

ASMS 2018 MP371

Takashi Suzuki, Kohei Yamamoto, Tomonori Nozawa, Tatsuya Nishio, Kenichi Toyoda, Yasuhiro Mito, Hajime Bungo, Masatoshi Takahashi Shimadzu Corporation. 1, Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604–8511, Japan

Overview

We have developed a novel cell culture media analysis platform, C2MAP, that can carry out automated deproteinization of cell-free culture supernatant samples and simultaneous analysis of up to 95 compounds found in basal media components and secreted metabolites using triple quadrupole LC-MS/MS.

Introduction

Optimization and control of cell culture processes are essential to increase production efficiency of biopharmaceuticals. In the field of cell therapy, enhanced control of the culture process is also becoming important to reduce cell variability and improve consistency of mass production of the cells. Comprehensive monitoring of culture supernatant components gives researchers useful information for these purposes. However, current technologies for process monitoring are limited to measurement of pH, dissolving gases, and some small

compounds such as glucose, glutamine, lactate, and ammonia. We have developed a "Cell Culture Media Analysis Platform, C2MAP system" that can perform automated sample pretreatment and simultaneous analysis of up to 95 compounds listed below. We also developed a viewer software that can easily visualize temporal change in each measured compounds through the cell culture. In this poster, we present features of C2MAP system and its applications.

List of	Com	poun	ds
---------	-----	------	----

	ist of compounds							
No.	Compound Name	Class.	No.	Compound Name	Class.	No.	Compound Name	Class.
1	2-Isopropylmalic acid	IS	33	N-Acetylaspartic acid	Amino acid	65	Cytidine	Nucleic acid
2	Gluconic acid	Carbohydrate	34	N-Acetylcysteine	Amino acid	66	Cytidine monophosphate	Nucleic acid
3	Glucosamine	Carbohydrate	35	Ornithine	Amino acid	67	Deoxycytidine	Nucleic acid
4	Hexose (Glucose)	Carbohydrate	36	Oxidized glutathione	Amino acid	68	Guanine	Nucleic acid
5	Sucrose	Carbohydrate	37	Phenylalanine	Amino acid	69	Guanosine	Nucleic acid
6	Threonic acid	Carbohydrate	38	Pipecolic acid	Amino acid	70	Guanosine monophosphate	Nucleic acid
7	2-Aminoadipic acid	Amino acid	39	Proline	Amino acid	71	Hypoxanthine	Nucleic acid
8	4-Aminobutyric acid	Amino acid	40	Serine	Amino acid	72	Inosine	Nucleic acid
9	4-Hydroxyproline	Amino acid	41	Threonine	Amino acid	73	Thymidine	Nucleic acid
10	5-Glutamylcysteine	Amino acid	42	Tryptophan	Amino acid	74	Thymine	Nucleic acid
11	5-Oxoproline	Amino acid	43	Tyrosine	Amino acid	75	Uracil	Nucleic acid
12	Alanine	Amino acid	44	Valine	Amino acid	76	Uric acid	Nucleic acid
13	Alanyl-glutamine	Amino acid	45	4-Aminobenzoic acid	Vitamin	77	Uridine	Nucleic acid
14	Arginine	Amino acid	46	Ascorbic acid	Vitamin	78	Xanthine	Nucleic acid
15	Asparagine	Amino acid	47	Ascorbic acid 2-phosphate	Vitamin	79	Xanthosine	Nucleic acid
16	Aspartic acid	Amino acid	48	Biotin	Vitamin	80	Penicillin G	Antibiotics
17	Citrulline	Amino acid	49	Choline	Vitamin	81	2-Aminoethanol	Other
18	Cystathionine	Amino acid	50	Cyanocobalamin	Vitamin	82	2-Ketoisovaleric acid	Other
19	Cysteine	Amino acid	51	Ergocalciferol	Vitamin	83	3-Methyl-2-oxovaleric acid	Other
20	Cystine	Amino acid	52	Folic acid	Vitamin	84	4-Hydroxyphenyllactic acid	Other
21	Glutamic acid	Amino acid	53	Folinic acid	Vitamin	85	Citric acid	Other
22	Glutamine	Amino acid	54	Lipoic acid	Vitamin	86	Ethylenediamine	Other
23	Glutathione	Amino acid	55	Niacinamide	Vitamin	87	Fumaric acid	Other
24	Glycine	Amino acid	56	Nicotinic acid	Vitamin	88	Glyceric acid	Other
25	Glycyl-glutamine	Amino acid	57	Pantothenic acid	Vitamin	89	Histamine	Other
26	Histidine	Amino acid	58	Pyridoxal	Vitamin	90	Isocitric acid	Other
27	Isoleucine	Amino acid	59	Pyridoxine	Vitamin	91	Lactic acid	Other
28	Kynurenine	Amino acid	60	Riboflavin	Vitamin	92	Malic acid	Other
29	Leucine	Amino acid	61	Tocopherol acetate	Vitamin	93	O-Phosphoethanolamine	Other
30	Lysine	Amino acid	62	Adenine	Nucleic acid	94	Putrescine	Other
31	Methionine	Amino acid	63	Adenosine	Nucleic acid	95	Pyruvic acid	Other
32	Methionine sulfoxide	Amino acid	64	Adenosine monophosphate	Nucleic acid	96	Succinic acid	Other

