# 

# High-Sensitivity Analysis of a Steroid Panel Samples using Micro-Flow LC-MS/MS for Clinical Research

Narumi SHIRAI<sup>1</sup>, Takanari HATTORI<sup>2</sup>; Mikael LEVI<sup>2</sup>; Shoji F. NAKAYAMA<sup>3</sup>; Shigeru SUZUKI<sup>1</sup> 1Chubu University, Kasugai, Japan; 2Shimadzu Corporation, Kyoto, Japan; 3National Institute for Environmental Studies, Tsukuba, Japan

### 1. Overview

Development of a high-sensitivity method to assay a steroid panel in serum samples. Thanks to micro-flow LC/MS/MS, lower limit of quantification can be reached than usual methods

## 2. Introduction

As they are involved in many physiological processes, steroids are important biomarkers to assess health status and to investigate environmental effects on exposed populations. In pediatric or post-menopausal samples, circulating levels of reproductive hormones are very low and therefore challenging to measure. In addition, sample volume availability can be limited adding difficulties for high-sensitivity analysis.

Here we present a method to simultaneously measure seventeen steroids in serum samples using micro-flow LC/MS/MS at high sensitivity.

### 3. Methods

### 3-1. Reagents

androstenedione, Standard corticosterone, cortisol, cortisone 5-a-dehydrotestosterone, dehydroepiandrosterone, 11-deoxycorticosterone, estradiol, estriol, estrone, 17a-hydroxypregnenolone, deoxycortisol, hydroxyprogesterone, pregnenolone, progesterone and testosterone were obtained from Sigma-Aldrich (St Louis, USA). D4-aldosterone (IsoSciences, Ambler, USA), d3-estradiol (Kanto Chemicals, Japan) and d3-Testosterone (Sigma-Aldrich) were used as internal standards. All solvents were of LCMS grade or analytical grade from Wako Chemicals (Osaka, Japan).

Double charcoal-stripped serum (pool of healthy donors) from BioIVT (Westbury, USA) was used to prepare calibration curves and quality controls.

### **3-2. Sample Preparation**

300 µL of serum sample were spiked with 30 µL of ISTD solution at 500 pg/mL in water/methanol (1/1) and submitted to supported liquid-liquid extraction (SLE+400, Biotage, Sweden). After elution with 2x500µL of ethyl acetate/hexane (75/25 v/v) and evaporation to dryness, samples were reconstituted with 50 µL of methanol and transferred to a vial with glass-integrated insert prior to injection in the system.

### **3-3. Analytical Conditions**

A Nexera<sup>™</sup> Mikros LC-MS/MS system with trap-and-elute configuration was used for analysis (Shimadzu Corp., Japan). Micro-LC system composed of a binary gradient microflow pump (LC-Mikros), a binary gradient with two analytical pumps for trapping process (LC-30AD), an autosampler (SIL-30AC), a 6-ports/2-positions switching valve (FCV-32AH) and a column oven (CTO-Mikros).

This system was coupled to high-sensitivity triple quad mass spectrometer (LCMS<sup>™</sup>-8060) with micro-ESI ionization source . Other analytical parameters are described in Tables 1 and 2.

Trapping C **Trapping Fl Trapping M** Phases Trapping G Injection Vo

Microbore C Temperatur Mobile Phas Flow Rate Gradient

System Ionization Probe Volta Temperatu

Gas Flow

**Dwell Time** Pause time MRM

### Table 1: LC Conditions

| olumn   | : CERI C8 5µm 5*0.3mm                                                                                            |
|---------|------------------------------------------------------------------------------------------------------------------|
| ow Rate | : 200 µL/min                                                                                                     |
| obile   | : A: Water/Methanol 95/5 v/v<br>B: Acetonitrile/Isopropanol 1/1 v/v                                              |
| radient | : 100% A (2min) → 100 %B (2-15min) → 100 %A (15-19min)                                                           |
| olume   | : 10 μL                                                                                                          |
| Column  | : Shimadzu PLONAS Biphenyl 2.7µm 100*0.2mm                                                                       |
| e       | : 50°C                                                                                                           |
| ses     | : A: Water + NH <sub>4</sub> F 0.15mM<br>B: Methanol + NH <sub>4</sub> F 0.15mM<br>: 4 µL/min                    |
|         | : 40% B (0-2.5 min) → 40 to 50%B (2.5-2.7 min) → 50 to 95%B (2.7 11 min) → 95%B (11-13 min) → 40%B (13.5-19 min) |

