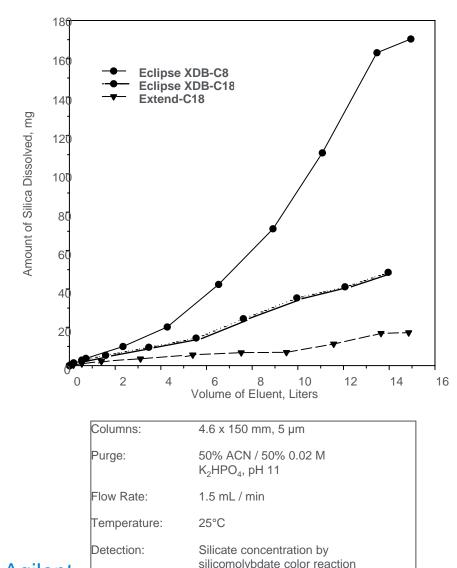
Reference Wavelength


How settings can affect the baseline

Gradient: 0.02 m KH PO/ACN, from 12% ACN to 45% ACN in 12 min

Influence of Data Collection Rate on Noise

Column Considerations


LC Columns Are Not Indestructible

- Columns are packed using hydraulic pressure and can be damaged by it.
- Silica dissolves (slowly) at higher pH
- Acid hydrolysis of bonded phase can occur at low pH
- Column failure
 - Void
 - Contamination
- Columns must be stored properly
 - Check your user guide

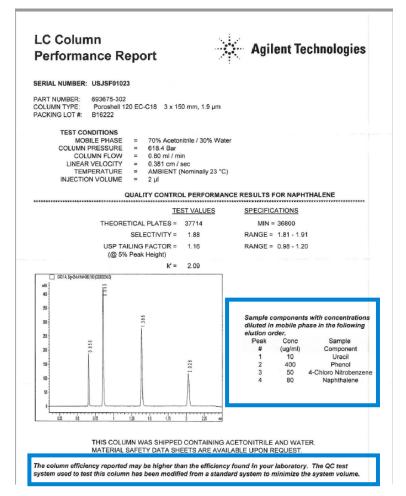
Important to Do:

- Know the technical specifications for your column
- Choose a mobile phase that is right for your column
- Keep record/history of your column

DE25843549

Choice of Your Column

Low and high pH can cause column failure


The InfinityLab Poroshell 120 portfolio offers choices for low and high pH					
Best all around	Best for <mark>low pH</mark> mobile phases	Best for <mark>high</mark> pH mobile phases	Best for alternative selectivity	Best for more polar analytes	Chiral
EC-C18 1.9 μm, 2.7 μm, 4 μm	SB-C18 1.9 μm, 2.7 μm, 4 μm	HPH-C18 1.9 μm, 2.7 μm, 4 μm	Bonus-RP 2.7 μm	SB-Aq 1.9 μm, 2.7 μm, 4 μm AQ-C18 2.7 μm	Chiral-V 2.7 μm
EC-C8 1.9 μm, 2.7 μm, 4 μm	SB-C8 2.7 μm	HPH-C8 2.7 μm, 4 μm	PFP 1.9 μm, 2.7 μm, 4 μm	EC-CN 2.7 μm	Chiral-T 2.7 μm
Phenyl-Hexyl 1.9 μm, 2.7 μm, 4 μm		CS-C18 2.7 μm		HILIC 1.9 μm, 2.7 μm, 4 μm	Chiral- CD 2.7 μm
				HILIC-Z 1.9 μm, 2.7 μm, 4 μm	Chiral-CF 2.7 μm
				HILIC- OH5 2.7 μm	

Benchmark Your Column

Every new column should be tested on your instrument

Performance verification based on Agilent checkout

- Run Agilent checkout before use
 - Record difference between your instrument and performance report (use as base value)
- Perform again if column seems to lose performance
 - Compare with results from first run