Figure 1 Cell Culture Media Analysis Platform

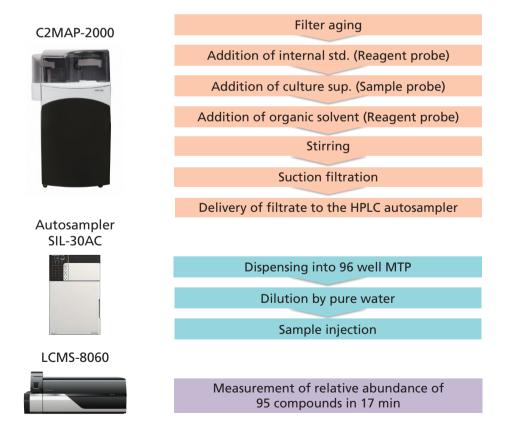
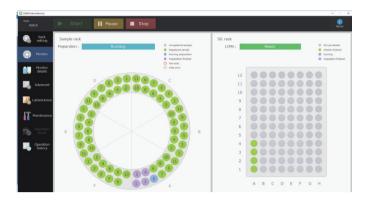



Fig.2 Pretreatment and measurement flow

The control of the co

Fig.4 C2MAP TRENDS

A dedicated software, C2MAP software, can control both pretreatment module and LC/MS/MS system, making it possible to carry out seamless analysis and to associate the treated sample and the measurement results easily because pretreatment and analysis are carried out with the common sample ID.

Tempral changes in each component can be graphed with the dedicated viewer software, C2MAP TRENDS, using LC/MS/MS data set. Users can monitor variations in basal media components and secreted metabolites during cultivation.

Materials and Methods

Various media analysis using C2MAP

Various kinds of mammalian cell culture media showed in Table I were analysed with C2MAP. IgG was added to the CHO cells media (final conc. at 10 mg/ mL) prior to analysis. Fetal bovine serum (FBS) often affects cell growth.

Detection of component amount variation among the product lots was also tested using three different lots of FBS.

Analysis for culture supernatant of human iPS cells

A spent medium of human iPS cells was collected every 24 hrs. The temporal changes in the components in the culture supernatant were monitored using the C2MAP system. Maintaining undifferentiated state is one of important characters of iPS cells. In this experiment,

C2MAP system was used to compare the temporal changes in the culture supernatant components in undifferentiated human iPS cells and its differentiated counterparts.

Results

Applicability of C2MAP for culture media analysis

The following cell culture media showed in Table I were analysed (six replicates each). Coefficient of variations for all detected compounds from tested media were less than 10% (data not shown).