#### Table 2: MS/MS conditions

|     | : LCMS-8060                 |                 |                 |
|-----|-----------------------------|-----------------|-----------------|
|     | : Micro-ESI                 |                 |                 |
| age | : +1.8 kV / -2.8 kV         |                 |                 |
| re  | : Interface: 150°C          |                 |                 |
|     | Desolvation Line: 250° C    |                 |                 |
|     | Heater Block: 300° C        |                 |                 |
|     | : Nebulizing Gas: 1.7 L/min |                 |                 |
|     | Heating Gas: 3 L/Min        |                 |                 |
|     | Drying Gas: Off             |                 |                 |
| ;   | : 5 ms                      |                 |                 |
| e   | : 1 ms                      |                 |                 |
|     | : Compound                  | MRM Quant       | MRM Qual        |
|     | Aldosterone (-)             | 359.20 > 189.30 | 359.2 > 331.35  |
|     | 11-Deoxycorticosterone (+)  | 331.05 > 109.20 | 331.05 > 97.25  |
|     | 11-Deoxycortisol (+)        | 347.05 > 109.20 | 347.05 > 97.30  |
|     | 17-hydroxypregnenolone (-)  | 331.05 > 287.25 | 331.05 > 303.30 |
|     | 17-hydroxyprogesterone (+)  | 331.10 > 109.20 | 331.10 > 97.20  |
|     | Androstenedione (+)         | 287.05 > 97.20  | 287.05 > 109.1  |
|     | Corticosterone (+)          | 347.05 > 121.20 | 347.05 > 91.10  |
|     | Cortisol (+)                | 363.05 > 121.10 | 363.05 > 267.20 |
|     | Cortisone (+)               | 361.00 > 163.25 | 361.00 > 121.25 |
|     | DHEA (+)                    | 289.05 > 253.20 | 289.05 > 271.25 |
|     | Dihydrotestosterone (+)     | 291.10 > 255.15 | 291.10 > 91.20  |
|     | Estradiol (-)               | 271.15> 145.10  | 271.15 > 143.10 |
|     | Estriol (-)                 | 287.10 > 143.10 | 287.10 > 145.10 |
|     | Estrone (-)                 | 269.00 > 145.10 | 269.00 > 143.00 |
|     | Pregnenolone (+)            | 317.10 > 281.30 | 317.10 > 159.35 |
|     | Progesterone (+)            | 315.15 > 109.20 | 315.15 > 97.30  |
|     | Testosterone (+)            | 289.05 > 109.10 | 289.05 > 97.15  |

### 4. Results

### 4-1. Calibration

Calibration curve was calculated by linear regression with 1/x2 weighting using internal standardization. Acceptance criteria for calibration levels was an accuracy comprised between 85-1155 (80-120% at LOQ). Typical calibration curves with their respective linear range are shown in Figure 1.



### **4-2.** Lower Limit of Quantitation

The lower limit of quantitation (LOQ) was established was injecting 5 independent replicates of a Quality Control spiked at each target compound respective LOQ. Acceptance criteria were an accuracy comprised between 80-120% and a %RSD< 20%. The Figure 3 shows LOQ QC chromatograms and Table 3 the results obtained.

### Table 3: LOQ results

|                   | 11-Deoxycorticosterone | 11-Deoxycortisol | 17-Hydroxyprogesterone | Androstenedione | Corticosterone         | Cortisol    | DHEA      | Dihydrostestosterone |         |
|-------------------|------------------------|------------------|------------------------|-----------------|------------------------|-------------|-----------|----------------------|---------|
| LOQ (pg/mL)       | 0.2                    | 0.1              | 0.4                    | 0.2             | 0.2                    | 0.4         | 10        | 1                    |         |
| Mean Accuracy (%) | 107                    | 98.3             | 100.5                  | 98.2            | 93.6                   | 85.2        | 117       | 105                  |         |
| RSD (%)           | 5.2                    | 13               | 9.0                    | 15              | 8.1                    | 11          | 4.5       | 5.0                  |         |
|                   | Pregnenolone           | Progesterone     | Testosterone           | Cortisone       | 17-Hydroxypregnenolone | Aldosterone | Estradiol | Estriol              | Estrone |
| LOQ (pg/mL)       | 10                     | 0.2              | 0.1                    | 0.4             | 2                      | 0.4         | 0.8       | 10                   | 0.2     |
| Mean Accuracy (%) | 108                    | 102              | 101                    | 98.6            | 108                    | 96.0        | 105       | 106                  | 89.6    |
| RSD (%)           | 7.1                    | 4.2              | 6.6                    | 10              | 14                     | 20          | 14        | 4.0                  | 3.5     |
|                   |                        |                  |                        |                 |                        |             |           |                      |         |

**WP219** 

Figure 1 – Calibration Curves



### **5.** Conclusions

A high-sensitivity assay was developed for 17 steroids in human serum samples to support clinical research and reached LOQ as low as 0.1 pg/mL (6 fg on column). Separation of isobaric compounds was ensured to prevent quantitative bias.

for use in diagnostic procedures. Not available in China.

Figure 2– LOQ Chromatograms