Performance verification based on in-house checkout

- Run in house checkout before use
 - Record key specifications such as tailing factor, plates, and backpressure
- Perform again if column seems to lose performance
 - Compare with results from first run

LC Troubleshooting Poster Available

- Flush all channels to remove salt deposits and particulate matter

- Flush the system with appropriate storage solvent and power

- If possible, use 5 to 10% of water in your mobile phase

LC Troubleshooting Guide

Infinity Lab

Your guide to solving common problems and staying productive

Places to Start

Solvents

- Use brown borosilicate bottles to avoid algae growth
- Prepare solvent volume to be used up within 1 to 2 days
- Use only HPLC-grade solvents filtered through 0.2 µm filters

Preparing and powering up the pump

- Inspect solvent bottles and inlet filters for damage or coloring
- Always use seal wash when installed and purge the pump
- Use the appropriate system conditioning method

Daily tasks

- Replace aqueous and organic mobile phases every second day
- Check seal wash solvent
- Flush the system with the composition of your application

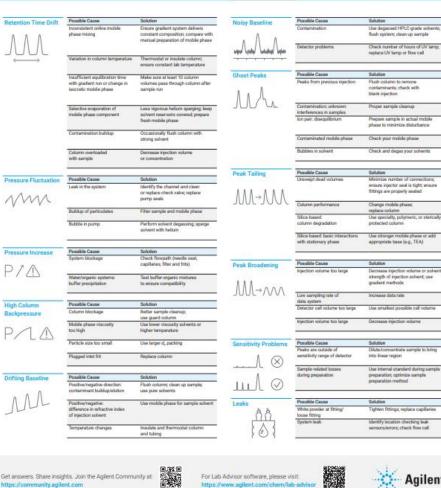
Weekly tasks

- Change seal wash solvent and bottle and inspect solvent filters

Pump shutdown

down the system

Handling of acetonitrile


Be sure to avoid ACN evaporation

Maintenance

July 24, 2023

Agilent Lab Advisor software helps you manage your Agilent LC instruments to achieve high-quality chromatographic results in the most efficient way by ensuring high instrument performance, productivity, and reliability. It is available free-of-charge.

- Diagnostic tests to evaluate performance - Easier maintenance of all Agilent LC modules - Comprehensive reports generated to ease communication with Agilent service

Agilent

Request yours today at www.agilent.com/chem/troubleshootLC

For Lab Advisor software, please visit:

Resources for Support

- Column user guides: <u>LC Column User Guides | Agilent</u>
- LC Troubleshooting poster: <u>LC Troubleshooting Guide 5994-0709EN</u>
- Resource page: <u>http://www.agilent.com/chem/agilentresources</u>
 - Quick reference guides
 - Catalogs, column user guides
 - Online selection tools, how-to videos
- InfinityLab Supplies catalog: <u>5991-8031EN</u>
- LC handbook: <u>5990-7595EN</u>
- YouTube <u>Agilent channel</u> (maintenance videos)
- Consumables Community: <u>Agilent Collection of Columns, Supplies, and Standards Resources</u> -
 - Consumables Agilent Community
- App finder: <u>Application Finder | Agilent</u>
- Agilent University: <u>Agilent University</u>
- Your local product specialists
- Agilent Peak Tales podcasts: peaktales.libsyn.com
- Webinars, upcoming and recorded: <u>LC & LC/MS Column Webinars | Agilent</u>

Contact Agilent Chemistries and Supplies Technical Support

Available in the U.S. and Canada, 8-5 all time zones

1-800-227-9770 option 3, option 3:
Option 1 for GC and GC/MS columns and supplies
Option 2 for LC and LC/MS columns and supplies
Option 3 for sample preparation, filtration, and QuEChERS
Option 4 for spectroscopy supplies
Option 5 for chemical standards
Option 6 for Prozyme products

gc-column-support@agilent.com lc-column-support@agilent.com spp-support@agilent.com spectro-supplies-support@agilent.com chem-standards-support@agilent.com pzi.info@agilent.com