Cell Type	CHO cells	iPS/ES cells	T cells	Mesenchymal stem cells
	BalanCD® CHO	AK03N	X-VIVO™ 10	MSCBM
Culture Media	1×CD CHO	Essential-8™	X-VIVO™ 15	MesenPRO™
	EX-CELL® CHO	mTeSR™1 / TeSR™-E8™	TexMACS™	Stempro®

Table I. Tested cell culture media

Fifty-six compounds were detected from FBS. Overall pattern of mass chromatogram from each lot was similar, whereas significant differences were detected in some compounds.

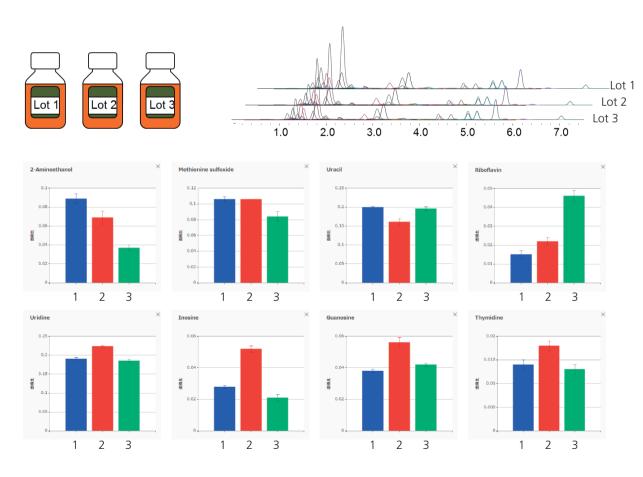


Fig.5 Evaluation of lot to lot variation of FBS

Spent media analysis of human iPS cells

Spent media analysis showed which medium components were favoured and consumed by cells, and which metabolites were secreted by cells. This information provides useful insights into optimization of the culture media composition and the culture process.

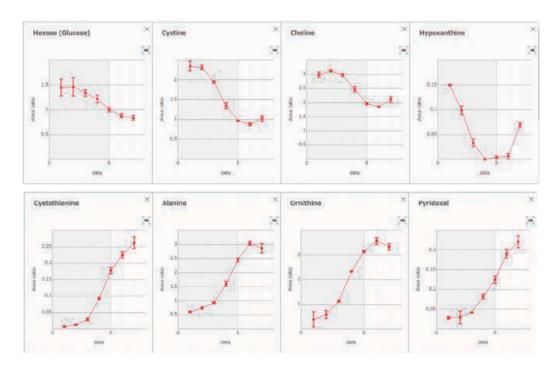
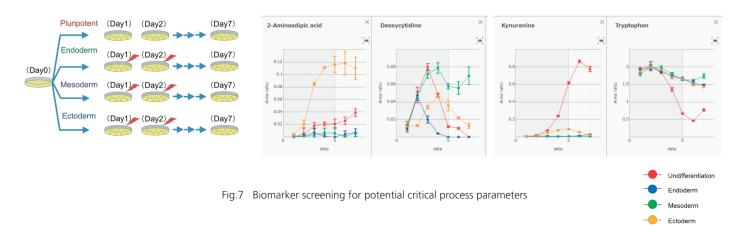



Fig.6 Time course of components in culture supernatant

C2MAP system was used to find biomarker candidates that can evaluate cell differentiation state using cell culture supernatant as the sample. Three germ layers differentiation was induced by the addition of appropriate

cytokines and chemicals. Spent media was collected every 24 hours and analyzed with C2MAP. As a result, significant difference could be found in the time course of some compounds.

Conclusion

- C2MAP is applicable for analysis of wide range of mammalian cell culture media.
- C2MAP can give useful insights into optimization of the culture media composition and the culture process.
- Multi components analysis using C2MAP is also useful for finding for potential critical process parameters.

Disclaimer: The products and applications in this presentation are intended for Research Use Only (RUO). Not for use in diagnostic procedures. Not available in China.

Shimadzu Corporation www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. Company names, products/service names and logos used in this publication are trademarks and trade names of Shimadzu Corporation, its subsidiaries or its affiliates, whether or not they are used with trademark symbol "TM" or "®".

Third-party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "®".

Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

First Edition: June, 2018