Application News #### **Imaging Mass Microscope** # A Study of Toxicity Evaluation Using the iMScope *TRIO* - Analysis of Localization of Amiodarone in Rat Lungs - # No. **B61** In drug discovery research, the analysis of the pharmacokinetics of candidate compounds provides important information not only in the elucidation of pharmacological mechanisms, but also from the viewpoint of toxicity assessment. In general, a method using autoradiography (ARG) and fluorescent dye is used, but with ARG the costs are high, and there have been concerns about the effects of using fluorescent agents as labeling agents on the pharmacokinetics. In recent years, the analytical technique of MS imaging has been attracting attention as a method that can detect data on the localization of candidate compounds without using a label. This method is expected to provide a breakthrough in drug discovery research as it can be used to analyze the localization of various substances without labeling, and to simultaneously analyze the unchanged drug and its metabolites using the same section. Here, we introduce an example of MS imaging analysis using the iMScope *TRIO* imaging mass microscope (Fig. 2) to compare the localization of the pathological findings with that of the amiodarone observed in lung tissue after administering amiodarone (Fig. 1) to rats. R. Yamaguchi, T. Yamamoto # ■ Analysis of Localization of Amiodarone in Rat Lungs In this experiment, we measured the tissue sections of rats lungs that had been administered amiodarone, an antiarrhythmia drug. When administered in large quantities, amiodarone causes phospholipidosis and pathological findings such as foamy macrophage infiltration of cells are observed. However, up until now there had been no information on whether amiodarone accumulated in the lesions or not, so we examined the relationship between the pathological findings and localization of amiodarone utilizing the MS imaging technique. In the preliminary study test using standard amiodarone, we optimized the matrix selection and measurement mode, and applied those conditions in this experiment. Table 1 shows the experimental conditions from sample preparation to MS imaging analysis. On comparing the mass spectrum taken from a tissue section obtained by performing high-resolution imaging with a spatial resolution of 5 μ m using the iMScope *TRIO* with the mass spectrum of the standard, a common m/z 646.0 signal was detected (Fig. 3). By drawing a mass image of this m/z 646.0, we confirmed that amiodarone had accumulated where foamy macrophages had infiltrated the cells (Fig. 4). Fig. 1 Structural Formula of Amiodarone Fig. 2 iMScope TRIO **Table 1 Experimental Conditions** #### Sample Preparation Animal species : Rat Administered drug : Amiodarone hydrochloride Administration method : 3-day repeated oral administration Dose : 1000 mg/kg Organ : Pulmonary tissue Section : Fresh frozen sections Section thickness : 10 µm #### **Matrix Coating** Matrix : CHCA Matrix coating method : Sublimation by iMLayer Matrix coating thickness : 0.7 μm #### **Measurement Conditions** Analysis instrument : iMScope TRIOMeasurement mode : positive mode MS range : m/z 500-700 Laser diameter : $5 \mu m$ Spatial resolution : $5 \mu m$ Fig. 3 Mass Spectra of the Tissue Section and Standard Fig. 4 HE-Stained Image and Optical Image for Analysis (Serial Sections) and MS Image ### Analysis of Localization of Amiodarone Metabolites In rats, administered amiodarone is reported to be N-deethylated in the body. In this experiment we performed MS scan analysis, and a strong peak was also observed 28 Da lower, at m/z 618.0, corresponding to deethylation of unchanged amiodarone (Fig. 5). By drawing the MS image for m/z 618, we obtained an image similar to that of the localization of amiodarone, as shown in Fig. 6. This also indicates a high probability that the MS image of m/z 618.0 depicts a product of N-deethylation of amiodarone. Fig. 5 Mass Spectrum of Tissue Section (Detail of m/z 600 to 700 Range) Fig. 6 MS Image (Corresponding to Molecular Weight of Metabolite) Fig. 7 Workflow for HE Staining After MS Imaging Analysis ## Prospects in Perfectly Matching MS and HE-Stained Images Since MS imaging is not possible on a section stained with HE, in this experiment MS imaging analysis was performed on an unstained section that was consecutive to the one stained with HE. However, even with serial sections the tissue morphology is only similar and not a perfect match, and the images have to be aligned by relying on distinctive landmarks. Currently, in order to solve this problem, we are considering perfectly matching the position information of the HE-stained image and MS image by removing the matrix from the section that has been subjected to MS imaging with an organic solvent and then staining it with HE, as shown in Fig. 7. #### **Acknowledgments** We would like to thank Mr. Hidefumi Kaji and Mr. Hiroyuki Hashimoto of Mitsubishi Tanabe Pharma Co., Ltd. very much for their great cooperation with obtaining data for this Application News and the writing of this article. First Edition: Jun. 2017 # Shimadzu Corporation www.shimadzu.com/an/ ### For Research Use Only. Not for use in diagnostic procedures This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country. The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. Company names, product/service names and logos used in this publication are trademarks and trade names of Shimadzu Corporation or its affiliates, whether or not they are used with trademark symbol "TM" or "®". Third-party trademarks and trade names may be used in this publication to refer to either the entities or their products/services. Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own. The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.